
2448 J. Opt. Soc. Am. A/Vol. 18, No. 10 /October 2001 R. Ramamoorthi and P. Hanrahan
On the relationship between radiance and
irradiance: determining

the illumination from
images of a convex Lambertian object

Ravi Ramamoorthi and Pat Hanrahan

Department of Computer Science, Stanford University, Gates Wing 3B-386, Stanford, California 94305

Received October 30, 2000; revised manuscript received March 8, 2001; accepted March 12, 2001

We present a theoretical analysis of the relationship between incoming radiance and irradiance. Specifically,
we address the question of whether it is possible to compute the incident radiance from knowledge of the ir-
radiance at all surface orientations. This is a fundamental question in computer vision and inverse radiative
transfer. We show that the irradiance can be viewed as a simple convolution of the incident illumination, i.e.,
radiance and a clamped cosine transfer function. Estimating the radiance can then be seen as a deconvolu-
tion operation. We derive a simple closed-form formula for the irradiance in terms of spherical harmonic co-
efficients of the incident illumination and demonstrate that the odd-order modes of the lighting with order
greater than 1 are completely annihilated. Therefore these components cannot be estimated from the irradi-
ance, contradicting a theorem that is due to Preisendorfer. A practical realization of the radiance-from-
irradiance problem is the estimation of the lighting from images of a homogeneous convex curved Lambertian
surface of known geometry under distant illumination, since a Lambertian object reflects light equally in all
directions proportional to the irradiance. We briefly discuss practical and physical considerations and de-
scribe a simple experimental test to verify our theoretical results. © 2001 Optical Society of America

OCIS codes: 150.0150, 150.2950.
1. INTRODUCTION
This paper presents a theoretical analysis of the relation-
ship between incoming radiance and irradiance. Radi-
ance and irradiance are basic optical quantities, and their
relationship is of fundamental interest to many fields, in-
cluding computer vision, radiative transfer, and computer
graphics. Physically, we are interested in analyzing the
properties of the light field generated when a homoge-
neous convex curved Lambertian surface of known geom-
etry reflects a distant illumination field. A Lambertian
surface reflects light proportional to the incoming irradi-
ance, so analysis of this physical system is equivalent to a
mathematical analysis of the relationship between incom-
ing radiance and irradiance.

The specific question of interest to us in this paper is
the estimation of the incident radiance from the irradi-
ance, i.e., estimation of the lighting from observations of a
Lambertian surface. We are able to derive a closed-form
formula in terms of the spherical harmonic coefficients for
the irradiance and thereby to show that odd modes of the
lighting with order greater than 1 cannot be estimated.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly discuss some previous work. In Section
3, we introduce the mathematical and physical prelimi-
naries. In Section 4, we obtain the equation for the irra-
diance in terms of spherical harmonic coefficients. Sec-
tion 5 applies this result to the main problem of this
paper, recovering the input radiance from the irradiance,
and derives the main results of this paper. Section 6
briefly discusses some practical considerations and de-
scribes a simple experimental verification. We discuss
0740-3232/2001/102448-12$15.00 ©
some of the broader implications of our results and con-
clude the paper in Section 7.

2. PREVIOUS WORK
The radiance-from-irradiance problem as discussed in
this paper is addressed by Preisendorfer1 in his treatise
on hydrologic optics. He considers the recovery of radi-
ance, given irradiance at all surface orientations. Pre-
isendorfer’s conclusion is that irradiance and radiance are
equivalent and that irradiance can be inverted to give the
input radiance. By deriving a simple closed-form for-
mula, we will show that this assertion is not true. More
recently, Marschner and Greenberg2 have considered the
inverse lighting problem, assuming curved Lambertian
surfaces, and have proposed a practical solution method.
However, they have noted the problem to be ill condi-
tioned and have made extensive use of regularization.
By deriving a closed-form formula for the case of convex
objects, we can explain the ill conditioning observed by
Marschner and Greenberg2 and propose alternative algo-
rithms.

Sato et al.3 use shadows instead of curvature to recover
the lighting in a scene, and they also estimate the reflec-
tance parameters of a planar surface. Inverse problems
in transport theory have also been studied in other areas
such as radiative transfer and neutron scattering. See
McCormick4 for a review. However, to the best of our
knowledge, these researchers have not addressed the spe-
cific radiance-from-irradiance problem treated here,
2001 Optical Society of America
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wherein we use the varying reflected radiance over a
curved Lambertian surface to estimate the input lighting.

The work presented here is related to efforts in many
different areas of computer graphics and vision and is
likely to be of interest to these communities. Within the
context of rendering surfaces under distant illumination
(referred to as environment mapping within computer
graphics), many previous authors such as Miller and
Hoffman5 and Cabral et al.6 have qualitatively described
reflection as a convolution and have empirically demon-
strated that a Lambertian bidirectional reflectance distri-
bution function (BRDF) behaves like a low-pass filter. In
computer vision, similar observations have been made by
many researchers such as Haddon and Forsyth7 and Ja-
cobs et al.8 Our main contribution is in formalizing these
previous qualitative results by deriving analytic quantita-
tive formulas relating the incoming radiance to the irra-
diance.

Although our goals are different, our work is also re-
lated to efforts in the object recognition community to
characterize the appearance of a Lambertian surface un-
der all possible illumination conditions, and it is likely
that our results will be applicable to this problem. Bel-
humeur and Kriegman9 have theoretically described this
set of images in terms of an illumination cone, while em-
pirical results have been obtained by Epstein et al.10 In
independent work simultaneous with our own, Basri and
Jacobs11 have described Lambertian reflection as a convo-
lution and have applied the results to face recognition.

To derive an analytic formula for the input illumina-
tion, we must analyze the properties of the reflected light
field from a homogeneous Lambertian surface. The light
field12 is a fundamental quantity in light transport and
therefore has wide applicability for both forward and in-
verse problems in a number of fields. A good introduc-
tion to the various radiometric quantities derived from
light fields that we will use in this paper is provided by
McCluney.13 Light fields have been used directly for ren-
dering images from photographs in computer graphics,
without considering the underlying geometry,14,15 or by
parameterizing the light field on the object surface.16 In
previous work, we17 have performed a theoretical analysis
of two-dimensional or flatland, light fields, which is simi-
lar in spirit to the analysis in this paper for three-
dimensional Lambertian surfaces.

To derive our results, we will represent quantities by
using spherical harmonics.18–20 In previous work,
D’Zmura21 has qualitatively analyzed reflection as a lin-
ear operator in terms of spherical harmonics. Basis func-
tions have also been used in representing BRDFs for com-
puter graphics. A number of authors22–24 have used
spherical harmonics, while Koenderink and van Doorn25

have described BRDFs by using Zernike polynomials.

3. PRELIMINARIES
A. Assumptions
Mathematically, we are simply considering the relation-
ship between the irradiance, expressed as a function of
surface orientation, and the incoming radiance, expressed
as a function of incident angle. The corresponding physi-
cal system is a curved convex homogeneous Lambertian
surface reflecting a distant illumination field. For the
physical system, we will assume that the surfaces under
consideration are convex, so they may be parameterized
by the surface orientation, as described by the surface
normal, and so that interreflection and shadowing can be
ignored. Also, surfaces will be assumed to be Lamber-
tian and homogeneous, so the reflectivity can be charac-
terized by a constant albedo. We will further assume
here that the illuminating light sources are distant, so the
illumination or the incoming radiance can be represented
as a function of direction only. This also means that the
incident illumination does not depend directly on surface
position but depends only on surface orientation. Fi-
nally, for the purposes of experimental measurement, we
will assume that the geometry of the object and its loca-
tion with respect to the camera are known, so that we can
relate each image pixel to a particular location on the ob-
ject surface.

The notation used in the paper is listed in Appendix A.
A diagram of the local geometry of the situation is shown
in Fig. 1. We will use two types of coordinates.
Unprimed global coordinates denote angles with respect
to a global reference frame. On the other hand, primed
local coordinates denote angles with respect to the local
reference frame, defined by the local surface normal and
an arbitrarily chosen tangent vector. These two coordi-
nate systems are related simply by a rotation, and this re-
lationship will be detailed shortly.

B. Reflection Equation
In local coordinates, we can relate the irradiance to the
incoming radiance by

E~x! 5 E
V8

L~x, u i8 , f i8!cos u i8 dV8, (1)

where E is the irradiance, as a function of position x on
the object surface, and L is the radiance of the incident
light field. As noted in Subsection 3.A, primes denote
quantities in local coordinates. The integral is over the
upper hemisphere with respect to the local surface nor-
mal.

Practically, we may observe the irradiance by consider-
ing the brightness of a homogeneous Lambertian reflec-
tor. For a Lambertian surface with constant reflectance,
we can relate the reflected radiance to the irradiance by

B~x! 5 rE~x!, (2)

Fig. 1. Local geometry. Quantities are primed because they
are all in local coordinates.
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where B is the radiant exitance (i.e., brightness) as a
function of position x on the object surface, r is the sur-
face reflectance, which lies between 0 and 1, and E is the
irradiance defined in Eq. (1). In computer graphics, the
radiant exitance B is usually referred to by the older term
radiosity.

Note that the radiant exitance B is simply a scaled ver-
sion of the irradiance E and is exactly equal to E if the
Lambertian surface has reflectance r 5 1. Furthermore,
for a Lambertian object, the reflected radiance is the same
in all directions and is therefore directly proportional to
the radiant exitance, being given by B/p. In the rest of
this paper, we will analyze Eq. (1), relating the irradiance
E to the incident radiance L. It should be understood
that the practically measurable quantities for a Lamber-
tian surface—the radiant exitance B or the corresponding
reflected radiance—are simply scaled versions of the irra-
diance and can be derived trivially from E and the surface
reflectance r by using Eq. (2).

We now manipulate Eq. (1) by performing a number of
substitutions. First, the assumption of distant illumina-
tion means that the illumination field is homogeneous
over the surface, i.e., independent of surface position x,
and depends only on the global incident angle (u i , f i).
This allows us to make the substitution L(x, u i8 , f i8)
→ L(u i , f i). Second, consider the assumption of a
curved convex surface. This ensures that there is no
shadowing or interreflection, so the irradiance is due only
to the distant illumination field L. This fact is implicitly
assumed in Eq. (1). Furthermore, since the illumination
is distant, we may reparameterize the surface simply by
the surface normal n. Equation (1) now becomes

E~n! 5 E
V8

L~u i , f i!cos u i8 dV8. (3)

The goal of this paper is to determine what we can learn
about the incident radiance L from measuring the func-
tional dependence of the irradiance E on the surface nor-
mal n.

To proceed further, we will parameterize n by its
spherical angular coordinates (a, b, g). Here (a, b) define
the angular coordinates of the local normal vector, i.e.,

n 5 ~sin a cos b, sin a sin b, cos a!; (4)

g defines the local tangent frame, i.e., rotation of the co-
ordinate axes about the normal vector. For isotropic
surfaces—those where there is no preferred tangential di-
rection, i.e., where rotation of the tangent frame about the
surface normal has no physical effect—the parameter g
has no physical significance, and we have therefore not
explicitly considered it in Eq. (3). We will include g for
completeness in the ensuing discussion on rotations but
will eventually eliminate it from our equations after
showing mathematically that it does in fact have no effect
on the final results. Finally, for convenience, we will de-
fine a transfer function A(u i8) 5 cos ui8 . With these modi-
fications, Eq. (3) becomes

E~a, b, g! 5 E
V8

L~u i , f i!A~u i8!dV8. (5)
Note that local and global coordinates are mixed. The
lighting is expressed in global coordinates, since it is con-
stant over the object surface when viewed with respect to
a global reference frame, while the transfer function
A 5 cos ui8 is expressed naturally in local coordinates. To
analyze this equation further, we will need to apply a ro-
tation corresponding to the surface orientation (a,b,g) in
order to convert the lighting into local coordinates.

C. Rotating the Lighting
We have assumed that the incoming light field remains
constant (in a global frame) over the object. To convert to
the local coordinates in which (u i8 , f i8) are expressed, we
must perform the appropriate rotation on the lighting.
Let L(u i , f i) be the global incoming radiance and (a,b,g)
the parameters corresponding to the local surface orien-
tation. We define Ra,b,g to be a rotation operator that ro-
tates (u i8 , f i8) into global coordinates (u i , f i). Ra,b,g can
be expressed in terms of the standard Euler-angle repre-
sentation and is given by Ra,b,g 5 Rz(b)Ry(a)Rz(g),
where Rz is a rotation about the Z axis and Ry is a rota-
tion about the Y axis. Refer to Fig. 2 for an illustration.
It is easy to verify that this rotation correctly transforms
the local coordinates (08, 08)—corresponding to the local
representation of the Z axis, i.e., the surface normal—to
the global coordinates (a,b)—corresponding to the global
representation of the surface normal. The relevant
transformations are given below:

Ra,b,g 5 Rz~b!Ry~a!Rz~g!,

~u i , f i! 5 Ra,b,g~u i8 ,f i8!,

L~u i , f i! 5 L(Ra,b,g~u i8 , f i8!). (6)

Note that the angular parameters are rotated as if they
were a unit vector pointing in the appropriate direction.
It should also be noted that this rotation of parameters is
equivalent to an inverse rotation of the function, with R21

being given by Rz(2g)Ry(2a)Rz(2b).
Finally, we can plug Eqs. (6) into Eq. (5) to derive

Fig. 2. Diagram showing how the rotation corresponding to (a,
b, g) transforms between local (primed) and global (unprimed)
coordinates.
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E~a, b, g! 5 E
V8

L(Ra,b,g~u i8 , f i8!)A~u i8!dV8. (7)

Note that this equation is essentially a convolution, al-
though we have a rotation operator rather than a trans-
lation. The irradiance can be viewed as a convolution of
the incident illumination L and the transfer function
A 5 cos ui8 . Different observations of the irradiance E, at
points on the object surface with different orientations,
correspond to different rotations of the transfer function
(since the local upper hemisphere is rotated), which can
also be thought of as different rotations of the incident
light field. In Section 4, we will see that this integral be-
comes a simple product when transformed to spherical
harmonics, further stressing the analogy with convolu-
tion. Our goal will then be to deconvolve the irradiance
in order to recover the incident illumination.

4. SPHERICAL HARMONIC
REPRESENTATION
We now proceed to construct a closed-form description of
the irradiance in terms of spherical harmonic coefficients.
Spherical harmonics are the analog on the sphere to the
Fourier basis on the line or the circle. The spherical har-
monic Yl,m is given by

Yl,m~u, f ! 5 Nl,mPl,m~cos u!exp~Imf !, (8)

where Nl,m is a normalization factor. In the above equa-
tion, the azimuthal dependence is expanded in terms of
Fourier basis functions. The u dependence is expanded
in terms of the associated Legendre functions Pl,m . The
indices obey l > 0 and 2l < m < l. Thus there are
2l 1 1 basis functions for given order l. Inui et al.18 is a
good reference for background on spherical harmonics
and their relationship to rotations.

We begin by expanding the lighting in global coordi-
nates in terms of spherical harmonics:

L~u i , f i! 5 (
l50

`

(
m52l

1l

Ll,mYl,m~u i , f i!. (9)

We will then transform to local coordinates by applying
the appropriate rotations.

A. Rotation of Spherical Harmonics
Let us now build up the rotation operator on the spheri-
cal harmonics. We will use notation of the form
R()$Yl,m()% to stand for a rotation by the rotation opera-
tor R of the parameters of the spherical harmonic Yl,m .
For instance,

Rz~b!$Yl,m~u i8 , f i8!% 5 Yl,m(Rz~b!$u i8 , f i8%). (10)

First, from the form of the spherical harmonics, rota-
tion about z is simple. Specifically,

Rz~b!$Yl,m~u i8 , f i8!% 5 Yl,m~u i8 , f i8 1 b!

5 exp~Imb!Yl,m~u i8 , f i8!. (11)

Rotation about y is more complicated and is given by
Ry~a!$Yl,m~u i8 , f i8!% 5 (
m852l

l

Dm,m8
l

~a!Yl,m8~u i8 , f i8!,

(12)

where Dl is a (2l 1 1) 3 (2l 1 1) matrix that tells us
how a spherical harmonic transforms under rotation
about the Y axis, i.e., how to rewrite a rotated spherical
harmonic as a linear combination of all the spherical har-
monics of the same order. The important thing to note
here is that the m indices are mixed—a spherical har-
monic after rotation must be expressed as a combination
of other spherical harmonics with different m indices.
However, the l indices are not mixed; rotations of spheri-
cal harmonics with order l are composed entirely of other
spherical harmonics with order l.

Finally, we can combine the above two equations, with
a similar result for the z rotation by g, to derive the re-
quired rotation formula:

Ra,b,g$Yl,m~u i8 , f i8!%

5 Rz~b!Ry~a!Rz~g!$Yl,m~u i8 , f i8!%

5 (
m8 5 2l

l

D̃m,m8
l

~a, b, g!Yl,m8~u i8 , f i8!,

D̃m,m8
l

~a, b, g! 5 Dm,m8
l

~a!exp~Imb!exp~Im8g!.
(13)

In terms of group theory, the matrix D̃ can be viewed as
the 2l 1 1-dimensional representation of the rotation
group SO(3), with the interesting a dependence being
encapsulated by D. Equation (13) is simply the standard
rotation formula for spherical harmonics.

Since the transfer function A 5 cos ui8 has no azimuthal
dependence, terms with m8 Þ 0 will vanish when we per-
form the integration in Eq. (7). Therefore we will be
most interested in the coefficient of the term with
m8 5 0, i.e., D̃m,0

l 5 Dm,0
l (a)exp(Imb). It can be shown

that this is simply equal to A4p/(2l 1 1)Yl,m(a, b).
This result will be assumed in Eq. (23).

Another way to derive the result just stated without ap-
pealing to the properties of the matrix D is to realize that
we simply want the coefficient of the term with no azi-
muthal dependence. At u i8 5 0, the rotated function is
determined only by the term with m8 5 0. In fact, it can
be shown (Jackson,19 Eq. 3.59) that, with D̃m,0

l equal to
the desired coefficient, we have

Ra,b,g$Yl,m~08, f i8!% 5 S 2l 1 1

4p
D 1/2

D̃m,0
l ~a, b, g!.

(14)

Noting that Ra,b,g$Yl,m(08, f i8)% corresponds to evaluat-
ing Yl,m at the local Z axis or normal, i.e., global coordi-
nates of (a, b), we see that D̃m,0

l 5 @4p/(2l 1 1)#1/2

3 Yl,m(a, b).

B. Representing the Transfer Function
We switch our attention now to representing the transfer
function A(u i8) 5 cos ui8 . Since an object reflects only
the upper hemisphere, A(u i8) is nonzero only when
cos ui8 . 0. The transfer function A(u i8) 5 0 over the
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lower hemisphere where cos ui8 , 0. We may refer to the
transfer function as the clamped-cosine function, since it
is equal to the cosine function over the upper hemisphere
but is clamped to 0 when cos ui8 , 0 over the lower hemi-
sphere. We will need to use many formulas for repre-
senting integrals of spherical harmonics, for which a
reference20 will be useful. First, we expand the transfer
function in terms of spherical harmonics without azi-
muthal dependence:

A~u i8! 5 cos u i8 5 (
n50

`

AnYn,0~u i8!. (15)

The coefficients are given by

An 5 2pE
0

p/2

Yn,0~u i8!cos u i8 sin u i8 du i8 . (16)

The factor of 2p comes from integrating 1 over the azi-
muthal dependence. It is important to note that the lim-
its of the integral range from 0 to p/2 and not p, because
we are considering only the upper hemisphere. The ex-
pression above may be simplified by writing in terms of
Legendre polynomials P(cos u i8). Putting u 5 cos u i8 in
the above integral and noting that P1(u) 5 u and that
Yn,0(u i8) 5 @(2n 1 1)/(4p)#1/2Pn(cos u i8), we obtain

An 5 2pS 2n 1 1

4p
D 1/2E

0

1

Pn~u !P1~u !du. (17)

To gain further insight, we need some facts regarding the
Legendre polynomials. Pn is odd if n is odd and even if n
is even. The Legendre polynomials are orthogonal over
the domain [21, 1], with the orthogonality relationship
being given by

E
21

1

Pa~u !Pb~u ! 5
2

2a 1 1
da,b . (18)

From this, we can establish some results about Eq. (17).
When n is equal to 1, the integral evaluates to half the
norm above, i.e., 1/3. When n is odd but greater than 1,
the integral in Eq. (17) vanishes. This is because for
a 5 n and b 5 1, we can break the left-hand side of Eq.
(18), by using the oddness of a and b, into two equal inte-
grals over [21, 0] and [0, 1]. Therefore both of these in-
tegrals must vanish, and the latter integral is the right-
hand integral in Eq. (17). When n is even, the required
formula is given by manipulating Eq. (20) in Chap. 5 of
MacRobert.20 Putting it all together, we have

n 5 1: An 5 Ap/3,

n . 1, odd: An 5 0,

n even: An 5 2pS 2n 1 1

4p
D 1/2 ~21 !n/221

~n 1 2 !~n 2 1 !

3 F n!

2n~n!/2!2G . (19)

We can determine the asymptotic behavior of An for large
even n by using Stirling’s formula. The bracketed term
goes as n21/2, which cancels the term in the square root.
Therefore the asymptotic behavior for even terms is
An ; n22. A plot of An for the first few terms is shown in
Fig. 3, and approximation of the clamped cosine by
spherical harmonic terms as n increases is shown in Fig.
4.

C. Spherical Harmonic Version of the Reflection
Equation
We now have the necessary tools to write Eq. (7) in terms
of spherical harmonics. Substituting Eqs. (13) and (15),
we obtain

E~a, b, g! 5 (
n50

`

(
l50

`

(
m52l

l

(
m852l

l

Ll,mAnDm,m8
l

~a!

3 exp~Imb!exp~Im8g!Tn,l,m8 ,

Tn,l,m8 5 E
fi850

2p E
ui850

p

Yl,m8~u i8 , f i8!Yn,0~u i8 , f i8!

3 sin u i8 du i8df i8. (20)

Note that we have summed over all indices and have
removed the restriction on the integral to the upper hemi-
sphere, because that restriction has now already been
folded into the coefficients An . By orthonormality of the
spherical harmonics,

E
fi850

2p E
ui850

p

Yl,m8~u i8 , f i8!Yn,0~u i8 , f i8!sin u i8 du i8df i8

5 d l,ndm8,0 . (21)

Therefore terms that do not satisfy n 5 l, m8 5 0 will
vanish. Making these substitutions in Eq. (20), we ob-
tain

E~a, b, g! 5 (
l50

`

(
m521

l

Ll,mAlDm,0
l ~a!exp~Imb!.

(22)

As noted in Subsection 4.B, it can be shown that

Dm,0
l ~a!exp~Imb! 5 S 4p

2l 1 1 D 1/2

Yl,m~a, b!. (23)

Fig. 3. The solid curve is a plot of An versus n. It can be seen
that odd terms with n . 1 have An 5 0. Also, as n increases,
the coefficients rapidly decay.
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With this relation, we can write

E~a, b, g! 5 (
l50

`

(
m52l

l S 4p

2l 1 1 D 1/2

AlLl,mYl,m~a, b!.

(24)

To complete the expansion in terms of spherical harmon-
ics, we first drop the g dependence of E. We can see that
the right-hand side of the equation above does not depend
on g, as required by physical considerations, since g has
no physical significance. Then we complete the expan-
sion in terms of spherical harmonics by also expanding
the irradiance E(a, b), i.e.,

E~a, b! 5 (
l50

`

(
m52l

l

El,mYl,m~a, b!. (25)

We can now equate coefficients to obtain the reflection
equation in terms of spherical harmonic coefficients:

El,m 5 S 4p

2l 1 1 D 1/2

AlLl,m . (26)

D. Discussion
Equation (26) states that the standard direct illumination
integral in Eq. (7) can be viewed as a simple product in
terms of spherical harmonic coefficients. This is not re-
ally surprising, considering that Eq. (7) can be inter-
preted as showing that the irradiance is a convolution of
the incident illumination and the transfer function, with
different observations E corresponding to different rota-
tions of the incident light field. Since Eq. (26) is in terms
of spherical harmonic coefficients, it can be viewed in sig-
nal processing terms as a filtering operation; the output
light field can be obtained by filtering the input lighting
by using the clamped-cosine transfer function.

Since Al vanishes for odd values of l . 1, as seen in
Eqs. (19), the irradiance has zero projection onto odd-
order modes, i.e., El,m 5 0 when l . 1 and odd. In
terms of the filtering analogy, since the filter correspond-
ing to A 5 cos ui8 destroys high-frequency odd terms in
the spherical harmonic expansion of the lighting, the cor-
responding terms are not found in the irradiance. Fur-
ther, for large even l, the asymptotic behavior of

Fig. 4. Successive approximations to the clamped-cosine func-
tion by adding more spherical harmonic terms. For n 5 2, we
already get a very good approximation.
El,m ; l25/2, since Al ; l22. The transfer function A
acts as a low-pass filter, causing the rapid decay of high-
frequency terms in the lighting.

We are now ready to answer the question motivating
this paper: To what extent can we estimate the incoming
radiance or illumination distribution given the irradiance
at all orientations or surface normals. This can be
viewed as a problem of deconvolution. Equation (26)
makes it trivial to formulate a closed-form solution.

5. RADIANCE FROM IRRADIANCE
In this section, we discuss the inverse lighting problem.
We want to find Ll,m given the functional dependence of
the irradiance on the surface normal. A practical realiza-
tion is that we want to find the incident illumination from
observations of a homogeneous convex curved Lambertian
surface. From Eq. (26), it is trivial to derive a simple
closed-form relation:

Ll,m 5 S 2l 1 1

4p
D 1/2 El,m

Al
. (27)

We will have difficulty solving for Ll,m only if for all m,
El,m and Al both vanish, in which case the right-hand
side cannot be determined. We have already seen in
Subsection 4.E that this happens when l is odd and
l . 1. This brings us to our main result.

Theorem 1. In general, it is not possible to recover the
odd-order spherical harmonic modes with order .1 of a
distant radiance distribution from information about the
irradiance at every surface orientation. In practical
terms, observations of a homogeneous convex curved
Lambertian surface do not determine the odd-order
modes with order .1 of the incoming distant illumination
field.

This theorem is simple to understand in terms of signal
processing. The filter A has no amplitude along certain
modes, and it annihilates the corresponding lighting coef-
ficients when convolved with the incident illumination.
Therefore a deconvolution method cannot recover the cor-
responding original components of the lighting. A stron-
ger version of the theorem is that adding a perturbation
to the incident light field consisting only of odd modes
with order .1 does not change the irradiance.

Theorem 2. A perturbation of the incident distant illu-
mination field consisting entirely of a linear superposition
of odd-order spherical harmonic modes with order .1 has
no effect on the irradiance at any surface orientation and
hence no effect on the reflected radiance from, or on the
appearance of, a convex curved Lambertian object.

As a simple example, consider adding a perturbation
DL 5 Y3,m(u i , f i) for any m to the incident lighting L.
We consider the change in irradiance DE at a point with
surface normal in spherical coordinates (a, b). To evalu-
ate this, we need to rotate the lighting into the local coor-
dinate frame. We know that for spherical harmonics, ro-
tation does not change the order but merely mixes the
indices. Since the cosine in the irradiance integral does
not have azimuthal dependence, the only term that can
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affect the irradiance is the term without azimuthal de-
pendence, i.e., Y3,0 in local coordinates. The precise coef-
ficient of this term is not important, and for similar rea-
sons, we ignore the factor of 2p that comes from
integrating over the azimuthal angle. We can simply de-
note C(a, b) as a constant factor and write

DE~a, b! 5 C~a, b!E
0

p/2

Y3,0~u i8!cos u i8 sin u i8du i8 .

(28)

Substituting for Y3,0 , ignoring the premultiplying con-
stant that we absorb into C, and then substituting
u 5 cos ui8 , we obtain

DE~a, b! 5 C~a, b!E
0

p/2S 5

3
cos3 u i8 2 cos u i8D

3 cos u i8 sin u i8du i8

5 C~a, b!E
0

1S 5

3
u3 2 u Du du

5 C~a, b!E
0

1S 5

3
u4 2 u2D du

5 C~a, b!S 5

3

1

5
u5U

0

1

2
1

3
u3U

0

1D
5 C~a, b!S 1

3
2

1

3 D
5 0. (29)

To make matters concrete, we can now claim that the fol-
lowing two lighting functions are equivalent in that they
produce the same irradiance at all surface orientations
and therefore cannot be distinguished by observations of
a convex Lambertian surface. The constants have been
chosen to ensure that the lighting remains nonnegative
everywhere:

L1~u i , f i! 5 1,

L2~u i , f i! 5 1 1
5

3
cos3 u i 2 cos u i . (30)

A. Comparison with Preisendorfer
Preisendorfer1 (Vol. 2, pp. 143–151) concludes that radi-
ance and irradiance are equivalent, with radiance always
being recoverable from measurements of irradiance at all
surface orientations. His argument is that a positive
sum lighting perturbation must result in a positive norm
change in the integrated irradiance over all surface orien-
tations. In fact, he shows that the norm of the change in
the integral of the irradiance is proportional to the sum of
the lighting perturbation. Therefore he concludes that
any lighting perturbation must result in a corresponding
perturbation of the reflected light field. He neglects to
consider that while overall, the lighting must be nonne-
gative, it is possible to devise a zero-sum perturbation to
the lighting, since the perturbation can have both positive
and negative components, with the only physical require-
ment being that the net lighting is nowhere negative. In-
deed, all the odd-order modes, including the example
above, have zero sum, since their integral with Y00 , the
constant term, must be 0 by orthogonality. Nevertheless,
the condition that the lighting must be positive to be
physically realizable is important and provides a further
constraint on allowable perturbations. We will see that
because of the constraint of positivity, there are several
important special cases where the irradiance distribution
does in fact uniquely determine the radiance or input il-
lumination distribution. However, in general, as evi-
denced by the example above, the irradiance distribution
fails to completely specify the radiance, as summarized in
Theorems 1 and 2.

B. Constraining the Lighting to be Positive
We have so far not considered the physical requirement
that the lighting be everywhere positive. To be physi-
cally realizable, any perturbations of the incident illumi-
nation must be small enough that the lighting remains
nonnegative everywhere. Here we will show how this
constraint somewhat restricts the set of allowable
perturbations—perturbations that do not affect the irra-
diance. Our analysis is fairly straightforward, and we
leave for future work a more complete characterization.
We start by enumerating two important properties that
allowable perturbations must satisfy. Here we will use
DL to denote a perturbation.

1. We know that an allowable perturbation must be
constructed of odd-order spherical harmonic modes.
These modes have the property of being odd over the
sphere—the value of a function is negated at the antipo-
dal point on the sphere. This can be written as

DL~ui , fi! 5 2DL~p 2 ui , p 1 fi!. (31)

2. The remaining condition is that the perturbation’s
projection onto order-1 modes must be 0 (since the order-1
modes can be recovered). The order-1 modes are simply
the linear terms x, y, and z. These modes are linear and
odd—their value negates at the antipodal point. There-
fore, in conjunction with condition 1, an allowable pertur-
bation must have zero linear moment over any
hemisphere—since the antipodal hemisphere is negated
for both the function and the order-1 mode. Condition 2
is important in showing that for a directional source,
there is no allowable nonzero norm perturbation.

We first consider allowable values of a perturbation, as
described by the following lemma.

Lemma 1. If L is the true value of the incident illumi-
nation, the values of an allowable perturbation DL satisfy

2L~u i , f i! < DL~u i , f i! < L~p 2 u i , p 1 f i!. (32)

The norm of the maximum allowable perturbation there-
fore satisfies

uDL~u i , f i!u < max@L~u i , f i!,L~p 2 u i , p 1 f i!#. (33)

The first inequality in relation (32) holds trivially to
maintain positivity of L. The second inequality in rela-
tion (32) follows from the need to maintain positivity at
the antipodal point, since DL(p 2 u i , p 1 f i)
5 2DL(u i , f i). This simple lemma leads to a number
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of corollaries for various special cases, where we show
that increasingly complex lighting conditions admit no
nonzero norm perturbation.

Corollary 1. Allowable perturbations DL(u i , f i) must
be 0 at points where the true lighting value L(u i , f i) and
the true lighting value for the antipodal point L(p
2 u i , p 1 f i) are both 0. In particular, if the true light-
ing L is everywhere 0, there is no allowable perturbation.

This follows trivially from relation (33). Note that if
the true lighting is a single directional source, this condi-
tion forces the allowable perturbation to be 0 everywhere
except at the source and its antipodal point.

Corollary 2. If the true lighting is a single directional
source, there is no nonzero norm allowable perturbation,
and therefore the true radiance can be recovered from the
irradiance distribution at all surface orientations.

From the discussion below Corollary 1, the allowable
perturbation can have a nonzero (negative) value only at
the source—with a corresponding negation (positive
value) at the antipodal point. A perturbation 2DL at the
source and 1DL at the antipodal point yields a nonzero
moment with respect to one or both of cos ui and
sin ui—the order-1 modes. In other words, since we are
on a sphere, one of x, y, or z has to be nonzero, so the lin-
ear moments cannot vanish. Note that by the second re-
quired property, these moments must vanish in an allow-
able perturbation. Therefore a perturbation consisting of
a negative spike—with an equal positive spike at the an-
tipodal point—cannot be constructed by using only odd-
order spherical harmonics with order .1. In particular,
this allows Corollary 2 to be extended to the case of two
antipodal sources, since an allowable perturbation must
have the same form—a negative spike at one of the
sources along with an equal positive spike at the other
source. A much stronger statement is found below.

Corollary 3. If the true lighting consists of two distinct
directional sources or a nondegenerate arrangement of
three directional sources, there is no allowable nonzero
norm perturbation.

From the above discussions, we know that allowable
perturbations can be nonzero only at the sources and
their antipodal points. The condition of vanishing mo-
ments with respect to the linear order-1 modes leads to a
set of three simultaneous equations requiring us to choose
perturbation intensities at the sources so that the mo-
ments in x, y, and z vanish. This is not possible for non-
degenerate configurations of three sources unless all per-
turbation intensities are 0. It is also not possible for any
two distinct sources, since we can reparameterize so that
one of the sources is on the 1Z axis. To make all linear
moments vanish, the other source would need to have
x 5 y 5 0, i.e., be antipodal at 2Z, in which case, by the
argument below Corollary 2, there is no allowable pertur-
bation.

The corollary does not extend to more than three direc-
tional sources. For four directional sources, we may set
the (negative) perturbation arbitrarily at one of the
sources to fix the scale. We can then solve the vanishing
moment equations for the three remaining perturbations,
and the condition for a nonzero norm perturbation is that
all three perturbations at the sources are negative, as re-
quired by relation (32).

With more than four directional sources, we have much
more freedom in choosing the perturbations, and it is
likely that there always exist allowable perturbations if
the sources are far enough apart, i.e., do not satisfy the
conditions of Corollary 4 below. Our primary consider-
ation in this paper has been continuous lighting distribu-
tions or area sources. For these sources (which can be
thought of as made up of an infinite number of directional
sources), Corollary 3 clearly does not apply.

Corollary 4. If there exists a hemispherical region in
which the true lighting L 5 0 everywhere, i.e., all the
sources are strictly confined to one hemisphere, there is
no allowable nonzero norm perturbation.

We can always reparameterize so that all the sources
lie in 1Z for instance, and since DL < 0 over this hemi-
sphere (since L at the antipode is 0), the linear moment
over Z must be negative, violating the condition that the
linear moments of the perturbation must vanish. This
corollary may have implications for natural lighting when
the upper hemisphere is the major contributor. Note
that the sources must be strictly confined to one
hemisphere—a collection of sources at the ‘‘equator’’ or
any other great circle does not satisfy the requirements of
the corollary.

In Section 6, we will consider practical issues with
lighting recovery. It will be shown that regardless of the
theoretical results derived here, inverse lighting is in
practice poorly conditioned, so even in cases where a
unique solution exists, a numerical algorithm is unlikely
to find it. Nevertheless, the results of this set of corollar-
ies tells us that it will be helpful to try to explicitly ensure
positivity of the recovered solutions in any numerical al-
gorithm; this makes possible the solution of some
cases—or reduces the norm of the maximum allowable
perturbation—that are otherwise ambiguous by Theo-
rems 1 and 2.

6. PRACTICAL CONSIDERATIONS
This section briefly discusses some practical consider-
ations with respect to the radiance-from-irradiance prob-
lem and describes a simple experiment verifying the for-
mulas derived. Equation (26) and the discussion in
Subsection 4.E considering asymptotic forms show that
the coefficients of the irradiance fall off rapidly, i.e., El,m
; l25/2Ll,m . This indicates that in practice the inverse
lighting problem is very poorly conditioned. In fact, we
can explicitly write out numerically the first few terms for
the irradiance:

E0,0 5 3.142L0,0 ,

E1,m 5 2.094L1,m ,

E2,m 5 0.785L2,m ,

E3,m 5 0,
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E4,m 5 20.131L4,m ,

E5,m 5 0,

E6,m 5 0.049L6,m . (34)

We see that already for E4,m , the coefficient is only ap-
proximately 4% of what it is for E0,0 . Therefore in real
applications—where surfaces are only approximately
Lambertian and there are errors in measurements—we
expect to robustly measure the irradiance only up to order
2, and this is the maximum order at which we can recover
the incident illumination. Since there are 2l 1 1 indices
(values of m, which range from 2l to 1l) for order l, this
corresponds to nine coefficients for l < 2: one term with
order 0, three terms with order 1, and five terms with or-
der 2. Note that the single order-0 mode Y0,0 is a con-
stant, the three order-1 modes are linear functions of the
Cartesian coordinates—in real form, they are simply x, y,
and z—and the five order-2 modes are quadratic functions
of the Cartesian coordinates. Therefore the irradiance—
or, equivalently, the reflected light field from a convex
Lambertian object—can be well approximated as a qua-
dratic polynomial of the Cartesian coordinates of the sur-
face normal vector.

Enforcement of positivity constraints and consideration
of error metrics based on higher-order derivatives may
improve the results somewhat and make them physically
more plausible, but it will still be virtually impossible to
recover higher-order coefficients of the lighting.

A. Discussion
Thus, even though in theory we can recover all the even
modes of the lighting, in practice we expect to recover
only the first nine coefficients of the lighting—modes up
to order 2. For practical purposes, the irradiance in gen-
eral can be characterized by only its first nine coefficients;
the others vanish or are too small to be accurately mea-
sured. Thus the Lambertian BRDF acts as a very low-
pass filter, passing through only the first nine coefficients
of the lighting, with the irradiance effectively restricted to
being at most quadratic in the Cartesian coordinates of
the surface normal vector. These observations help ex-
plain the results of Marschner and Greenberg.2 In that
paper, an attempt was made to solve the inverse lighting
problem, treating the surfaces as Lambertian. The au-
thors noted that the problem appeared ill conditioned and
not amenable to accurate solution. Therefore they had to
rely heavily on a regularizing term that preserved the
smoothness of the solution. The results in this paper
show why the problem is ill conditioned and suggest a dif-
ferent regularization scheme. We can assume the high-
frequency lighting coefficients to be inaccurate, so we do
not attempt to recover them, and we merely set them to 0.
This indicates that a spherical harmonic basis is ideal for
recovering the lighting.

The fact that the irradiance is sufficiently slowly vary-
ing across the surface that it can be described by so few
parameters has implications for a number of research ar-
eas, a fact that is explored in Section 7. Since Lamber-
tian surfaces are a reasonably close approximation to
many real-world objects and are a widely used approxi-
mation in computer graphics and vision, we expect this
result to have wide applicability.

B. Experimental Verification
We describe a simple experiment to verify the results of
the paper. Using a camera mounted on a spherical gan-
try, we took a few calibrated gray-scale images of a Teflon
sphere with known radius and position from different
viewing positions using the same illumination—primarily
from a distant ceiling light and an umbrella lamp. The
lighting was measured in high dynamic range by using an
almost perfectly specular mirror sphere (gazing ball).
The spherical harmonic coefficients of the lighting were
then computed. We were able to compute B(a, b), the
radiant exitance as a function of the surface normal, on
the Teflon sphere by discarding specularities and averag-
ing measurements of the same surface location on the Te-
flon sphere as seen from different viewing directions. We
then directly used Eq. (27) to determine the first nine
spherical harmonic coefficients of the lighting. These
could then be compared with those obtained from the
lighting measured by using the mirror sphere. Since we
did not know the relative reflectances of the Teflon and
mirror spheres—or, equivalently, the precise scaling fac-
tor relating the radiant exitance B to the irradiance
E—there was a scale factor that we did not recover.
Therefore we uniformly scaled one set of lighting coeffi-
cients to be able to make meaningful comparisons with
the other.

Figure 5 shows results from our experimental test. In
(A), we show an image of the mirror and Teflon spheres.
We see that the image of the Teflon sphere is a low-pass
filtered version of the lighting, retaining essentially none
of the high-frequency content that is visible in the image
of the mirror sphere. Image (B) shows the high-
resolution ‘‘real’’ illumination distribution, as recovered
from the mirror sphere. Images (C)–(F) compare recov-
ered and real illumination distributions. Note that since
we do not explicitly enforce positivity, there are some
darker negative regions in images (C)–(F). Image (F)
represents a failed attempt; it is included to show the fu-
tility of attempting to recover the higher-order modes of
the lighting. However, a comparison of images (C) and
(D) indicates that the first nine coefficients of the lighting
can be well recovered from observation of a curved convex
Lambertian surface. Thus we see that we are able to re-
cover the first nine coefficients of the lighting. But, as
predicted by our theory, we fail to recover higher-order co-
efficients.

Table 1 shows a numerical comparison of real and re-
covered lighting coefficients (in real form) for the first two
orders of spherical harmonics. The second column shows
the (scaled) irradiance coefficients El,m . These are di-
vided by the third column, as per Eq. (27), to obtain the
recovered lighting coefficients Ll,m , given in the penulti-
mate column. The final column has the real lighting co-
efficients, as found by using a gazing sphere. We see that
the real and recovered values match closely. We also see
that the irradiance coefficients are lower for l 5 2 than
for l 5 0 or l 5 1, since there is greater attenuation by
the BRDF filter (Al is smaller). Finally, Table 1 shows
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Fig. 5. (A) One of the photographs of the mirror sphere (left) and the Teflon sphere (right), (B) the real lighting as recovered by using
the mirrored sphere, (C) the lighting obtained by considering only the first nine coefficients of (B), i.e., up to order 2, (D) the recovered
lighting obtained by calculating the first nine coefficients of the light from the radiant exitance of the Teflon sphere, (E) the real lighting
up to order 4, (F) an attempt to recover the lighting up to order 4 by also calculating the nine order-4 modes. Images (B)–(F) are vi-
sualizations obtained by unwrapping spherical coordinates of the lighting. u i ranges over [0, p] uniformly from top to bottom, and f i
ranges over [0, 2p] uniformly from left to right. The zero of the lighting is the gray color used for the background of image (B).
Table 1. Comparison of Recovered and Real
Lighting Coefficients

(l,m) El,m @4p/(2l 1 1)#1/2Al Ll,m (Rec.) Ll,m (Real)

(0,0) 3.39 3.14 1.08 0.96

(1,21) 20.63 2.09 20.30 20.31
(1,0) 21.99 2.09 20.95 20.97
(1,1) 2.55 2.09 21.22 21.20

(2,22) 20.38 0.79 20.48 20.44
(2,21) 0.37 0.79 0.47 0.42
(2,0) 0.05 0.79 0.06 0.05
(2,1) 21.21 0.79 21.54 21.55
(2,2) 0.50 0.79 0.64 0.74

(3,23) 20.02 0
(3,22) 0.00 0
(3,21) 20.03 0
(3,0) 0.02 0
(3,1) 0.03 0
(3,2) 0.00 0
(3,3) 20.04 0
the irradiance coefficients El,m for l 5 3. According to
the theory, these coefficients should be identically 0, since
A3 5 0. We see that the experimental values are indeed
very close to 0.

7. CONCLUSIONS
We have presented a theoretical analysis of the relation-
ship between radiance and irradiance. We have shown
that the operation of reflection is analogous to convolution
of the illumination and a clamped-cosine function and
have derived a simple closed-form formula in terms of
spherical harmonic coefficients. We have further demon-
strated that the clamped cosine—or, equivalently, the
Lambertian BRDF—acts as a very low-pass filter, making
deconvolution to recover the lighting difficult. In fact, we
have demonstrated that odd-order modes of the incident
illumination with order . 1 cannot be recovered from the
irradiance, i.e., from observation of a Lambertian surface.
In other words, the radiance-from-irradiance problem is
ill posed or ambiguous. We have also presented evidence
showing that in practical terms, the reflected light field
from a Lambertian surface is characterized only by
spherical harmonic modes up to order 2, and we can
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therefore reliably estimate only the first nine coefficients
of the incident illumination. These results confirm some
previous empirical results and also open up the possibility
of novel algorithms for problems in many areas of com-
puter graphics and vision.

For instance, in the general context of inverse render-
ing to recover lighting and BRDFs, our results suggest
the use of a spherical harmonic basis as a suitable repre-
sentation, with regularization obtained by limiting the
number of modes used. In rendering images in computer
graphics with complex illumination represented by envi-
ronment maps, our results indicate that for largely dif-
fuse surfaces, an accurate lighting description is not nec-
essary. Efficient algorithms might result from rendering
in frequency space, considering only the first few spheri-
cal harmonic coefficients of the lighting. For object rec-
ognition under varying illumination, our results indicate
that the space of all possible images of an object can be
easily described by a small basis set of images, corre-
sponding to the lowest-order modes of the lighting. Our
work may also have applications in visual perception.
Since our results indicate that lighting cannot lead to
rapid variation of intensity over a Lambertian surface,
such variation must be because of secularity or texture,
and this result may be useful in explaining how one can
perceive these quantities independently of the illumina-
tion.

Further work must be done on developing this theory
for non-Lambertian surfaces and in considering other ef-
fects such as shadows and interreflections. Further prac-
tical work is required on the problems just mentioned.
We believe that the techniques developed in this paper
are of fundamental interest and may provide a firm theo-
retical foundation for novel algorithms in many different
research areas.

APPENDIX A: NOTATION
L Incoming radiance
Ll,m Coefficients of spherical harmonic expansion

of L
E Irradiance
El,m Coefficients of spherical harmonic expansion

of E
B Radiant exitance
r Surface reflectance
A Cosine of local incident angle A 5 cos ui8
Al Coefficients of spherical harmonic expansion

of A
u i8 (u i) Incident elevation angle in local (global) coor-

dinates
f i8 ( f i) Incident azimuthal angle in local (global) co-

ordinates
uo8 (uo) Outgoing elevation angle in local (global) coor-

dinates
fo8 ( fo) Outgoing azimuthal angle in local (global) co-

ordinates
V8 (V) Hemisphere of integration in local (global) co-

ordinates
x Surface position
n Surface normal
a Surface normal parameterization—elevation
angle

b Surface normal parameterization—azimuthal
angle

g Tangent frame angle
D̃m,m8

l Representation matrices of SO(3)
Yl,m Spherical harmonic
I A 2 1
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