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Abstract

Current GPUs rasterize micropolygons (polygons approximately one pixel in size) inefficiently. Additionally, they
do not natively support triangle rasterization with jittered sampling, defocus,or motion blur. We perform a mi-
croarchitectural study of fixed-function micropolygon rasterization using custom circuits. We present three ras-
terization designs: the first optimized for triangle micropolygons that are not blurred, a second for stochastic
rasterization of micropolygons with motion and defocus blur, and third that isa hybrid combination of the two.
Our designs achieve high area and power efficiency by using low-precision operations and rasterizing pairs of
adjacent triangles in parallel. We demonstrate optimized designs synthesized in a 45 nm process showing that a
micropolygon rasterization unit with a throughput of 3 billion micropolygonsper second would consume 2.9 W
and occupy 4.1 mm2 which is 0.77% of the die area of a GeForce GTX 480 GPU.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors—
I.3.7 Three-Dimensional Graphics and Realism

1. Introduction

Rapid growth in the performance and programmability of
GPUs has motivated researchers to take on the challenge of
designing a graphics system capable of rendering detailed
scenes with complex, high-resolution surfaces in real-time.
These detailed surfaces are commonly represented by mi-
cropolygon meshes (polygons of less than a pixel in size).

There has been recent success in efficiently tes-
sellating surfaces into micropolygons [PO08, EML09,
FFB∗09] as well as in shading micropolygons in a GPU
pipeline [FBH∗10]. Although geometry processing and
shading typically dominate rendering cost, Fatahalian et al.
note that micropolygon rasterization is computationally ex-
pensive because it cannot leverage optimizations that are
common when rasterizing large triangles [FLB∗09]. Anal-
ysis of micropolygon rendering pipelines implemented as
software “compute-mode” applications running on GPUs
indicates that rasterization can consume a significant frac-
tion of total rendering time [ZHR∗09] and requires a large
fraction of a GPU’s compute resources to process simple
scenes [EL10] at real-time rates. The cost of micropolygon

rasterization increases further when motion and defocus blur
effects are desired.

Most modern GPU architectures use highly-optimized
fixed-function hardware to perform triangle rasterization
and, in contrast to previous micropolygon rasterization
work, this paper pursues the design of a fixed-function ras-
terizer optimized for micropolygon workloads. We describe
the design space of micropolygon rasterization, and present
three optimized hardware designs. The first design imple-
ments stochastic rasterization of stationary micropolygons.
The second implementation extends this design to support
rasterization with motion and defocus blur. The third hard-
ware unit is a hybrid of the two that is optimized to support
a combination of blurred and non-blurred inputs.

2. Background

To provide context for the analysis presented in this paper,
we will first provide some background on traditional raster-
ization and micropolygon rasterization.
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2.1. Current GPU Rasterization

Traditional rasterization derives efficiency through the ex-
ploitation of the spatial coherence of screen samples rela-
tive to a scene’s geometry. For example, early work utilized
the coherence of pixels along a span in the Digital Differ-
ential Analyzer (DDA) implementation used in the Reali-
tyEngine [Ake93] to achieve high efficiency. Modern raster-
ization is usually performed in three steps.

First, polygon pre-processing is performed. This pre-
processing is often referred to as “setup” and could include
the generation of the edge equations required for point in
polygon testing [Pin88,FGH∗85].

Second, a set of screen space samples which are possibly
covered by the polygon are determined. The goal here is to
achieve a reasonable sample test efficiency (STE), the num-
ber of samples in polygon out of total samples tested, and
to maximize the parallelism provided to the sample test por-
tion. Modern systems compute the sample candidates using
coarse screen tiles [FPE∗89, MM00] and hierarchical tech-
niques [Gre96,MWM01,SCS∗09].

Third, each of these sample candidates is evaluated us-
ing individual point in polygon tests. Modern systems seek
to maximize parallelism here to achieve performance. Tra-
ditionally this is done utilizing stamps [FGH∗85], where
the samples are ordered into blocks ranging from 4x4 to
128x128 samples [Pin88,FPE∗89,SCS∗09].

This approach to rasterization achieves high performance
because large swaths of pixels are trivially in or trivially out
of the polygon. In micropolygon rasterization, it does not
make sense to test a large set of samples against a polygon
as large sets of samples are unlikely to lie completely within
a single polygon.

2.2. Micropolygon Rasterization

Fatahalian et al. provides a detailed description of the algo-
rithms that we have implemented in hardware [FLB∗09].

In this section we summarize the algorithms for rasteriza-
tion without blur (NOBLUR) and with motion and defocus
blur (BLUR) for clarity.

2.2.1. NOBLUR

The NOBLUR algorithm is summarized in the following
pseudo code:

Cull back facing
BBOX = Compute MP bbox
foreach sample in BBOX

test MP against sample

NOBLUR determines a screen space bounding box for the
micropolygon and clamps the bounding box to the sample
grid. It then iterates over those samples testing whether they
fall inside the micropolygon using edge equations. This is
similar to the algorithms presented in [Pin88].

2.2.2. BLUR

The BLUR algorithm supports motion blur and depth of field
effects and is summarized in the following pseudo code:

foreach unique UVT tuple //N iterations
MP_SHIFT = MP position at ui,vi,ti
BBOX = compute MP_SHIFT bbox
foreach TILE in BBOX

SAMP = sample for ui,vi,ti and TILE
test MP against SAMP

This algorithm estimates the rendering integral for a given
frame by stochastically sampling over the lens parameters u
and v and through time t. The algorithm iterates over N pre-
definedu,v, t triplets. For each of these unique tuples the mi-
cropolygon is positioned appropriately. The micropolygon is
first positioned at the sample time. After a micropolygon is
positioned in time, the radius of the defocus blur kernel is
calculated using the depth of each micropolygon vertex. The
position of each vertex is then shifted in x byu · r and y by
v· r. This implementation simultaneously supports both mo-
tion blur and defocus and does not use time-dependent edge
equations as proposed by [AMMH07].

N is actually larger than the number of samples per pixel,
therefore the sample density in x and y per micropolygon
positioned atu,v, t is reduced appropriately. For example, a
rendering configuration where N=64 and MSAA x16 corre-
sponds to a sample density of 1 sample for every 4 pixels for
each positioned micropolygon. The sets of four pixels are
referred to as tiles. The screen space bounding box for the
positioned micropolygon is clamped to this grid of tiles. As
before, each bounding box is iterated over and the point in
triangle test per tile is performed. This sample test is jittered
at each tile corresponding tou,v, t in addition to the tile’s x
and y position.

3. ASIC Rasterizer Microarchitecture

ASIC implementations of BLUR and NOBLUR are instances
of the micropolygon rasterization unit template shown in
Figure 1. Each instance is defined by the five configura-
tion parameters shown at the bottom of the figure. Our third
rasterization pipeline (HYBRID) is produced from another
configuration of these parameters and efficiently supports
rasterization of both motion blurred and non-blurred mi-
cropolygons. The calculations performed in each functional
block are fixed-point (we assume that vertex positons have
been converted to fixed point outside of this rasterization
pipeline). This section describes the components of this tem-
plate and their associated design parameters.

• The light blue, “sample in time” function block corre-
sponds to the position in time operation described in the
previous section. Thisxi(1− t) + xi+1t operation is per-
formed for each vertex.

• The green “calc radius” function block is equivalent to an
inversion operation for each vertex’s z value(r = 1

z).
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Figure 1: Microarchitecture: This block diagram presents
the design for a micropolygon rasterization unit with support
for jittered sampling, defocus, and motion blur. By removing
features from the design it is possible to generateNOBLUR

function units or units that support only defocus or motion
blur. The parameters for the design space are indicated in
green and represent optimization opportunities.

• The green “sample in lens” function block corresponds
to positioning the micropolygon with respect to the u,v
values over the lens. The operation is equivalent tou· r in
x andv · r in y.

• The yellow “bbox” function block determines the
clamped bounding box for a positioned micropolygon or
NOBLUR micropolygon. This is implemented as a set of
parallel comparisons used to select minima and maxima.
The minima and maxima are rounded in order to clamp to
the x,y sample grid.

• The yellow “iterator” function block is a simple increment
and compare implementation that also generates stall sig-
nals for the previous stages of the pipeline. It is equivalent
to the for-each sample operator in the pseudo code.

• The yellow “sample test” function block calculates the
edge distances required for the barycentric interpolation.
Additionally, the sample test block determines whether
the sample location falls within the micropolygon.

• The yellow “depth interpolation” function block is used to
calculate the interpolated depth of the individual hit sam-
ple using the edge distances provided by the sample test
block. The block is implemented as an inversion to calcu-
late a normalization factorn = 1/(d1 + d2 + d3) and the
multiply add using the norm factorzinterp = ∑2

0 dizin.

Each of these units is required to implement a BLUR or
HYBRID unit. The NOBLUR design exists as a subset of
the BLUR design. NOBLUR requires only the yellow com-
ponents: bbox, iterator, sample test, and depth interpolation.
The NOBLUR design is impacted by theTVP, STS, andSTP
microarchitecture parameters.

• The first design parameterTVPdetermines whether to op-
erate on individual triangles or to operate on two triangles
simultaneously that share an edge. In order to operate on
pairs of triangles, the unit tessellating primitives into tri-
angles must communicate the micropolygon connectivity.
With pairs of triangles, the operations which position ver-
tices with respect to theu,v, t tuple must now accommo-
date four vertices as opposed to three. Additionally, the
bounding box unit must now determine the bound for four
points in space rather than three points. Finally the sample
test unit will now perform five edge tests for two point in
polygon tests per triangle pair rather than three edge tests
for one point in polygon test per individual triangle.

• The second design parameterSPF is related to theu,v, t
sample operators specific to the blur implementations.
This parameter defines the parallelism in calculating the
vertex positions. By allocating more per-vertex operation
units per-cycle a higher micropolygon throughput could
be achieved. The numerical evaluation of the parameter
is with respect to serialization as it describes both the re-
duction in operation units and micropolygon positioned at
u,v, t throughput.

• The third parameterPMT determines the number ofu,v, t
tuples to evaluate in parallel. This is specific to BLUR and
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HYBRID designs and requires a new instantiation from
bbox down to depth interpolation per parallel evaluation.

• The fourth parameterSTSdetermines the number of sam-
ple tests performed in parallel peru,v, t positioned mi-
cropolygon. This parameter determines the size of the
sample raster stamp. A 1x1 sample stamp is equivalent to
testing one sample per cycle and imitates the pseudo code
given for NOBLUR in section 2.2.1. A 2x2 sample stamp
is equivalent to testing four samples per cycle. A 2x2 sam-
ple stamp iterates over a bounding box with a stride of two
pixels. Additionally, the bounding box is now clamped to
a 2x2 sample grid rather than a 1x1 sample grid.

• The fifth parameterSTPdetermines the number of lead-
ing bits required for the sample test unit. This optimiza-
tion attempts to take advantage of the fact that a tessella-
tion unit upstream of the rasterization unit [FFB∗09] will
generate micropolygons whose width and height are less
than 8 pixels widths with high probability(> 1−1/106).
For a sample test 8 bits of sub pixel precision are re-
quired [Bly06]. Additionally, we must be able to represent
scene geometry in a 16k x 16k pixel render target [Bly06].
To meet these requirements 22 bits or 14.8 is required. If
we assume a micropolygon pipeline, only 4.8 bits of pre-
cision are required to represent vertex position accurately.
This optimization only impacts the precision required for
the sample test unit, all other units use the required 14.8
precision.

4. Methodology

We seek to identify the microarchitecture parameters which
result in energy and area efficient designs. To do this, we
explore the physical design space for each of the microar-
chitecture implementations.

We vary the physical design parameters across lowVt ,
nominalVt , and highVt cell libraries at four domain voltages
Vdd clustered around .9 Volts.Vt andVdd are used as a knob
to increase the performance per area, as individual gates of
constant size become faster for lowerVt and highVdd. We
vary the clock speed in order to match the speed of the crit-
ical path at theseVt andVdd pairs. Finally, pipe stages are
added in order to reduce the path length. In order to accom-
modate variable delay, clock speed, and pipe stage count, we
made use of Design Compilers data-path pipeline retiming
tool. Additionally, the microarchitecture parameters given in
Figure1 impacted the physical design and were also consid-
ered where appropriate.

To determine the cycle time, power, and area for individ-
ual data path elements, each module was synthesized in a
45nm TSMC process with a pessimistic leakage model. This
analysis was performed using the Synopsys Design Com-
piler tool at the granularity of the function blocks given in
Figure1. The data path of each function block was created
using System Verilog and the Design Compiler DesignWare
Library. The control paths for these elements are small com-
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Figure 2: NOBLUR Design Space: Each point represents
an individualNOBLUR rasterization design at 16x MSAA.
Along the frontier of this design space it is no longer possible
to extract energy savings while simultaneously increasing
performance. Instead, along this frontier energy efficiency
can be traded for increased performance density as a form
of design currency.

pared to the data-path and is modeled by the cost of the
control path elements. We incorporate the distribution of the
control signals, which dominate the overall cost of this type
of control circuit.

We performed synthesis using aggressive compilation
routines and data path retiming tools. However, we did not
perform any path fixing, manual retiming, or path duplica-
tion for any of the designs. Dynamic power was based on
the characterization of the TSMC 45nm cell libraries cou-
pled with a conservative estimate of switching factors for
individual gate nodes and the margin required for wire rout-
ing. The estimates for dynamic power did not incorporate
any power saving features like fine grained clock gating. We
assumed that each function block would be fully used at any
given time. Leakage power was determined using conserva-
tive cell characterizations. The area of the design was based
on total cell area coupled with a place and route area estima-
tion tool.

Each point shown in Figure2 represents a unique instance
of the template rasterizer from Figure1. Each of these in-
stances were created by varying the microarchitectural pa-
rameters and physical design parameters for each instance.
The lower right hand portion of the plot represents desirable
high performance and low energy designs, while the upper
left represents undesirable low performance and high energy
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Design Parameter NoBlur Blur Hybrid

TVP:Triangle Pairs Yes Yes Yes
SPF:Serialu,v, t Sample n/a No Yes
PMT:Parallel over UVT n/a 3 1
STS:Sample Stamp Size 2x2 1x1 2x2
STP:Sample Test Precision 4.8 4.8 4.8

Table 1: Summary of Optimal Implementations: We indicate
in this table the value of the parameters used to optimize
each of the three designs:NOBLUR, BLUR, andHYBRID.

designs. The goal here is to identify the efficient design fron-
tier or the Pareto optimal designs as shown with the curve in
Figure2. Among the Pareto optimal designs there exist no
other known designs which have a lower energy per opera-
tion and higher performance density [HQW∗10,AMPH09].
Instead the two values are used as a form of currency to trade
energy efficiency for greater performance density. The de-
signs in the upper right hand corner of the plot are designs
that have traded energy efficiency to gain performance den-
sity. The designs in the lower right hand corner of the plot
correspond to designs that have traded performance density
to gain energy efficiency.

Additional performance can be gained by replicating the
rasterization function unit from Figure1. The goal then is not
to optimize individual unit power, unit area, and unit perfor-
mance. Instead the goal is to maximize the triangle rasteri-
zation rate in a given die area while minimizing the energy
per rasterized triangle.

5. Results

For our evaluation we used scenes composed of triangles
with an average area of 0.54 pixels and rendered with 16x
MSAA. For scenes with blur we used N=64u,v, t tuples with
a 2x2 pixel tile size. Note that the performance of BLUR is
invariant to the amount of motion in the scene.

Table1 summarizes the optimal design decisions in this
space with respect to the microarchitecture parameters.

5.1. NOBLUR

The NOBLUR design served as a good starting point as it
would be integrated into all other designs. The implemen-
tation of NOBLUR led us to two optimizations which were
useful across all designs and one optimization that was use-
ful for improving NOBLUR power and area efficiency.

First, Figure 3 shows the Pareto curves for two con-
strained designs. The orange curves of circles represent de-
signs which were constrained to operate only on pairs of tri-
angles, while the blue curve of squares represents designs
which were constrained to operate only on triangles. The
triangle pairs curve never intersects the individual triangles
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Figure 3: Triangles vs. Pairs of Triangles: This figure shows
the efficiency of two sets of designs. In one set the design
was optimized under the constraint that it must use individ-
ual triangles as the base primitive (blue squares), while the
other set was constrained to operate on pairs of triangles
simultaneously (orange circles).

curve, therefore it is always better to rasterize pairs of tri-
angles. At the 1W/mm2 power density an implementation
operating on triangles consumes 15% more resources than
an implementation operating on pairs of triangles.

This improvement from operating on pairs of triangles
simultaneously rather than individual triangles comes from
two sources. First, a triangle pairs exhibit a higher sample
test efficiency (more useful work is done per sample test)
than individual triangles. Second, operating on two triangles
simultaneously allows us to amortize the cost of: calculating
the two shared vertices’ positions inu,v, t and performing an
edge test for the shared edge.

Second, we looked for opportunities to decrease the bit
width of the computations in order to increase the efficiency
of the design. This corresponds to the microarchitectural pa-
rameterSTP. Figure4 shows the resources required to ac-
commodate a 14.8 or 22 bit width sample test in a NOBLUR

rasterizer is double the resources required to support 4.8 or
12 bit width sample testing.

We also found, that by decreasing the cost of the sample
test, a function block 2x2 sample raster stamp became effi-
cient due to the relative cost of an iterator, sample test, and
interpolation unit relative to the cost of the bounding box op-
eration. The designs in Figure4 corresponding to 4.8 and 6.8
bit width sampling operation use a 2x2 sample raster stamp
while the remainder use a single sample per cycle pipeline.
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Figure 5: NOBLUR Raster Stamp Efficiency: The figure on the left shows the efficiency of three sets of designs at 16x MSAA.
Each set has a different raster sample stamp dimension, corresponding to 1 sample per cycle, 4 sample per cycle, and 16
samples per cycle. The data points contained in each set represent the optimal designs given a constraint on sample raster
stamp size. The figure on the right repeats this design space exploration for 4x MSAA.

The shift to a smaller bit width sample unit for NOBLUR

rasterization allowed for an increase in samples evaluated
per cycle with a 2x2 sample raster stamp. In Figure5(a) the
NOBLUR 16x MSAA rasterization units which were con-
strained to use 2x2 sample raster stamps are represented in
orange circles. These designs were consistently more effi-
cient than the designs constrained to operate on 4x4 stamps,
in green triangles, and 1x1 stamps, in blue squares. In Fig-
ure 5(b), the NOBLUR 4x MSAA rasterization units which
were constrained to use 2x2 sample raster stamps, in green
circles, are consistently more efficient then either the 4x4
stamps, in blue, or 1x1 stamps, in red. The difference be-
tween 4x MSAA and 16x MSAA is that for 4x MSAA the
difference in efficiency for 1x1 stamps and 2x2 stamps is
small and at the most a 10% increase in cost. However for
16x MSAA the difference in cost between 2x2 stamps and
1x1 stamps is about 40%.

The cost savings, when shifting to 2x2 stamps from a 1x1
stamp, are derived from amortizing the cost of three bound-
ing box units while only requiring a 25% increase in the
number of samples to be evaluated. For example, for the de-
sign given in Table2 25% of the cost of an iterator, sample
test, and interpolater is less than three times the cost of a
bounding box unit.

The curves in Figure3 and Figure5 don’t trade positions
along the efficient frontier. For these microarchitectural pa-
rameters, only one parameter choice is Pareto optimal.

Component Power (mW) Area (mm2)

Sample in Time 52 .10
Sample in Lens 28 .043
Bbox 14 .012
Back-face Cull 10 .0010
Iterator 3 .0020
Sample Test 18 .0015
Interpolation 14 .013

Table 2: Cost Breakdown: The power and area required for
each of the base components of a 1W

mm2 optimal BLUR de-
sign. This design had an operating voltage of .99V, used
High Vt devices, and ran at a clock speed of 2GHz.

Note that a 2x2 sample stamp differs from the algorithm
used by [FLB∗09] and shown in 2.2.1. For an ASIC, func-
tions are statically implemented and the goal is to optimize
the utilization of a function block relative to its total expense,
not necessarily maximizing STE. In this case the reduction
in utilization for each sample test lane in relation to its cost
was less than the increase in utilization of the BBox and back
face cull relative to their cost.

NVIDIA’s GeForce GTX 480 GPU, which is fabricated
in a similar 45nm process, has a die size of 529mm2 [NVI ].
This GPU can process four triangles per clock at 700 MHz
resulting in a throughput of 2.8 billion triangles per second.
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presents the increase in cost for aNOBLUR design at 16x
MSAA as the number of leading bits used in the sample test
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to the performance density and energy per operation of a de-
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points indicate the increase in energy per operation and the
purple triangle data points indicate the decrease in perfor-
mance density.

For a three billion micropolygon per second rasterization
rate the NOBLUR rasterization unit would consume 2.9 W
and occupy 4.1mm2 which is 0.77% of the die area for a
GeForce GTX 480 GPU.

Sustaining this rasterization rate with the data-parallel
software NOBLUR implementation described in [FLB∗09]
would require 160 billion 32-wide vector operations per sec-
ond. No GPU today provides this level of software per-
formance. Although fixed-function rasterization hardware
may not provide direct speedup in systems bottlenecked by
shading costs, it provides an opportunity to allocate more
general-compute resources to the problem of shading.

5.2. BLUR

We found that for a BLUR design which supports blur, the
ideal sample parallelism is to compute the position of three
micropolygons position atui ,vi , ti micropolygons simulta-
neously. In Figure6 the design constrained to evaluate three
positioned micropolygons in parallel (PMT=3), represented
as orange circles, was consistently more efficient than any
of the other designs. It is difficult to maintain full occupancy
for all three of the evaluation units because theu,v, t sample
units only emit oneu,v, t positioned micropolygon per cycle

Power Density→ .7 W/mm2 1.0W/mm2 1.5W/mm2

NOBLUR (W) 2.9 (1) 3.3 (1) 3.7 (1)
Motion blur (W) 20 (7) 24 (7) 27 (7)
Defocus blur (W) 19 (7) 23 (7) 29 (8)
BLUR (W) 25 (9) 30 (9) 38 (11)
HYBRID-NoBlur (W) 3.9 (1) 5.0 (2) 6.4 (2)
HYBRID-Blur (W) 43 (15) 56 (17) 72 (19)

Table 3: The Cost of BLUR Relative to The Cost of
NOBLUR: This plot shows the costs for 6 different designs
for three different power densities. The power density of a
design is simply the multiplication of its performance den-
sity with its energy per operation. The area of the designs
can be found by dividing the power by the power density.
The values in the parenthesis indicates the multiplied cost
for that design overNOBLUR at the same power density.
Note thatHYBRID-NoBlur andHYBRID-Blur are the same
design operating in different render modes (NOBLUR and
BLUR).

while the average micropolygon only covers three tiles. Re-
gardless of the reduced utilization, the increase in through-
put is enough to amortize the significant cost in calculating
vertex positions foru,v, t. Referring to Table2, the evalua-
tion of a positioned micropolygon will require 60 mW and
.14mm2 while theu,v, t sample unit will require 80 mW and
.030mm2. At this specific design point, the parallelism was
desirable even at a lower utilization.

Unlike the NOBLUR design the optimal BLUR uses a
stamp size that is 1x1 samples. It is also important to note
that testing multiple samples per cycle using a sample stamp
larger than 1x1 is inefficient because x and y samples are
sparse and bounding boxes are small.

In Figure7 the distance between the blue squares repre-
senting the set of optimal NOBLUR designs and the red dia-
monds representing the set of optimal BLUR designs is about
10x. Table3, which is a summary of Figure7, indicates the
power and area required to rasterize 3 billion micropolygons
per second at three power densities. Power density is simply
the multiplication of the energy per micropolygon with the
performance per millimeter. The area is derived from divid-
ing the required micropolygon rate by the performance den-
sity of the design. The power is derived by multiplying the
required micropolygon rate by the energy per operation. For
a three billion micropolygon per second rasterization rate the
BLUR rasterization unit would consume 25 W and occupy 36
mm2 which is 6.8% of the die area for a GeForce GTX 480
GPU.

5.3. HYBRID

To support both NOBLUR and BLUR render modes the first
step would simply be to add a bypass around the sam-
ple u,v, t units to evaluate the unblurred micropolygons di-
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Figure 6: Efficiency in Sample Parallelism forBLUR:
This figure presents the efficiency of sample parallelism
for BLUR. Each curve represents the Pareto optimal fixed-
function units resulting from a design space constrained to
use some form of sample parallelism. There are two forms
of sample parallelism shown here. First, the purple triangles
represent designs that sample positioned micropolygons us-
ing a 2x2 sample raster stamp and is noted as STS: 2x2.
Second, the blue squares, orange circles, and green trian-
gles represent the set of designs constrained to operate on
4,3, and 2 positioned micropolygons in parallel. Finally, the
set of designs which were constrained to not use any sample
parallelism is represented with the red diamonds.

rectly. We found that at a power density of 1W/mm2 using
a BLUR unit would require 4x to 5x more die resources than
a NOBLUR unit to perform NOBLUR micropolygon raster-
ization at 16x MSAA. This increase in cost is due to two
factors. First the BLUR unit did not make use of a 2x2 sam-
ple raster stamp. Second there is an overhead to the BLUR

u,v, t sample functions that are unused.

Instead of optimizing based on the performance of one
render configuration it is useful instead to optimize based on
both BLUR and NOBLUR render configurations. The design
of this HYBRID unit is different than the prior narrow focus
designs.

Our goal was the design of a unit that equitably supports
NOBLUR at 4x MSAA, NOBLUR at 16x MSAA, motion
blur at N=64, and BLUR at N=64. Constraining our design
to be optimal over all of these configurations, we found that
it was efficient to do three things. First a HYBRID design
should use a 2x2 raster sample stamp. Second it should re-
duce the parallelism of the sample in time and sample in lens
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Figure 7: The Cost of EfficientBLUR: This figure shows the
efficiency for designs which optimize for a single render con-
figuration. Each curve represents the Pareto optimal fixed-
function units resulting from a design space constrained to
be efficient for its specific render configuration.

operations such that it produces a single micropolygon po-
sitioned atu,v, t every other cycle. Third a HYBRID design
should avoid parallelism across micropolygons positioned at
u,v, t. The results are shown in Table3 where the cost of
NOBLUR and BLUR rasterization using a HYBRID unit are
only 2x more than the cost of a NOBLUR unit and BLUR

unit. A HYBRID special function unit capable of rasterizing
three billion non-blurred (270 million motion and defocus
blurred) micropolygons per second would consume 3.9 W
and occupy 5.6mm2 which is 1.0% of the die area for a
GeForce GTX 480 GPU.

6. Discussion

Although micropolygon rasterization is computationally ex-
pensive, it can be implemented very efficiently using fixed-
function custom circuits. Our NOBLUR rasterizer requires
only 2.9 W and 4.1mm2 to sustain the triangle rate of a
GeForce GTX 480 GPU. This unit would consume 0.77%
of the die area of this chip. Supporting motion and defocus
blur at this triangle rate requires 8.6 times more area and
power. Given the substantial costs of performing the equiva-
lent computations in software, we believe that future graph-
ics systems will continue to need hardware support for ras-
terization.

Our rasterization units are optimized assuming all trian-
gles are bounded in area. In practice it is difficult to guaran-
tee this bound during pipeline tessellation and, in addition, a
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real-time system will need to support workloads that contain
a mixture of triangle sizes. Just as we examined a hybrid ras-
terizer implementation that supports blurred and non-blurred
micropolygons, future work should investigate the design of
a rasterization unit that efficiently processes both larger tri-
angles and micropolygons.

Last, hardware acceleration of stochastic point-sampling
is a brute force approach to computing motion and defocused
blurred visibility. We encourage investigation of alternative
algorithms for accurate camera simulation in real-time ren-
dering.
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