Frequency Domain Volume Rendering

Takashi Totsuka™

Mare Levoy?

“SONY Corporation
fComputer Science Department, Stanford University

Abstract

The Fourier projection-slice theorem allows projections of
volume data to be generated in O(n?logn) time for a vol-
ume of size n®. The method operates by extracting and
inverse Fourier transforming 2D slices from a 3D frequency
domain representation of the volume. Unfortunately, these
projections do not exhibit the occlusion that is character-
istic of conventional volume renderings. We present a new
frequency domain volume rendering algorithm that replaces
much of the missing depth and shape cues by performing
shading calculations in the frequency domain during slice
extraction. In particular, we demonstrate frequency domain
methods for computing linear or nonlinear depth cueing and
directional diffuse reflection. The resulting images can be
generated an order of magnitude faster than volume render-
ings and may be more useful for many applications.

CR Categories: [.3.7 [Computer Graphics]: Three-
dimensional Graphics and Realism.; [.3.3 [Computer Graph-
ics]: Picture/Image Generation; Display Algorithins.

Additional Keywords: Volume rendering, Fourier trans-
form, Shading models, Scientific visualization, Medical imag-
ing, Digital signal processing.

1 Introduction

Volume rendering is an important tool for visualizing 3D
scalar fields. Most existing algorithms operate in the spa-
tial domain. They can be classified as either image space
algorithms (e.g. [7]) or object space algorithms (e.g. [4],
[15]) depending on the order in which the data is traversed:
along each ray cast from the image plane or along X, Y, and
Z axis of the volume data. The complexity of these algo-
rithms is O(n®) since all voxels must be visited to render
an image. This high cost limits the use of these algorithins
in interactive environments. Although efficient algorithins
exist for sparse data sets [8], [L4],[16], such optimization is
data dependent.

In an effort to drastically reduce rendering costs, fre-
quency domain algorithms based on the Fourier projection

* Sony Corporation. 6-7-35 Kitashinagawa, Shinagawa
Tokyo 141, Japan (totsuka@av.crl.sony.co.jp)
i Center for Integrated Systems, Stanford University

Stanford, CA 94305

(levoy@cs.stanford.edu)

Spatial Domain Frequency Domain

—_—

f(p)

. F(s)
: projection

\L slice extraction
IFT
-

Figure 1: Volume rendering using Fourier projection
slice theorem

slice theorem have been proposed [5], [10]. It is well known
that the integral of a 1D signal is equal to the value of its
spectrumn at the origin. The Fourier projection slice theorem
extends this notion to higher dimensions. For a 3D volume,
the theorem states that the following two are a Fourier trans-
form pair:

e The 2D image obtained by taking line integrals of the

volume along rays perpendicular to the image plane.

e The 2D spectrum obtained by extracting a slice from
the Fourier transform of the volume along a plane which
includes the origin and is parallel to the image plane.

Using this theorem, once a volume data is Fourier trans-
formed, an (orthographic) image for any viewing direction
can be obtained by extracting a 2D slice of the 3D spec-
trum at the appropriate orientation and then inverse Fourier
transforming it (figure 1). The cost of this approach is domi-
nated by the 2D inverse fast Fourier transform (IFFT) which
is O(n*logn). Hence, the overall cost is also O(n” logn).
Since log n grows slowly, the advantage of this approach over
spatial domain algorithms is greater at large data sizes.

Despite their theoretical speed advantage, frequency do-
main volume rendering algorithms suffer from several well-
known problems:

High interpolation cost: Because the sample points of
the 3D spectrum and those of the 2D slice do not co-
incide except at the origin, the 3D spectrum must be
interpolated and then resampled in order to extract a
2D slice. Since this interpolation is imperfect, replicas
of the volume data are not fully suppressed, causing
ghosts to appear on the projection image. Because any

filter that provides a sharp cutoff in the spatial domain
also has wide support, high-quality interpolation is ex-
pensive. As the interpolation is O(n?), the FFT is still
asymptotically dominant. However, due to a large con-
stant factor associated with the interpolation, current
implementations spend the majority of their running
time in interpolation, making the algorithm not attrac-
tive for practical data sizes (128% or 256%).

Memory cost: Due to the wide dynamic range and com-
plex arithmetic associated with Fourier transforms, a
pair of floating point numbers is required for each voxel.
Assuming a 64-bit double precision representation, 16
bytes are required per voxel. By contrast, only 1 byte
per voxel is necessary in spatial domain algorithins.

Lack of depth information: The projection obtained by
the Fourier projection slice theorem is a line integral
normal to the direction of view. Voxels on a viewing
ray contribute equally to the image regardless of their
distance from the eye. The image therefore lacks occlu-
sion, an important visual cue. While some users (diag-
nostic radiologists in particular) prefer integral projec-
tions since nothing is hidden from view, this character-
istic would be considered a drawback in most applica-
tions.

The first two problems listed above are technical in na-
ture, and several promising solutions are proposed later in
this paper. The lack of occlusion is fundamental, however,
in so far as no projection-slice theorem is known that mimics
the integro-differential equation ([6]) approximated by vol-
ume rendering algorithms. Fortunately, occlusion is only one
of many cues employed by the human visual system to deter-
mine the shape and spatial relationships of objects. Other
available cues include perspective, shading, texture, shad-
ows, atmospheric attenuation, stereopsis, ocular accommo-
dation, head motion parallax, and the kinetic depth effect.

It is possible, of course, to apply any shading technique in
the spatial domain before the volume is Fourier transformed.
However, such a naive approach would require recomputa-
tion of the volume followed by an expensive 3D forward FFT
each time the view or the lighting condition is changed.

In an earlier paper [9], we instead showed that for a limited
class of shading models, the dependence on viewing direction
and lighting direction could be factored out of the projection
integral, yielding equations of the form

e
1= w (/ i), y(t), =(1)) dt) . (1)

i=0 -

Here, effects of viewing and lighting direction are solely ex-
pressed by weights w; while the volumes f; are indepen-
dent of them. The indicated integration can be evaluated
efficiently using the projection slice theorem. For example,
linear depth cueing can be computed as the weighted sum
of projections through three volumes that are depth cued
before 3D forward FFT along X, Y, and Z directions, re-
spectively.

The obvious disadvantage of this hybrid spatial-frequency
domain approach is that it requires multiple copies of the
volume. While still asymptotically faster than conventional
spatial domain volume rendering, implementation consider-
ations (problems one and two above) make it barely superior
in practice.

In the present paper, we describe methods for rendering
volumes with depth cueing and directional shading that op-
erate entirely within the frequency domain. They are based
on two well-known properties of the Fourier transform.

e Multiplication by a linear ramp in the spatial domain
is equivalent to differentiation in the Fourier domain.

e Differentiation in the spatial domain is equivalent to
multiplication by a linear ramp in the Fourier domain.

Using these properties, depth cueing implemented in [9] as
spatial domain multiplication, is implemented in the present
paper using frequency domain differentiation. Similarly, di-
rectional shading, implemented in [9] using spatial domain
differentiation, is implemented in the present paper using
frequency domain multiplication.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the previous works. Section 3 presents our
new frequency domain shape cueing techniques. Sections 4
and 5 refer to solutions to the interpolation and the memory
cost problems, respectively. Section 6 shows results from our
implementation, and section 7 gives conclusions and possible
future directions.

2 Base Algorithm

We begin by briefly reviewing current frequency domain vol-
ume rendering algorithms. In the following discussion, small
letters (f,g,...) represent data in the spatial domain and
capital letters (F,G,...) represent data in the frequency
domain. We also assume that the transform between the
two domains is the Fourier transform which is denoted by
F.

Let f(x) be a volume and F(s) be its Fourier transform.
« and 8 are 3D vectors in the spatial and frequency domain,
respectively. Given f(x), the algorithm first transforms it
into the frequency domain to yield F(s). This is done only
once. For each view, the discrete spectrum F($) is interpo-
lated along the extraction plane (parallel to the image plane
and passing through the origin) using a filter H(8). The in-
terpolated spectrum is resampled to obtain a 2D spectrum
which is then inverse transformed to obtain a spatial domain
projection.

By the convolution theorem, interpolation F(8) * H(S)
corresponds to f(x)-h(x) in the spatial domain. Here, h(x)
is the response of the filter. Unless H(S) is an ideal lowpass
filter, its response has a smooth shoulder. Thus, the periph-
ery of the volume and consequently the periphery of the pro-
jected image is attenuated. To cope with this “vignetting”
problem, the volume data f(Z) can be premultiplied by the
reciprocal of the response, p,, (&) = ﬁ before its forward

transformation [10]. As H and P,, cancel during interpola-
tion, we obtain a correct slice of F' (figure 2). We have imple-
mented this method using filters obtained from Malzbender
and have obtained excellent results, as documented in sec-
tion 4 and 6.

3 Shape Cueing Techniques

3.1 Depth Cueing

Depth cueing is obtained by weighting voxels according to
their distance from the observer. Let d(x) be the weighting
function or depth cueing function for a given eye position.
Then, a depth-cued volume is expressed as f(x) - d(x). By
transforming it to the frequency domain and extracting a
slice, we obtain a depth cued projection. As stated earlier,
this straightforward approach requires an expensive 3D FFT
(n®logn) for each view. There is, however, an elegant and
inexpensive equivalent operation in frequency domain.

Spatial Domain

- /\/\

X
pro(x) M
Wl TN e

() /\/\

Figure 2: Premultiplication of the volume data

Frequency Domain

[7]

— | F(9

Including the compensation p,, (&) for the filter response,
spatial domain depth cueing can be expressed as f(x)-d(x)-
pm(x). By transforming and interpolating, this corresponds
to F{f(x)-d(x) -pn(x)}*H(S) at sample points on the slice
in the frequency domain. Using the convolution theorem,
this expression can be rewritten as follows:

Ff(x)d(x) pm(x)} + H(s)

(F(s)* D(s)* Py,(8)) = H(s)

(F(8)* Pn(8)) * (H(s)*D(s))
F{f (@) pm(2)} + H'(8) (2)
where H'(s) = H(s) x D(s).

Thus, merely by replacing the interpolation filter H with
H', we have obtained depth cueing. Note that the above
expression operates entirely in the frequency domain, and
moreover is evaluated only on the plane of the slice being
extracted. Hence, it is a 2D operation. Note also that be-
cause F{f(€) - pm(x)} is independent of the eye position,
the 3D forward transform is performed only once.

Although H' must be computed for each view, the cost
of recomputation is small because the support of filter H is
small (3% ~ 5%) and D(s) is usually a simple expression. In
practice, the recomputation is negligible compared with the
cost of interpolation itself.

This frequency domain depth cueing method applies to
any depth cueing function d(x). Indeed, the method can be
designed to highlight the middle portion of the volume while
attenuating the front and back portions.

By way of example, we first consider simple linear depth
cueing, di(x). Let the view vector be V. The signed depth
measured from the origin of the volume is thus given by
(V -x), and di(x) can be written as

dl(w) = Ccu,e(V . :L') + Cn,'vg (3)

where Cgye is the strength of the depth cueing effect and
Cyuvg is a constant (see figure 3). Taking Fourier transforms,
we obtain

CCUE
Di(s) = —m(v' A) + Cavg 8(8) (4)
where A = [A,, Ay, A.] is the differential operator of con-
volution (A, f = a%f) Substituting the interpolation filter

Figure 3: Linear depth cueing

with depth cueing (H') yields

H'(s) H(s)* Di(s)

= _Coe (Y oVH(S) + Cay H(s) (5)

127

The first term exhibits the depth cueing effect. Since VH
can be precomputed and stored in a table, computation of
H' is of insignificant cost. An example of frequency domain
linear depth cueing and projection is shown in figure 6(b).
As a reference, the same volume rendered without depth
cueing is shown in figure 6(a).

Although any function can be used for D, finding one that
has a simple form reduces the cost of computing H'. The
size of H' is also a consideration, since it directly impacts
rendering time. To illustrate this important issue, let us em-
ploy a half period of a sine wave as d(x). Since the transform
of a sine function is two impulses, H' can be computed by
shifting H and adding three copies' with complex weights.
Note that this considerably increases the size of the filter
kernel. By adjusting the origin, amplitude, and period such
that the value is zero at the farthest voxel and unity at the
closest voxel, we eliminate the need for a DC term. D now
has the form C1 6(8 — 8y) + C2 6(8+ 8,) where Cy and C5
are complex constants determined by the amplitude and the
shift of the wave and s,, is determined by the period of the
wave. The period is typically made long enough so that the
depth cueing appears almost linear. We can further remove
one of the impulses by doubling the weight of the remaining
impulse. By removing one of the impulses, the projection
image is no longer a real’. However, the real part of the
result still contains the correct projection image. With this
technique, depth cueing is implemented by an interpolation
with a shifted H, which is practically free.

The notion of a shifted H gives us an alternative way
to look at the process. Extracting a slice from a spectrum
at a position translated from the origin by a distance d in a

I'wo for the impulses of the sine wave term and one for the
constant term of d().

2The imaginary part is a cosine wave since we are using the
analytic signal of the depth cueing function. See the discussion
on the Hilbert transform in [1].

Figure 4: Hemispherical light source

direction V' corresponds to phase-shifting the spatial domain
projection by €27¢* at distance ¢ in the same direction V.
The real part of such a phase-shifted projection appears to
fade in and out as a function of position in direction V and,
for appropriate values of d, the visual effect is that of depth
cueing.

3.2 Directional Shading

In a scene composed of surfaces, directional shading using
the well-known Lambertian reflection model is given by

Ca,mb O(:Ln,mb + Cdif O(‘L’dq'f MAX (0, (N . L)) (6)

where Cymp and Cyqiy are constants defining the strength of
ambient and directional shading terms, O, is an object color,
Lamy and Ly are constants defining the color of ambient
and directional lights, and IN and L are unit surface normal
and light vectors, respectively.

Ignoring the attenuation of light inside the volume, the
ambient term can be approximated using

Ca mb Ln,'m,b f(m) (7)

The diffuse term, however, must be handled carefully be-
cause the nounlinear function MAX does not have a simple
frequency domain representation. Note that the frequently
used alternative, |IN - L|, which shades surfaces as if they are
two-sided rather than the bounding surface of a solid, is also
nonlinear and cannot be handled directly in the frequency
domain.

To avoid this problem, we employ a hemispherical light
source [12], [9]. The irradiance E; on a surface having normal
vector IN illuminated by a hemisphere whose pole points in
direction L as shown in figure 4 is proportional by Nusselt’s
analog (as described in [3]) to the projection of the visible
portion of the hemisphere down onto the plane containing
the surface, or

E;, = Ldz‘f %(1 + Cose) = Ldl‘f%(l + (NL)) (8)

With this shading model, the diffuse term in a surface model
is expressed as

1
CdifOchif;(l—}—(N'L)) (9)
For volumes, we have
1 (Vf(z)-L))
CuairLair = |V 1+ ———
dif df2| f($)|(IVf(@)|

= CasLas 3 (V@) +(Vf@) L)) (10)

Since volume datasets do not have explicitly defined sur-
faces, Vf(x) is used as the normal vector at each location.
The strength of directional shading in volume rendering al-
gorithms is commonly made proportional to the gradient
magnitude as a simulation of the surface-ness of the volume
[4],[7]. Locales having high gradient magnitudes (i.e., steep
jumps in density) reflect more light.

Equation (10) can be computed entirely in the frequency
domain. By the derivative theorem, the gradient in one do-
main is the first moment in the other domain. Thus, the
shading computation can be performed as a moment compu-
tation in the frequency domain. This useful property of lin-
ear shading can also be exploited in image understanding al-
gorithms. For example, [13] uses the moment to estimate the
orientation of surfaces assuming that the reflectance function
is linear with respect to the slope of the surfaces.

Transforming equations (7) and (10) to the frequency do-
main and including compensation for the filter response, we
obtain

F{Cumb Lams f(x)
+ CiipLuiy 3 (IVF@)] +(Vf(@) - L)}
= (Camb Lamp + i7Cuais Lais (s - L))
X (FLF(@) pu (@)} * H(s))
+ %Cdif Lais (F{IVFf(@)| pm(®) } = H(s)) (11)

The first term corresponds to the ambient term and the
(N - L) part of equation (9) while the second term corre-
sponds to the accompanying constant 1. Once f(&)pm(x)
and |Vf(x)| pn(x) are Fourier transformed, the shading
computation can be performed during slice extraction (fig-
ure 5). Note that the interpolation filter H is applied first in
order to reconstruct the pure spectrum of f(x) from the pre-
multiplied volume. Then, the first moment of the spectrum
is computed to apply the directional shading.

Although computing a moment incurs a few additional
floating point operations per sample on the slice, the addi-
tional expense is small relative to the number of operations
that are required to evaluate the convolution at the sample
point. It should also be noted that equation (11) can be eas-
ily extended to multiple light sources. In this case, we only
have to add the moment terms for additional light sources.
The increase in the computation cost is minor.

Figure 6(c) shows a projection shaded using this tech-
nique. As before, the method operates entirely in the fre-
quency domain and requires computations only on the plane
of the slice being extracted

The major drawback of this shading model is that it re-
quires a second spectrum, F{|Vf(x)| pn(x)} since there
is no simple way to compute a gradient magnitude in the
frequency domain. Hence, two slices must be extracted
from two volumes. A linear shading equation such as
Camb Lams f(®) + CaifLaif Vf(x) that requires only one
volume can be derived under an appropriate interpretation.
However, the upper bound of Cy;¢ is restricted in order not
to generate negative values and consequently the shading
effect is restricted.

3.3 Combining Depth Cueing and Shading

It is possible to combine the depth cueing and directional
shading techniques described in the foregoing section. When
the two techniques are used together, the shading must be

Flf®) pm(®)} F{IVI(@)| pm(z) }

Spectra

wnf

k2

@

k3

Extracted slice

Figure 5: Shading computation in frequency domain.
k1 = Cumb Lams (ambient term), ko = inCyy Lysy (8- L)
(shading term), k3 = 3Cair Lais (constant term).

applied first. Otherwise, distortion by the depth cueing
would result in incorrect gradient vector by which the shad-
ing effect is computed. However, this order of operation re-
quires two convolutions: one performed before the shading
computation to recover F' by interpolation filter H and one
performed after shading in order to apply the depth cueing
function. This approach makes depth cueing no longer an
inexpensive operation since we can’t use the composite filter
H'.

We can work around this problem by reversing the order
of shading and depth cueing and then adjusting the result
to get the desired effect. Using this ordering, we employ
the composite filter H' to perform the interpolation and the
depth cueing at once. As we will see, for practical settings,
even this adjustment is not necessary.

Here, we will examine the effect of reversed order oper-
ation in spatial domain. We focus on the gradient term of
the shading equation (second term of equation (10)) since
other terms are not affected by the order. Applying depth
cueing function d(x) to equation (10), we obtain the shaded
and depth cued term. Omitting the coefficient %C'd,'f Luaiy,
the gradient term is (Vf(x)- L)d(xz). Reversing the order
of computation, we get

(VIf(z)d(z)] - L)
= (Vf(®)-L)d(z) + f(x)(Vd(z)- L) (12)

The second term is the difference from the correct value.
Since d(x) is a function of depth (V - &), the difference can
be rewritten as

(@) (Vidip (V -2)] - L)
= f@)dip(V-2)(V.L) (13)

where dip(t) is a 1D depth cueing function. To maximize
the shading effect, L is usually set perpendicular to V' (i.e.,
the scene is illuminated from the side). In this case, the
difference term becomes zero and the adjustment is not nec-
essary. An example of this common special case is shown in

figure 6(d).

If (V -) is non-zero, we need an adjustment. For linear
depth cueing, the difference term including all the coeffi-
cients is

%C'macdif Lais f(z)(V - L) (14)

which we can compute during slice extraction without con-
volution. For a more complex depth cueing function, a con-
volution is necessary.

4 Reducing Rendering Time

Although the interpolation required in order to extract an
arbitrarily oriented slice from the 3D spectrum is O(n?), it
consumes most of the running time. As might be expected,
the cost of this interpolation step is almost entirely deter-
mined by the size of the filter. For the 3 x 3 x 3 filter we
employ, 27 input samples contribute to each output sample.
If we instead employed a 1 X 1 x 1 filter, only one input sam-
ple would contribute to each output sample, a great saving
in time. Because a smaller filter has less sharp cut off in spa-
tial domain, the resulting image would contain strong ghosts
if it were used uniformly over the entire interpolation pro-
cess. However, by adaptively changing the filter size, we can
reduce rendering time while maintaining high image quality.

Most of the energy in a spectrum usually resides in a small
number of low frequency components, while the vast ma-
jority of high frequency components are nearly zero. We
have observed that usually 99% of the energy is contained
by about 10% of the frequency components.

This property makes an adaptive scheme which selects
an inexpensive filter for weak frequency components very
attractive. For simplicity, let us consider interpolation of
a 1D spectrum F by two filters; a larger filter H; and a
smaller filter H>. Each input sample component is filtered
or scattered by either Hy or H» according to its strength.
Let F| be the set of those samples that are filtered by H;
and Fs be those filtered by Ha. Obviously, F1+F, = F. The
correct result we want is F x Hy or in the spatial domain,
f ha. The adaptive scheme can thus be written as follows:

FY{F«H + F+H}

F Y F«H + Fys(Hy—Hy)}
Fhi+ fa(he — ha) (15)

The term fi (ha — hy) denotes the difference between the
adaptively filtered image and the correct image. The mean
square error is given by integrating the power of this error
term. Using Rayleigh’s theorem, its upper bound is given in
the frequency domain as follows.

“+ oo
l/ | fahs —) P

L J—0
1 e
S Zh?l—maz [W |f2 |2 dI
1 e
= Z hz_m,“, / | Fg |2 dS (16)

where L is the length of the non-zero region of f and hy-max
is the maximum of |hs — hi|. This upper bound allows us to
select input samples to be filtered by Hs such that the mean
square error of the rendered image is below a user defined
tolerance. Similar analysis provides an upper bound for the
mean square error when more than 2 filters are employed.
The idea extends straightforwardly to 3D discrete signals.

(a) (b)

Figure 6: Examples of frequency domain depth cueing and shading.

(c) (d)

(a) projection without depth cueing, (b) linear

depth cueing, (¢) directional shading without depth cueing, (d) directional shading with depth cueing.

This adaptive scheme is incorporated to the slice extrac-
tion as follows. First, each sample in the 3D spectrum is
examined, and those whose magnitude is small enough to
satisfy equation (16) are marked. This process is done only
once after a volume data is transformed to the frequency
domain. During slice extraction, each sample point on the
slice plane is visited. If for a given sample point all of the
3D spectrum voxels that fall within the support of the larger
filter are marked, the smaller filter is employed instead.

It is possible to improve this scheme further. To avoid
testing all voxels falling within the support of the larger fil-
ter, we modify the preprocess to mark only those voxels that
themselves satisfy equation (16) and for which all neighbor-
ing voxels lying within a distance from them equal to one-
half of the support of the larger filter satisfy the equation.
Given this more conservative marking, it is sufficient during
slice extraction to test the spectrum voxel closest to the slice
sample position. If that voxel is marked, we know without
visiting any other voxels that it is safe to employ the smaller
filter.

5 Reducing Memory Cost

Because the 3D spectrum is complex and requires a float-
ing point representation due to its large dynamic range, a
straightforward implementation using a double precision for-
mat consumes 16 times more memory than a spatial domain
algorithm?®. This explosion in memory cost can be controlled
by using the Hartley transform [10] and a shorter number
representation.

The Hartley transform is a direct relative of the Fourier
transform [2]. The transform is defined as follows:

oo
H{f(x)} = Fu(s) :/ f(x) cas2w sz dx (17)

—oo

where cas2wsx = cos2wsx + sin 2wsx. Since the kernel is a
real function, this transform maps a real function f(z) to a
real spectrum Fi(s). Use of the Hartley transform, there-
fore, eliminates the need for a complex number. Since the

3 Assuming each voxel is represented by one byte in the spa-
tial domain algorithm. With shading, spatial domain algorithms
require more memory.

Fourier spectrum of a real signal is hermitian®, the same

amount of memory saving is possible with the Fourier trans-
form by dropping half of the spectrum (e.g., store only the
positive coeflicients along the S, axis). However, such imple-
mentation would unnecessarily complicate the slice extrac-
tion process.

Due to wide dynamic range of spectra, a floating point
format is necessary. Counsidering the necessity of premulti-
plying the volume before transforming, a 64-bit double pre-
cision format is a safe choice to represent a spectrum of a
256 volume. However, even using the Hartley transform,
this occupies 8 times more memory than the original vol-
ume. This problem can be minimized by using a shorter
floating point format. We have defined and used a 16-bit
floating point format which reduces the memory cost factor
to two.

6 Results

Figures 7-9 show images rendered using the algorithms we
have described. The shading, depth cueing, adaptive fil-
tering, the Hartley transform, and the 16-bit floating point
format are all used in rendering these three images.

Figure 7 shows a human skull mounted in a lucite head
cast. The data was acquired using computed tomography
(CT). Zeros are padded to the original data (106°) and
resulting 128 volume data was rendered. The volume is
shaded by a hemispherical light source located to the right
and is also linearly depth cued with respect to the observer’s
position.

The use of multiple light sources is shown in figure 8.
A polygonalization of the Utah teapot has been 3D scan-
converted into a 256% volume data which is then shaded by
a red, a green, and a blue light located perpendicular to
the observer and 120 degrees apart. The resulting color on
the surface provides some intuition for the orientation of the
gradient vector.

Figures 9 and 10 compare the frequency domain rendering
technique with a conventional spatial domain volume render-
ing. These images were generated using identical shading
and depth cueing. There is no visible difference between the
two 1mages.

4 A signal whose real part is even and whose imaginary part is

odd, i.e. f(z) = f*(—ua).

Figure 7: Human head. Frequency domain volume ren-
dering. Data courtesy of North Carolina Memorial Hos-
pital.

Figure 8: Utah teapot. Frequency domain volume ren-
dering. The pot is lit by a red light (right), a green light
(upper left), and a blue light (lower left).

The adaptive filtering scheme described in section 4 was
implemented using a 3 X 3 X 3 and a 1 X 1 x 1 filter with the
maximum difference in response set to (Ag-maz) 0.3. Fig-
ures 7-9 were generated using this scheme. As shown in ta-
ble 1, the scheme reduced the cost of interpolation to about
15% of the non-adaptive case. Relative error was always be-
low 40dB, a level at which image differences are not visible.

Table 1 also shows rendering times to generate figures 7-
9. Rendering times by a spatial domain renderer are also
shown for comparison. These times include all necessary op-
erations to create a 2D projection. For the frequency domain
rendering technique, it consists of slice extraction (interpo-
lation and resampling), inverse Harteley transform, and for-
mat conversion to and from the 16-bit floating point format
and the machine’s native format. Times were measured on
an IRIS Crimson with a 50Mhz R4000 processor using non-
optimized code. As the table shows, the running time of
the frequency domain method grows much slower than the
spatial domain method, which grows at ()(ng).

The effect of round off error caused by the 16-bit floating
format was very small. Relative difference from images gen-
erated using a 64-bit double precision representation were
below 50dB. Figures 7-9 were generated using this format.

Figure 9: Turbine blade. Frequency domain volume
rendering. The blade is lit by a green light (top), a
blue light (bottom), and a dim red light (right). Data
courtesy of General Electric.

Figure 10: Same dataset as figure 9. Rendered with
identical shading and depth cueing but using a spatial
domain volume renderer.

7 Conclusions

The use of the Fourier projection slice theorem allows us
to replace the O(n?) spatial domain projection computa-
tion that arises in volume rendering with an O(n? logn)
frequency domain computation, although the frequency do-
main projection operator is non-occluding, resulting in a loss
of realism. In this paper, we have shown that other O(n?)
spatial domain rendering computations that arise in volume
rendering (i.e., shading and depth cueing) can be replaced
with O(n?) frequency domain methods, and we propose that
a judicious selection of these methods can restore much of
the realism lost by using a non-occluding projection.

The speed advantage of our algorithm over volume ren-
dering is considerable. As our experiments show, a 128°
volume can be rendered in a fraction of a second on a conven-
tional workstation. Further optimization of the code should
achieve interactive rendering without specialized hardware.

Besides its speed advantage, the frequency domain ap-
proach lends itself to simple and elegant speed-accuracy
tradeoffs. By extracting only the central portion of the 3D
spectrum present on a slice, a renderer could provide a low
resolution image quickly while the user is rotating the vol-

Adaptive filtering))
Volume data | Size | Non adaptive Adaptive Rendering time
Num. ops.T Num. ops.” (Ratio) | Freq. domain | Spatial domain
Head 1287 | 5.92 x 10° 1.01 x 10° (17.1%) 0.54 sec 3.15 sec
Teapot 256° | 1.81 x 10° 2.33x10° (12.9%) 1.77 24.29
Turbine 256° | 1.85 x 10° 3.00 x 10° (16.2%) 2.03 24.38

tA filtering operation counsists of a filter table look up, a reference to a voxel, a multiplication, and an addition.

Table 1: Effect of adaptive filtering

ume, to be replaced with a higher quality image when the
mouse button or joystick is released.

Since the core computations of the algorithm are convo-
lution and the FFT, an implementation using digital signal
processors (DSPs) obviously suggests itself. With the growth
of multimedia applications involving video and sound encod-
ing and decoding, such processors are becoming a standard
part of most graphics workstations. It should also be noted
that these computations exhibit high data level parallelism
and can be parallelized in any one of several ways.

With regard to limitations and improvements, further ef-
fort should be made to relax the limitations imposed by the
linear nature of the Fourier/Hartley transform. The algo-
rithm currently does not allow non-linear attenuation.

Acknowledgements

The authors wish to thank Tom Malzbender for helpful sug-
gestions and his interpolation filter coefficients and Ronald
Bracewell for useful hints on the use of the Hartley trans-
form. The notion that shading could be factored with
respect to digital compositing, an idea that inspired the
present work, was suggested by Brice Tebbs. Discussions
with Adam Levinthal were useful in the early stages of this
project. Hide Hirase’s volume modeling toolkit helped us
creating test datasets.

This research was supported by the National Science
Foundation (NSF), the National Aeronautics and Space Ad-
ministration (NASA), and the sponsoring companies of the
Stanford Center for Integrated Systems (CIS).

References

[1] Bracewell, Ronald, The Fourier Transform and its Ap-
plications, revised second edition, McGraw-Hill, 1986.

Bracewell, Ronald, The Hartley Transform, Oxtord
University Press, 1986.

Cohen, Michael and Greenberg, Donald, “The
Hemicube: A Radiosity Solution for Complex Envi-
ronments”, Computer Graphics, Vol.19, No.3, pp.31-
40, 1985.

Drebin, Robert, Carpenter, Loren, and Hanra-
han, Pat, “Volume Rendering”, Computer Graphics,
Vol.22, No.4, pp.65-74, 1988.

Dunne, Shane, Napel, Sandy, and Rutt, Brian,
“Fast Reprojection of Volume Data”, Proceedings of
the First Conference on Visualization in Biochemical
Computing, IEEE Computer Society Press, pp.11-18,
1990.

2]
[3]

[6]

8

[0

[10]

[11]

[12]

[13]

[14]

[16]

Hottel, Hoyt, and Sarofim, Adel, “Radiative Trans-
fer”, McGraw-Hill, 1967.

Levoy, Marc, “Display of Surfaces from Volume Data”,
IEEE Computer Graphics and Applications, Vol.8,
No.3, pp.29-37, 1988.

Levoy, Marc, “Efficient Ray Tracing of Volume Data”,
ACM Transactions on Graphics, Vol.9, No.3, pp.245-
261, 1990.

Levoy, Marc, “Volume Rendering using the Fourier
Projection-Slice Theorem”, Proceedings of Graphics
Interface 92, Canadian Information Processing Soci-
ety, pp.61-69, 1992.

Malzbender, Tom, “Fourier Volume Rendering”, ACM
Transactions on Graphics, Vol.12, No.3, July 1993.

Napel, Sandy, Dunne, Shane, and Rutt, Brian, “Fast
Fourier Projection for MR Angiography”, Magnetic
Resonance in Medicine, Vol.19, pp.393-405, 1991.

Nishita, Tomoyuki and Nakamae, Eihachiro, “Contin-
uous Tone Representation of Three-Dimensional Ob-
jects”, Computer Graphics, Vol.20, No.4, pp.125-132,
1986.

Pentland, Alex, “Linear Shape from Shading”, Inter-
national Journal of Computer Vision, Vol.4, pp.153-
162, 1990.

Subramanian, K.R. and Fussel, Donald, “Applying
space subdivision techniques to volume rendering”,
Proceedings of the First IEEE Conference on Visual-
ization. (Visualization ’90), IEEE Computer Society
Press, pp.150-159, 1990.

Westover, Lee, “Footprint Evaluation for Volume Ren-
dering”, Computer Graphics, Vol.24, No.4, pp.367-
376, 1990.

Zuiderveld, Karel, Koning, Anton, and Viergever,
Max, “Acceleration of ray-casting using 3D distance
transforms”, Proceedings of the SPIE Visualization
wn Biomedical Computing 1992, Vol. 1808, pp.324-335,
1992.

