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Abstract

Light fields can be used to represent an object’s appearance
with a high degree of realism. However, unlike their geo-
metric counterparts, these image-based representations lack
user control for manipulating them. We present a system
that allows a user to interactively manipulate, composite and
render multiple light fields. LightShop is a modular system
consisting of three parts: 1) a set of functions that allow
a user to model a scene containing multiple light fields, 2)
a ray-shading language that describes how an image should
be constructed from a set of light fields, and 3) a real-time
light field rendering system in OpenGL that can plug into
existing 3D engines as a GLSL shader.

We show applications in digital photography and we
demonstrate how to integrate light fields into a modern
space-flight game using LightShop.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors I.3.3 [Computer Graph-
ics]: Image Based Modeling—Systems

1 Introduction

A light field [Levoy and Hanrahan 1996; Gortler et al. 1996]
is a four-dimensional function mapping rays in free space to
radiance. Using light fields to represent scene information
has become a popular technique for rendering photo-realistic
images. However, most systems that incorporate light fields
use a rigid architecture that is suitable for a single task,
like view-interpolation, focusing, or deformation [Levoy and
Hanrahan 1996; Vaish et al. 2004; Chen et al. 2005]. A
general system that accomplishes all these tasks allows a
user to creatively manipulate light fields by combining such
tasks together. In this paper, we present such a system,
LightShop, that allows a user to interactively manipulate
and composite 4D light fields in a single, unified framework.

This unified framework is an important advantage of
LightShop. The system is designed to manipulate and render
light fields independent of parameterization and acquisition
method. In our results, we show composite scenes of light
fields captured from a camera array [Wilburn et al. 2005], a
hand-held light field camera [Ng et al. 2005], a gantry-arm
[Levoy 2004] and a ray-tracer. This mix of light fields can
manipulated in a number of ways, deformed, composited,
or refracted, to name a few. This enables a programmer
to quickly prototype new algorithms for manipulating light
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fields, independent of their representation. Another use is
as an education tool for light fields.

In addition the LightShop interface is designed to be sim-
ple and amenable to graphics hardware, with the goal that
game developers may adopt light fields as an additional
“augmented” texture source. In fact, we demonstrate the
use of LightShop by integrating a light field into a full open
source video game. This paper summarizes the design deci-
sions necessary for building a practical system for manipu-
lating light fields.

LightShop consists of three parts: 1) an API that con-
stitutes a modeling interface for defining a scene containing
light fields, 2) a ray-shading language that defines how a 2D
image is rendered from this scene and 3) a rendering sys-
tem that generates an image from a specified scene and a
ray-shading program.

The modeling interface is an API, similar to Renderman
[Upstill 1992] or OpenGL [Board et al. 2005] that allows the
programmer to define virtual cameras and insert light fields
into the graphics environment.

Once a scene has been defined, the user writes a ray-
shading program that describes how to generate an image
from the graphics environment. This program executes on
every pixel location of the output 2D image. In the program,
a “view-ray” is formed based on the pixel location and the
camera parameters. The program describes how the view-
ray will interact with the scene of light fields to determine
the radiance (i.e. color) in its direction. The color of the
output pixel is set to the color of the view-ray.

One of the key features of LightShop is that manipulating
light fields is described as an operation on view rays. For
example, to deform a light field the user writes a program
that systematically warps the view-rays. To assist the user,
LightShop provides several useful functions for manipula-
tion: sampling from a light field, warping, and compositing.
Such functions can be combined simply by writing the ap-
propriate ray-shading program. In the results section, we
illustrate how multiple functions that operate on individual
light fields can be combined with each other.

After defining a ray-shading program, LightShop’s ren-
dering system executes the program for every pixel of the
final 2D image, forming the output.

The rest of the paper is organized as follows. First, we
describe related work in the area of image-based editing.
Second, we review the light field construction and present
the LightShop specification. We demonstrate how to use
this system with a simple example. Third, we present
an OpenGL/GLSL implementation that enables interactive
editing and manipulation. Finally, we demonstrate our im-
plementation for digital photography and image-based mod-
eling as well as its integration as a plugin into a modern 3D
space game.

2 Related work

Since most light field datasets are represented by multiple
images, light field manipulation is one type of image-based



editing. Other types of image-based editing can be catego-
rized by their dimensionality. 2D image-based editing is the
most mature and includes industry-tested tools like Adobe
Photoshop [Adobe 2000]. See Gonzalez and Woods [2002]
for a review of common 2D image operations.

3D image-based editing refers to editing video or ma-
nipulating images with depth information. In the former,
tools like Adobe Premiere offer a variety of operations from
cutting to merging or blending videos. In the latter, re-
searchers have developed tools for augmenting single images
with depth information. Oh et al. [2001] built a system that
allows the user to manually specify depths in an image. Sub-
sequent editing operations, like cloning and filtering, can be
performed while respecting scene depth. Barsky [2004] ap-
plies focusing operators to a similar image representation to
simulate how a scene would be observed through a human
optical system.

Seitz and Kutulakos [1998] use a voxel-representation for
depth information. They introduce editing operations such
as scissoring and morphing on this voxel representation.
Meneveaux and Fournier [2002] use a similar representation
and extract normals and reflectance properties for a reshad-
ing operation.

4D image-based editing refers to light field manipulation.
With the exception of a few works, this area has remained
unexplored. Shum and Sun [2004] extend 2D compositing
[Porter and Duff 1984] to light fields. They introduce a tech-
nique called coherence matting for seamless compositing of
light fields. Two other systems allow for warping light fields
[Zhang et al. 2002; Chen et al. 2005]. In the former, two in-
put light fields are combined to produce a morphed version.
In the latter, an animator can interactively deform an object
represented by a light field. Our system enables operations
such as these to be combined and executed on a mix of light
fields.

Image-based editing, regardless of dimension, needs to be
interactive. In LightShop, we achieve interactive editing by
utilizing graphics hardware acceleration. Previous systems
have also used graphics hardware but only for light field
rendering. Chen et al. [2002] introduce a real-time render-
ing algorithm for surface light fields that approximates the
data with lower-dimensional functions over elementary sur-
face primitives. Vlasic et al. [2003] extend this with opacity
hulls for view-dependent shape as well as appearance.

3 The 4D Light Field

Before describing LightShop, we review the “light field”
image-based representation. LightShop takes light fields
as input, composites and manipulates them, and outputs
a novel view of the scene.

A light field is a continuous 4D function mapping rays
in free space to radiance. The input, a ray in free space,
takes 4 coordinates to represent [Levoy and Hanrahan 1996].
The output, radiance, is usually approximated by a three-
component vector RGB. Similar to the light field composit-
ing work by Shum and Sun [2004], we augment the RGB
vector with an alpha channel [Porter and Duff 1984] that
describes the opacity along that ray.

To perform computation on a light field, we represent it
with discrete samples. A discrete light field is simply a 4D
texture map, and henceforth will be referred to simply as
a “light field”. In practice, acquired light fields are repre-
sented as a set of camera images. In this case, the light field
takes four coordinates that select camera and pixel, and re-
turns the RGBA color of that camera pixel. The alpha can

be computed by using matting techniques [Smith and Blinn
1996] or manually [Shum and Sun 2004]. These light fields
are the input to LightShop.

4 LightShop: A System for Manipulating

Light Fields

To manipulate light fields, we design LightShop to use the
same conceptual model as OpenGL for manipulating polyg-
onal objects [Board et al. 2005]. By doing so, a program-
mer familiar with OpenGL can easily adapt to using Light-
Shop. We characterize OpenGL’s conceptual model as one
that models a scene containing multiple objects, manipu-
lates these objects, and renders an output image based on
the modified scene. To model and manipulate a scene the
programmer uses the OpenGL API. To render an image, the
programmer writes a vertex and a fragment program.

LightShop is organized in a similar way to OpenGL, with
an API for modeling the scene, a ray-shading language for
manipulating it, and a rendering system. The modeling API
exports a set of functions that are used to define a scene con-
taining light fields. The ray-shading language is used to de-
scribe how that scene should be rendered to a 2D image, e.g.
how a view-ray is shaded, given multiple light fields in the
scene. LightShop’s renderer then executes the user-defined
ray-shading program at each pixel of the output image. Each
execution of the program shades a single pixel until the en-
tire image is rendered.

To use the interface, a programmer makes a series of pro-
cedure calls to setup a scene with light fields. These include
positioning light fields and defining viewing cameras. Then
the programmer uses the ray-shading language to describe
how a view ray from a selected camera is shaded as it inter-
acts with the light fields.

First we describe LightShop’s modeling interface. Then,
we describe a ray-shading language that enables the pro-
grammer to manipulate the scene and to specify how a 2D
image should be rendered.

4.1 LightShop’s Modeling Interface

In LightShop, a scene is modeled with two primitive types:
cameras with a single lens and light fields. The programmer
calls on an API to insert these primitives into an internal
representation of the scene. Each primitive has related at-
tributes. For example, the camera primitive has a simple
lens model so it has attributes that describe an image plane,
a lens plane, and a focal plane.

Light fields have attributes associated with texture sam-
pling. These include the sampling (i.e. nearest-neighbor,
or quadralinear) and wrapping (i.e. repeat or clamp to a
value) behaviors. Nearest-neighbor sampling simply extracts
the color of the ray “nearest” to the input ray. Quadralinear
sampling [Levoy and Hanrahan 1996] is the 4D equivalent to
bilinear interpolation in 2D. In addition to these attributes,
a special “transform” attribute is used to specify the position
and orientation of each light field.

These function calls, either to insert primitives or to
modify their attributes, update the internal representation,
which we call the graphics environment. The graphics envi-
ronment is a set of cameras and light fields shared between
the modeling API and the ray-shading language.



4.2 LightShop’s Ray-shading Language

After using the modeling interface to define a scene contain-
ing light fields, the programmer writes a ray-shading pro-
gram that effectively manipulates the scene and precisely
defines how this scene should be rendered to a 2D image.
An image is created by associating a ray to each output
pixel, and deciding on how to shade this “view-ray”. As
the view-ray travels through the scene, its color (RGBA)
or direction may change due to interaction with light fields.
This is similar to ray-tracing in a scene where objects are
represented by light fields.

The ray-shading language executes in a manner similar
to the Pixel Stream Editor [Perlin 1985]. It takes as input
the xy location of a pixel of the 2D image, executes the ray-
shading program at this pixel, and outputs a RGBA color.
At any one pixel, the program has access to the graphics en-
vironment. It uses this environment to form a ray from the
given pixel position and to shade the color of this ray. Light-
Shop’s renderer executes the same ray-shading program at
each pixel location to determine the color for each pixel in
framebuffer. Combinations of editing operations can be ex-
ecuted by simply calling on multiple editing functions.

First we briefly describe the language features. Then we
introduce our set of high-level functions available for inter-
active light field editing.

4.2.1 Language Features

The ray-shading language is built upon the GLSL specifica-
tion. The program execution begins in the main procedure
for each pixel. The main procedure accesses the graphics
environment to decide how to form a ray and shade it, and
then it returns a RGBA color.

In order to make this computation easier to program, we
have implemented several useful functions. The first func-
tion, LiGetRay, takes as input a 2D pixel location, a 2D
position on the lens aperture and a camera specification. It
computes the ray that shoots from the pixel location through
the sample position on the lens, which refracts out from the
camera. The amount of refraction is based on the simple lens
model. For simplicity, we represent rays with a 3D point and
a 3D direction vector.

Once a ray has been formed, it can be passed as input
to several high-level functions. These functions are defined
in LightShop because they are common in many light field
operations.

4.2.2 4D Light field Sampling

The sampling procedure takes as input a ray and a light
field and returns the color in that ray direction. Because
light fields in LightShop are represented in a sampled form,
any given ray direction may not have a color in the light
field. Hence, the procedure utilizes the sampling light field
attribute to determine how it should return a color for any
given ray. The sampling procedure is most commonly used
for novel view synthesis from light fields.

LtColor LiSampleLF(LtInt lightfieldID, LtRay ray)

4.2.3 Compositing

Using the proper compositing operators and ordering allows
a programmer to render an image of a scene containing mul-
tiple light fields. Recall that a color contains RGBA chan-
nels. RGB approximates the radiance along a ray direction
in the light field. Alpha, or A, represents the ray’s opacity

and coverage. Once the color along a ray has been sampled
from a light field, it can be composited with other colors
(along rays) sampled from other light fields.

We implement Porter and Duff’s [1984] compositing oper-
ations. For example, the function call for the over operator
is shown below:

LtColor LiOver(LtColor A, LtColor B)

4.2.4 Warping

Ray warping is commonly used to simulate deformation of
a light field [Chen et al. 2005], or refractive effects [Heidrich
et al. 1999; Yu et al. 2005]. We implement warping by a set
of functions that take a ray as input and return a new ray.

LightShop provides two types of warps to the program-
mer: procedural warps and 4D table lookup. Procedural
warps are linear transformations on 3D vectors. Since we
represent a ray as a point and direction, warping it involves
multiplying both components by a matrix, which is fast on
graphics hardware.

To enable more flexible warping, LightShop offers a 4D
lookup table option. With a lookup table the ray warping
function is approximated by many samples. The table itself
is loaded as a light field1, except that the values are not
color, but ray coordinates. One can think of the light field
as a ray-valued one as opposed to a color-valued one. The
LightShop procedure that samples from the ray-valued light
field is shown below.

LtRay LiWarpRayLookup(LtInt lightFieldID, LtRay ray)

5 A Simple Example

We now describe an example that illustrates the expressive
power of the LightShop system. We delay the discussion
of the implementation to Section 6. The final result that
LightShop renders is shown in Figure 3d.

First, we describe the input to LightShop. The scene con-
sists of 4 light fields. Two of them represent a Buddha and
a flower. The third light field represents a table lookup for
a ray warp that simulates the refraction of rays through a
glass ball2. The fourth light field represents the specular
highlight of that ball.

The procedure calls that model the scene are shown in
Figure 1. Referring to Figure 1, the programmer first inserts
a camera into the scene. Specifying a lens with a width and
height of zero describes a pinhole camera. The next set of
procedure calls insert light fields into the scene.

Once the scene has been modeled, the programmer writes
a ray-shading program that defines precisely how a 2D im-
age is rendered from this scene. This is done by writing a
program that executes per output pixel of the image to de-
termine the color of each pixel, given the scene of light fields.
Figure 2 shows the ray-shading program.

In lines 5–13 we convert the current pixel location into a
ray and use this ray to sample from the Buddha light field.
We then set the background color to be black. Figure 3a
shows the image after executing these lines of code.

Next, in line 17 we use the same ray to sample from the
flower light field and composite that color over the Buddha
sample, which produces Figure 3b.

1For simplicity, we use two light fields to store the 6 coor-

dinates defining points and directions of rays. A 4-coordinate

ray-representation could also be used.
2The lookup table is computed by ray-tracing through a sphere

with glass material properties.



// insert the camera

LtInt camera0 = LiCamera();

LiAttributeCam(camera0, “lower left”, 4.14, 4, 7.92);

LiAttributeCam(camera0, “up”, up, 0, -8, 0);

LiAttributeCam(camera0, “right”, -7.99, 0, 0.14);

LiAttributeCam(camera0, “lens width”, 0);

LiAttributeCam(camera0, “lens height”, 0);

// insert the light fields

LtInt buddha = LiLightField(“buddha”);

LtInt flower = LiLightField(“flower”);

LtInt glassBall = LiLightField(“glass ball”);

LtInt highlight = LiLightField(“highlight”);

// set light field attributes

LiAttributeLF(buddha, “transform”, {4.0,0, 0,0,...});

LiAttributeLF(flower, “transform”, {0.6,0, 0,0,...});

...

Figure 1: LightShop procedure calls that model the toy scene
shown in Figure 3d.

00 LtColor main(LtVec2 currentPixel) {

// the output color for this pixel

LtColor col;

// form a ray from the current pixel

05 LtRay ray=LiGetRay(camera0,currentPixel,LtVec2(0,0));

// set the background color to be black

LtColor background = LtVec4(0,0,0,1);

col = background;

10

// sample from the Buddha light field

// and composite over a black background

col = LiOver(LiSampleLF(buddha, ray), col);

15 // sample from the flower light field and

// composite it over the buddha one

col = LiOver(SampleLF(flower, ray), col);

// warp view ray to simulate the refraction effect

20 LtRay warpedRay = LiWarpRayLookup(glassBall, ray);

if(warpedRay.dir != 0) {

LtColor refractedBuddha = LiSampleLF(buddha, warpedRay);

LtColor refractedFlower = LiSampleLF(flower, warpedRay);

25 LtColor refraction = LiOver(refractedFlower,

LiOver(refractedBuddha, background));

// tint the refracted ray color

LtColor tint = LtVec4(1, .5, .5, 1);

30 refraction = tint * refraction;

// composite refracted color to output pixel color

col = LiOver(refraction, col);

}

40 // obtain the specular highlight of

// the glass ball and add it to the scene

LtColor highlightColor = LiSampleLF(highlight, ray);

45 col = col + highlightColor;

return col;

}

Figure 2: An example ray-shading program. It renders the
image shown in Figure 3d. For clarity, the light field iden-
tifiers for LiSampleLF have been written as the name of the
light field, instead of an integer.

(a) (b)

(c) (d)

Figure 3: (a) The image after sampling from the Buddha
light field. (b) The image after compositing the flower
RGBA sample over the Buddha one. (c) The image after
compositing the refracted Buddha and flower light fields.
(d) The image after creating a red tint in the glass ball re-
fraction.

In lines 20–26 we simulate the spherical refraction effect by
warping the view ray as if it had gone through the glass ball.
Recall that the glass ball light field is a table lookup mapping
an input ray to a warped ray. We use the LiWarpRayLookup

procedure to acquire the warped ray. This warped ray is then
used to sample from the Buddha and the flower light field
to produce a refracted color. Figure 3c shows the current
image.

In addition to computing a refracted image of the Buddha
and flower, we can also adjust the tint of the glass ball simply
by introducing a multiplicative factor before compositing the
refracted images as in lines 29–30.

Finally, in lines 44-46 we add a specular highlight to the
scene by sampling from the light field containing the ball’s
specular highlight and adding this color to the final color.
This produces the final image, as shown in Figure 3d. Al-
though we show the final result as a single image, LightShop
is capable of rendering different viewpoints by changing the
camera position through the modeling API. Doing so would
illustrate view dependent effects in the rendered image.

6 Implementation

Our system supports the two plane [Levoy and Hanrahan
1996] and sphere-plane parameterizations. The two plane
parameterization is a natural parameterization for datasets
acquired from an array of cameras. The UV-plane is defined
as the plane on which the cameras lie. The ST-plane is the
plane on which all camera images are rectified. Unfortu-
nately, a single two plane parameterization cannot represent
rays parallel to the planes. This makes it difficult to cap-
ture objects with inward-looking light fields. Therefore, for
capturing objects, we use a sphere-plane parameterization.

The sphere-plane parameterization is defined by a sphere
defining the manifold containing all camera positions and a
family of planes defining each camera’s image plane. Sam-
pling a ray involves first intersecting the ray with the sphere,
then finding the nearest cameras to that point, and then
sampling from the associated image planes.

To represent the light field on disk, we take images from
either parameterization and compress them into a file using



4:1 ratio S3 texture compression [Iourcha et al. 1999].
LightShop’s modeling interface is a class hierarchy in C++

and the ray-shading language comprises a set of helper util-
ities within GLSL. The computational framework of writing
a single program that executes per output pixel is exactly
the same as the framework for a fragment shader. Addition-
ally GLSL is designed for real-time rendering. This enables
LightShop to be used as an interactive editing tool.

To make the interaction more practical, when LightShop
launches, it brings up a text editor allowing the user to in-
teractively change the ray-shading code displaying the scene.
Additionally LightShop’s ray-shading language has methods
to query the keyboard, so a user can write a shader that
reacts to input.

To implement the graphics environment, we exploit
OpenGL’s graphics state. When the programmer uses the
modeling interface to define a camera, LightShop defines spe-
cially named program constants so that GLSL may access
them. When a procedure is called to insert a light field into
the scene, our LightShop implementation loads compressed
datafiles from disk to graphics memory in the form of a 3D
texture. This allows the light fields to be accessible by the
fragment shader in GLSL, which is our implementation of
the ray-shading language.

As the programmer writes a ray-shading program, he
may access the camera parameters via reserved LightShop
uniform variables. Light fields are sampled using the
LiSampleLF procedure discussed in Section 4.2.2.

After writing the ray-shading program (which is essen-
tially a fragment program with extra LightShop state), the
program is run through a preprocessor that converts it into
valid GLSL code. This code is compiled by the graphics
driver and linked into the rendering program for execution.

The LightShop renderer that executes the ray-shading
program per output pixel is simply the OpenGL fragment
renderer. To force the fragment shader to execute over ev-
ery pixel in the output, we define a single OpenGL quad
that fills the display screen.

7 Results

We show results demonstrating how LightShop can be used
in digital photography and video games. The first result
shows creating a scene with multiple light fields. The light
fields have been deformed and relit to create a believable
composite. The second result shows how novel focusing tech-
niques can be explored by manipulating how we sum view-
rays through a camera lens. The final result demonstrates
how light fields can be easily integrated into a complete video
game using LightShop. To render the results, we use a P4
2.6 GHZ with 1 GB RAM, using a Nvidia 6600 GT with 128
MB onboard.

7.1 Compositing a Wedding Scene

We use LightShop to create a composite light field of a wed-
ding scene. Figure 4a shows one image from a wedding light
field captured using a hand-held light field camera [Ng et al.
2005] and three images from light fields of actors. Each ac-
tor is captured in front of a green screen using the Stanford
Multi-Camera Array [Wilburn et al. 2005]. The green screen
is for matte extraction [Smith and Blinn 1996]. Addition-
ally, we acquire a light field of each person under two lighting
conditions: left light on and right light on. In LightShop,
we can simulate coarse relighting by taking different linear
combinations of colors in these light fields.

Figure 4: Image from a light field of a wedding couple and
images from three light fields of three individuals in front of
a green screen. The wedding light field, captured by Ren Ng,
is 10 MB. Each actor dataset, for a given lighting condition,
is 15 MB.

(a) (b)

Figure 5: (a) An image from the composite light field. To
approximate the illumination conditions in the wedding light
field, we take linear combinations of the light fields of a given
individual under different lighting conditions. The illumi-
nation would match better if more lighting conditions were
captured. (b) An image from the composite light field where
we have turned two individuals’ heads.

In Figure 5a, we use LightShop to composite the actors
into the wedding scene to produce a composite light field.
Figure 5b shows an image after applying a ray deformation
to turn two of the actors’ heads. The ray-shading program
is similar to the one shown for the example in Section 5.
This image is difficult to create using conventional 2D editing
tools. The pixels that form this image are selected from more
than 436 images. Also, moving LightShop’s virtual camera
would exhibit the proper parallax between light fields. The
image is rendered at 40 frames per second (FPS).

7.2 Manipulating Focus in Sports Photography

This result demonstrates how we can explore novel focusing
techniques simply by modifying how view-rays through the
lens are summed, for each pixel. For example, focusing on a
single depth in a scene can be accomplished by summing the
colors of rays passing through the lens aperture. In the ray-
shading program, this is accomplished by refracting multiple
rays through the lens aperture and summing the resulting
colors along each ray:

LtColor col = LtVec4(0,0,0,0);

for(LiInt i = -1; i < 1; i += stepSizeX)

for(LiInt j = -1; j < 1; j += stepSizeY)

col += LiSampleLF(0, LiGetRay(0, currentPixel, LtVec2(i,j)));

stepSizeX and stepSizeY refer to user-specified step sizes
on the lens aperture. Figure 6a illustrates this simple focus-
ing technique on the swimmers light field.

However, since LightShop provides full control over how
colors of rays should be summed, we can modify the above
code segment to produce non-photorealistic effects like hav-
ing multiple-depths of focus. This may be useful in sports
photographs, when sometimes areas of interest occur in mul-
tiple depths. A sports photographer may want to focus on
these depths. For example, the photographer may want to



focus on the front and back swimmers as shown in Figure
6b. Alternatively, the photographer may want to focus on
the mid, and back swimmers, but create a sharp focus tran-
sition to the front swimmer, as shown in Figure 6c.

This non-photorealistic form of imaging is accomplished
by first segmenting the light field into four layers, three for
the swimmers, and one for the crowd. A “layer” is a light
field containing rays that are incident to objects at a par-
ticular depth in the light field (i.e. the front swimmer light
field layer). We segment the swimmers light field by incre-
mentally applying Bayesian matte extraction [Chuang et al.
2001] for each layer, in a front to back order [Chen 2006].

Second, the user inserts each layer (e.g. light field) into the
scene. Then the user inserts four cameras into the scene, one
for each light field. The cameras have the same attributes
(e.g. image plane, lens aperture, lens position, etc.) except
for the focal distance. Each camera is used to create an im-
age with shallow depth of field from one of the four light
fields. In each image, the corresponding layer may be in fo-
cus or not. These four images are then composited together
with the LiOver operator to form the multi-focal plane im-
age. Figures 6b and c illustrate this focusing effect. We
sample the lens 256 times, so the system runs at 0.5 FPS.

7.3 Incorporating LightShop into a Game

Because LightShop is implemented in OpenGL and GLSL,
it can be utilized as a plugin in interactive games. Games
that utilize fragment shaders may use LightShop’s functions
to access light fields like any other texture. To properly
draw a light field, the vertex shader needs only to define a
quad spanning the bounding box of the object that the light
field represents so that the fragment shader may execute
LightShop’s ray-shading program to color each pixel occu-
pied by the object. From the game programmer’s point of
view, LightShop provides an interface for a “3D billboard”3

[McReynolds et al. 1998; Akenine-Möller and Haines 2002].
To demonstrate LightShop’s use in interactive games, we

integrated a light field into Vega Strike, an open-source
OpenGL-based space game [Horn et al. 2006] in active de-
velopment since 2001.

The light field that we wish to insert into Vega Strike rep-
resents a red toy ship. The acquired light field is uniformly
sampled [Camahort et al. 1998] around the toy ship and is
approximately 125 MB.

In Vega Strike, each model has multiple meshes defining
its geometry. Each mesh in turn has one associated 2D tex-
ture map. In the game loop, when a mesh is scheduled to be
drawn at a particular location, the appropriate MODELWVIEW

matrix is loaded into OpenGL and the associated texture is
made active. The mesh vertices are then passed to OpenGL,
along with the associated texture coordinates.

To integrate LightShop into Vega Strike, we define a Tex-
ture4D class to load in light field data. Texture4D is a sub-
class of the standard 2D texture other meshes use. The mesh
for a light field object is simply a unit quadrilateral. The
vertex shader bound to the mesh takes this quadrilateral
and maps it to the correct screen coordinates, depending
on the location of the view camera and the light field, to
cover the screen-space bounds of the object. When the Tex-
ture4D class is activated, the appropriate MODELVIEW matrix
is pulled from OpenGL and the game camera parameters are
fed into the LightShop camera model. A scene with just one
item is loaded into LightShop, and the resulting fragment

3The billboard appears 3D since a 3D object appears to be

inside it, but in fact the light field representation is in general 4D.

shader (a ray-shading program) is activated when the light
field is ready to be drawn. Figure 7 shows the light field of
the toy ship integrated into the game.

The LightShop-rendered light field acts as any other active
unit in Vega Strike, complete with AI and physics models.
Collisions are modeled using a coarse geometric proxy for
the red spaceship. The effect of having a light field object
in view on the Vega Strike framerate is minimal and the
game still achieves greater than 30 FPS. This is because
the quadrilateral billboard comprises exactly two triangles
and when they are drawn, there is no overdraw. Likewise
the shader just samples the light field four times using the
builtin bilinear interpolation to complete the quadralinear
interpolation per pixel.

Thus LightShop can be plugged into any OpenGL applica-
tion with minimal intervention and hence, light fields can be
integrated into the standard graphics pipeline. This makes
it practical to acquire real-world objects and place them into
games or other graphics applications replete with polygonal
items. This demonstrates the first integration of an acquired
light field into a game.

8 Conclusion

We have presented a system, LightShop, that allows a user
to manipulate and composite light fields at interactive rates.
The system provides a unifying framework in which many of
these operations can enhance each other by being combined.
Furthermore, the light fields do not need to be the same
size, or parameterized or acquired in the same way. We
have shown that LightShop can manipulate light fields of
people, wedding scenes, swimmers, and fluffy toys – all of
which are nearly impossible to model with polygons. This
system has applications in creating novel imaging effects,
digital photography, and interactive games.

The system has its limitations. Since the input to Light-
Shop is a 4D light field where illumination is fixed, composit-
ing different light fields can look incorrect. This is the same
limitation that other editing tools, like Adobe Photoshop,
have. In LightShop, this can be addressed by capturing a
light field of an object under multiple illumination condi-
tions and writing a ray-shading program that takes linear
combinations from each light field to mimic the target il-
lumination. However this results in an order of magnitude
data explosion for even the simplest of diffuse lighting con-
ditions. However, there is hope that compression techniques
could contribute to addressing this problem.

Another drawback of LightShop is the programmer-
centric interface for interactively compositing and manip-
ulating scenes. Due to the wide variety of scenes and tech-
niques we wished to support, we decided a full programming
language was necessary. The problem of visual programming
of shaders is being addressed by a number of commercial
engines, for example the Unreal engine [Sweeney and Epic
2006]. Thus instead of having a UI to composite and place
light fields we mandate the interactive creation of a shading
program to specify how to compose the light fields. We uti-
lized this interactive method as well as interactive binding
of keystrokes to quickly produce all scenes in this paper.

One more assumption is that the programmer writes a
ray-shading program that is view-dependent. When com-
positing light fields, the programmer must specify a com-
positing order. If there is a visibility change, then this order
may change. An advanced ray-shading program can handle
visibility changes by implementing a per-pixel sort of the
light fields. In our Vega Strike implementation, this hap-



(a) (b) (c)

Figure 6: (a) Conventional focusing in a light field (10 MB in size). The front swimmer lies on the focal plane. (b) A multi-focal
plane image where the front and back swimmers are brought into focus for emphasis. The middle swimmer and the crowd
are defocused. (c) The front swimmer is defocused, but a large depth of field exists over the depths of the middle and back
swimmer. There is a sharp transition in focus between the front and mid swimmers. Light fields captured by Ren Ng.

(a) (b) (c)

Figure 7: Screenshots from Vega Strike with a LightShop plugin. The red spaceship is an acquired light field of a physical toy,
and all other objects in the screenshots are 3D polygonal models or sprites. Notice that the light field is integrated seamlessly
into the surrounding 3D graphics.

pens implicitly by activating the Z-buffer when drawing the
light field individually on their separate billboards.

There are a number of interesting avenues of research
open for development in LightShop. For instance, Light-
Shop currently does not support the animated or skinned
light fields necessary for inserting humans into games. One
option would be to utilize Flowed reflection fields introduced
by Einarsson et al.[2006] for human locomotion. Another op-
tion would be to capture a light field of a motionless human
and associate it with a bone structure in order to apply skin-
ning techniques to the light field. Both ideas would fit within
the LightShop API and would allow games to capture actors
using cameras instead of time consuming modeling.

Another interesting context for future work could be med-
ical imaging. For example our warping operator could be
used to describe the aberrometry data of a human eye, pro-
duced from a Shack-Hartmann device [Platt and Shack 1971;
Barsky et al. 2002]. The warped rays would sample from
an acquired light field, presenting photorealistic interactive
scenes as seen through a human optical system.

LightShop provides a powerful mechanism for manipu-
lating and rendering light fields. The GLSL implementa-
tion runs in real-time and provides a complete interface for
a game programmer to access light fields in the fragment

shader. Future additions to LightShop might make use of
more of the OpenGL rendering state to manipulate light
fields (i.e. using light information to shade light fields that
have normals information). Such additions will help to inte-
grate light fields into the graphics rendering pipeline.
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