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Abstract

Current GPUs rasterize micropolygons (polygons approximately
one pixel in size) inefficiently. We design and analyze the costs
of three alternative data-parallel algorithms for rasterizing microp-
olygon workloads for the real-time domain. First, we demonstrate
that efficient micropolygon rasterization requires parallelism across
many polygons, not just within a single polygon. Second, we pro-
duce a data-parallel implementation of an existing stochastic raster-
ization algorithm by Pixar, which is able to produce motion blur and
depth-of-field effects. Third, we provide an algorithm that leverages
interleaved sampling for motion blur and camera defocus. This al-
gorithm outperforms Pixar’s algorithm when rendering objects un-
dergoing moderate defocus or high motion and has the added bene-
fit of predictable performance.

1 Introduction
Cinematic-quality rendering demands a high fidelity representation
of complex surfaces. Smooth objects with high curvature or highly
detailed objects, such as those that are rough or bumpy, cannot be
faithfully represented by coarse polygonal meshes. Traditionally,
the performance demands of real-time graphics have constrained
the geometric complexity of scenes to be low. Most games work
within a scene budget of less than a few hundred thousand polygons
and rely on complex texturing, such as bump and normal mapping,
to compensate for missing geometric detail. In contrast, high qual-
ity offline rendering systems, such as Pixar’s RenderMan [Cook
et al. 1987], represent complex surfaces accurately using microp-
olygons that are less than one pixel in size. It is common for a single
offline frame to consist of hundreds of millions of micropolygons.

Barriers to increasing the geometric complexity of real-time scenes
exist both within and outside the graphics pipeline. For exam-
ple, high resolution geometry must be stored, animated, simulated,
and transmitted to GPU computational units each frame. Within
the pipeline, the extra geometry must be transformed and raster-
ized. However, the computational throughput of both CPU-side
and GPU shader processing is rising dramatically with increasing
core counts. Modern GPUs can dynamically shift computational
resources between pipeline stages to accommodate increasing ver-
tex loads, and include rapidly maturing support for programmatic
geometric tessellation within the pipeline. These trends indicate
that it will be feasible for a real-time system to provide micropoly-
gon inputs to the graphics pipeline rasterizer in the near future.

This paper considers the problem of rasterizing micropolygons in a
real-time system. Rasterizers in existing systems are highly tuned
for polygons that cover tens of pixels; however they are inefficient
for micropolygon workloads. We propose and evaluate three alter-
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Figure 1: Complex surfaces such as this frog’s skin are represented
accurately using micropolygons.

native algorithms for data-parallel micropolygon rasterization. The
first considers only stationary geometry that is in perfect focus, and
parallelizes across micropolygons, rather than across samples for a
single micropolygon. The second is a data-parallel implementation
of a previously published method by Pixar that supports motion
blur and camera defocus effects. Our third implementation lever-
ages interleaved sampling to decouple rasterization cost from scene
characteristics such as motion or defocus blur.

2 Background

2.1 Traditional Rasterization

Whether implemented as fixed-function hardware or an optimized
software implementation, computing the sample points covered by
a polygon can be broken down into three major steps: performing
per-polygon preprocessing (“polygon setup”), determining a con-
servative set of possibly-covered sample points, and performing in-
dividual point-in-polygon tests.

Setup encapsulates computations, such as clipping and computing
edge equations, that are performed once per polygon and decrease
the cost of the individual point-in-polygon tests. When polygons
are large, the results of a single setup operation are reused for many
sample tests. Setup need not be widely parallelized as its cost is
amortized over many tests.

Rasterization algorithms use point-in-polygon tests to determine
which screen sample points lie inside a polygon. Testing samples
that lie outside the polygon is wasteful, because the polygon does
not contribute to the image at these locations. We quantify this
waste by considering the sample test efficiency (STE) of a rasteri-
zation scheme: the percentage of point-in-polygon tests that result
in hits. Modern rasterizers compute polygon overlap with coarse
screen tiles [Fuchs et al. 1989; McCormack and McNamara 2000]
or use hierarchical techniques [Greene 1996; McCool et al. 2001;
Seiler et al. 2008] that utilize multiple tile sizes as a means to effi-
ciently identify a tight candidate set of samples.

Finally, samples must be tested to determine if they are inside the
polygon. Modern rasterizers leverage efficient data-parallel exe-
cution by testing a block of samples (a “stamp”) against a single
polygon in parallel. These tests can be carried out using many ex-
ecution units to achieve high throughput. This approach was in-
troduced in Pixel Planes [Fuchs et al. 1985] which tested all im-
age samples against a polygon in parallel. Other implementations
use tile sizes ranging from 4x4 to 128x128 samples [Pineda 1988;
Fuchs et al. 1989; Seiler et al. 2008]. Modern GPU rasterizers si-
multaneously perform as many as 64 simultaneous sample tests us-
ing data-parallel units [Houston 2008].



Micropolygon:  STE=8%Polygon:  STE=73%

Figure 2: Rasterization of polygons using a 2x2 sample stamp.
Samples within the polygon are shown in blue. Samples tested dur-
ing rasterization, but not covered by the polygon, are yellow. The
micropolygon’s area is small compared to that of the 2x2 stamp,
resulting in low STE.

In summary, modern rasterizers rely on per-polygon preprocess-
ing, coarse-grained rejection of candidate samples, and wide data-
parallelism for polygon-sample coverage tests. Unfortunately, these
design decisions lead to inefficient implementations when polygons
shrink to subpixel sizes. First, micropolygon scene representations
contain tens of millions of polygons. The frequency (and there-
fore expense) of setup operations increases dramatically and is no
longer amortized over many sample tests. Setup must be minimized
or parallelized when possible. Second, hierarchical schemes for
computing candidate sample sets are unnecessary. A micropoly-
gon’s screen bounding box describes a tight candidate set. Last,
large stamp sizes are inefficient because the screen area covered
by a block of samples is significantly larger than a micropolygon.
The inefficiency of a 2x2 sample stamp (tiny by modern GPU stan-
dards) is illustrated in Figure 2, which highlights samples tested
against (yellow) and covered by (blue) two polygons. STE is high
for the polygon at left, but drops to 8% for the micropolygon at
right. Large raster stamps give up efficiency near polygon edges
in exchange for efficient data-parallel execution. When rendering
micropolygons, all candidate samples are near a polygon edge.

2.2 Defocus and Motion Blur

Camera defocus and motion blur are commonplace in offline ren-
dering but used sparingly in real-time systems due to the high cost
of integrating polygon-screen coverage in space, time, and lens
dimensions. To simulate these effects, we follow previous ap-
proaches [Cook et al. 1987; Akenine-Möller et al. 2007] and es-
timate this integral by stochastically point sampling [Cook et al.
1984; Cook 1986] polygons in 5-dimensional space (screen XY,
lens position UV, time T). This presents two major challenges for
high performance implementation. First, it is hard to localize a
moving, defocused polygon in 5D, so generating a tight set of can-
didate sample points (maintaining high STE) is challenging. Sec-
ond, performing point-in-polygon tests in higher dimensions is ex-
pensive. We focus on the first of these challenges in this paper.

There is also a large body of work that seeks to approximate these
effects by post processing rendered output (see [Sung et al. 2002]
and [Demers 2004] for a summary of motion blur and defocus blur
approaches respectively). These approaches work well in some re-
gions of a frame but often produce artifacts. While there will always
be a use for fast approximations, we feel it is important to improve
the performance of direct 5D integration.

2.3 Micropolygon Rendering Pipeline

We conduct our study of micropolygon rasterization in the context
of a complete micropolygon rendering pipeline influenced by the
design of the REYES rendering architecture [Cook et al. 1987]. Our

pipeline accepts parametric surface patches as input and tessellates
these patches into micropolygons. In contrast to modern GPUs,
but like REYES, our system performs shading computations prior
to rasterization at micropolygon vertices. A micropolygon-sample
“hit” generates a fragment that is immediately blended into the ren-
der target (it does not undergo further shading).

Performing shading computations at micropolygon vertices is not
fundamental to our study of micropolygon rasterization. However,
micropolygon rasterization is tightly coupled to the properties of the
pipeline’s tessellation stage. As discussed later in this paper, ras-
terization performance relies heavily on adaptive tessellation that
yields micropolygons that are approximately uniform in area, as-
pect ratio, and orientation. We follow the design of REYES and
rely on tessellation to cull micropolygons that fall behind the eye
plane, negating the need for expensive clipping prior to rasteriza-
tion. We are simultaneously conducting a detailed study of high
quality, adaptive tessellation in the context of a real-time system.

3 Algorithms

We introduce three algorithms for micropolygon rasterization. The
first algorithm ignores defocus and motion blur effects. The second
and third perform full 5D rasterization, yielding images contain-
ing both camera defocus and motion blur. We describe algorithmic
issues of rasterizing micropolygons in this section, and defer the
data-parallel formulation of each algorithm to Section 4.

3.1 2D Rasterization

Our algorithm for 2D rasterization (no motion blur, no defocus),
NOMOTION (shown below), omits many optimizations common to
modern rasterizers. NOMOTION does not use coarse or hierarchical
rejection methods to compute a tight set of candidate samples. It di-
rectly computes an axis-aligned bounding box and tests all samples
within this bound.

Cull backfacing
Compute edge equations [optional]
BBOX = Compute MP bbox
for each sample in BBOX
test MP against sample

It is possible to avoid explicit precomputation and storage of edge
equations by conducting point-in-polygon tests in a coordinate sys-
tem that contains a sample point at the origin. These tests are
slightly more expensive than tests using explicit edge equations, so
edge precomputations in setup remain beneficial for larger microp-
olygons or high multi-sampling rates. NOMOTION also performs
backface culling in micropolygon setup. This check is inexpensive
compared to the cost of bounding and hit testing a micropolygon,
and it can eliminate half a scene’s hit testing work.

The size of a bounding box and, correspondingly, the STE of
NOMOTION, is sensitive to the area, aspect ratio, and orientation
of micropolygons. It is important for upstream tessellation systems
to generate “good” micropolygons to maximize STE. On average,
a quadrilateral fills the area of its bounding box better than a trian-
gle, so NOMOTION benefits from directly processing both triangle
and quadrilateral micropolygons. Tricky edge cases introduced by
quads, such as concave or bow-tie polygons, produce only sub-pixel
artifacts and can be treated with less rigor than when polygons are
large. We perform a point-in-quadrilateral test by splitting the quad
along the diagonal connecting vertices zero and two, then perform-
ing two point-in-triangle operations using five edge tests.
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Figure 3: Left: A polygon moving through (XY,T) space with linear
motion. Right: A simplified illustration showing only one spatial
dimension (X,T plane). Sample points are stratified in space and
time. Only points lying inside the shaded region result in hits.
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Figure 4: Testing all samples within the spatial bounding box of
a moving polygon results in low STE. Point in polygon tests are
performed against all samples in the orange region. Only three of
these samples (shown in red) are covered by the polygon.

3.2 5D Rasterization: Motion and Defocus Blur

The NOMOTION algorithm finds all samples in screen space (2D
XY space) that lie within a micropolygon. To render geometry with
motion blur, we must find all samples in a 3D (XY,T) space that lie
within the volume swept out by a moving polygon. Figure 3 vi-
sualizes a moving triangle in 3D (XY,T) space. A simplified view
showing only the X spatial dimension is shown at right in the figure.
The illustration shows the object’s motion in (X,T) space during an
exposure from t=0 to t=1. Samples within the shaded area (a total
of three) are covered by the polygon. That is, at the time value asso-
ciated with the sample, the micropolygon is covering the 2D screen
position of the sample. In general, rasterizing a defocused, motion
blurred polygon involves finding all samples in a 5D (XY,UV,T)
space that fall within the volume representing the blurred polygon.

If the object in Figure 3 were moving faster, the shaded region
would be more slanted, but the area of the region would remain
the same. Because the number of samples covered is proportional
to object area, the expected number of samples covered by a mov-
ing object is the same as if it was stationary (assuming its size does
not change greatly during motion). Thus, for motion blurred ras-
terization to achieve STE similar to the stationary case, it must test
approximately the same number of samples.

Recall that obtaining high STE for stationary polygons requires
computing a tight spatial bound. Previous work transfers this idea
to the 3D (XY,T) domain by bounding a triangle over an entire in-
terval of time using either an axis-aligned or an oriented bounding
box [Akenine-Möller et al. 2007]. All samples within the bound
are tested against the polygon, even if the object is at a distant lo-
cation at the time associated with a sample. Figure 4 highlights the
samples tested by this scheme in orange. Because a rapidly moving
polygon crosses a large region of space during the shutter inter-
val, this approach can result in a significant increase in total sample
tests. The problem is acute for micropolygons as even small object
motion is significant in relation to their area; it is not uncommon
for one-pixel micropolygons to move 30 pixels between frames.
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Figure 5: INTERVAL uniformly partitions time into intervals, then
bounds the spatial extent of the polygon in each interval. For
each of the four intervals shown above, sample points lying within
the time interval and within the polygon’s spatial extent are tested
against the polygon. Spatial bounds, Bi, are tight when a polygon
is moving slowly (A) but loosen as the amount of motion increases
(B). INTERVAL is most efficient for slow moving polygons.

3.2.1 Interval Method

An approach described by Pixar [Cook et al. 1990] leverages strat-
ified 5D sampling to quickly compute a tighter candidate sample
set. We describe this algorithm under conditions of only motion
blur (the (XY,T) case) before generalizing to full 5D rasterization.

Pixar’s approach generates a unique set of S stratified time values
for each region of space (the published embodiment generates S
stratified samples per pixel). Stratification partitions the time do-
main into S intervals. For each micropolygon, the algorithm iter-
ates over all intervals, computing the bounding box of the microp-
olygon for a given interval of time. Given this bound for each in-
terval, it tests only the samples that fall within the interval’s spatial
extent. There is exactly one such sample per pixel due to the strat-
ified nature of the samples. Because this algorithm iterates over
intervals of time (and, in the 5D case, intervals of time and lens
samples), we refer to it as INTERVAL. Pseudocode for INTERVAL is
given below:

for each STRATUM // S iterations
BBOX = compute mp pixel bbox given STRATUM
for each pixel P in BBOX

test mp against sample from STRATUM in P

The behavior of INTERVAL in the (X,T) plane is illustrated in Fig-
ure 5. INTERVAL’s STE depends on the spatial bound, Bi, of the
polygon over the time range associated with each stratum. There-
fore, STE depends on object velocity. When the polygon is moving
slowly (Figure 5A), INTERVAL yields high STE as the polygon can
be tightly localized in space (Bi’s are small). For a stationary ob-
ject, INTERVAL behaves similarly to NOMOTION. STE decreases
as object motion becomes large (Figure 5B). For example, an ob-
ject streaking across the screen can decrease the STE of INTER-
VAL sharply. Notice that the STE of INTERVAL not only depends
on the magnitude of motion, but its direction (horizontal or vertical
motion produce tighter bounds than diagonal motion).

INTERVAL extends gracefully to full 5D (XY,UV,T) rasterization
by pairing UV and T strata. When constructing the 5D position of
samples, INTERVAL always pairs values from the same UV stratum
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Figure 6: INTERLEAVEUVT performs a separate rasterization step
for each of N unique time values in the frame buffer (indicated by
horizontal dotted lines). The micropolygon’s position is determined
exactly at these times, so STE is independent of object velocity. Ap-
proximately the same number of tests are performed against the
slow (A) and fast (B) moving polygons. Solid lines in the figure
indicate interleaving tile boundaries.

with values from the same T stratum. The association of ranges in
T and UV can be constructed in any manner, but is the same for all
samples in the image. Because of this property, the range of sample
UV and T values for the current stratum (outer loop of algorithm)
is immediately computable given a stratum index. INTERVAL uses
these bounds on sample UV and T values to bound the polygon
spatially. It places no other constraints on the properties of UV and
T values used or on the location of XY samples.

3.2.2 Interleave UVT Method

There are two properties of INTERVAL we seek to improve. First,
we seek to increase efficiency under conditions of high motion and
defocus blur, especially at lower multi-sampling rates typical of in-
teractive graphics (4x-16x MSAA). Second, real-time systems ben-
efit from a predictable frame rate, so it is desirable to decrease the
sensitivity of rasterization performance to object velocity or defo-
cus blur (object velocity, in particular, is difficult for a game de-
signer to constrain).

Our solution achieves these goals using interleaved sam-
pling [Mitchell 1991; Keller and Heidrich 2001] in the UV and T di-
mensions. The key idea of this approach is that every image sample
point is assigned one of N unique UVT tuples uvti = (ui, vi, ti).
Following Keller and Heidrich [2001] we consider the image as a
grid of tiles each containing N sample points covering a Kx by Ky

region of the screen. Within a tile, each sample point is assigned a
unique tuple uvti. Thus, each of the N tuples is used exactly once
per tile and all samples located at ti in 5D space are also located
at ui and vi. We exploit this property of the interleaved sampling
pattern in the following algorithm for 5D rasterization (referred to
as INTERLEAVEUVT):

for each unique UVT tuple (ui,vi,it) // N iterations
MP_POSITION = compute mp position at ui,vi,ti
BBOX = compute tile-grid bbox from MP_POSITION
for each TILE in BBOX

test mp against 5D sample in TILE associated
with tuple (ui,vi,ti)

The behavior of INTERLEAVEUVT in the simplified (X,T) case is
illustrated in Figure 6. Notice that all image sample points are as-
signed one of only eight unique times (N=8). This assignment is

1x1 tile
N=16

2x2 tile
N=64

4x4 tile
N=256

8x8 tile
N=1024

Repeated
UVT Pattern

Permuted
UVT Pattern

Figure 7: Repeating the same pattern of UVT values over the im-
age results in sampling artifacts that become more noticeable with
increasing tile size (left column). We remove these artifacts by per-
muting the position of UVT values in each screen tile (right).

repeated every two units in space (Kx=2). For each unique time,
INTERLEAVEUVT computes the exact position of the micropolygon
at the time (this is not a bound over an interval of time) and deter-
mines polygon overlap with screen tiles (our implementation uses
axis-aligned bounding boxes to compute overlap with tiles). The
micropolygon is then tested against the one sample within each
overlapped tile that is located at the current time. This approach
is similar to the accumulation buffer [Haeberli and Akeley 1990],
except each accumulated image involves 1/N the samples of the
final rendered image.

The STE of INTERLEAVEUVT is independent of the motion or de-
focus blur of rasterized geometry. Any micropolygon, regardless of
whether it undergoes slow or fast motion, is tested against at least
N samples (outer loop of INTERLEAVEUVT involves N iterations).
In practice, a polygon will be tested against more than N samples
due to potential overlap of multiple tiles for each tuple. On average,
this overlap depends only on the size of the micropolygon and tiles.

The parameter N serves as a performance-quality knob for INTER-
LEAVEUVT. Large N yields potentially higher sampling quality
(more unique time and lens values are used) at the expense of
increased rasterization cost. Note that the spatial extent (Kx by
Ky) of tiles is fixed once a cost budget of N tuples and a desired
multi-sampling rate is selected. Said differently, for a given multi-
sampling rate, the STE of INTERLEAVEUVT is directly proportional
to the size of the interleaving tile.

We call attention to the relationship between INTERVAL’s per-strata
polygon spatial bounds (Bi in Figure 5) and INTERLEAVEUVT’s
tile size (Kx in Figure 6). Intuitively, the STE of INTERVAL and
INTERLEAVEUVT can be compared by comparing the average Bi

to Kx. For example, INTERLEAVEUVT is more efficient when the
tile size is small in comparison to the amount of polygon translation
over an interval of time. In practice, comparing Bi to Kx provides
only a coarse estimate of STE (and overall cost) because a poly-
gon may overlap multiple tiles. A detailed comparison of cost is
provided in Section 5.

3.2.3 Sample Permutations

Repeating a tile of UVT values across the image (as illustrated in
Figure 6) yields a sampling pattern where points assigned the same
UVT value form a regular grid in XY space. This regularity yields
sampling artifacts even if N is large enough to prevent strobing.
Figure 7 (middle column) shows artifacts resulting from repeating
1x1, 2x2, and 4x4, and 8x8 pixel tiles of across the image. Artifacts



from repeating the larger tile patterns are arguably more objection-
able because they are lower frequency.

We improve image quality without increasing N by varying the
XY position of a UVT tuple in each tile. Our approach permutes
the mapping of UVT values to tile-relative XY positions on a per
tile basis (we associate each tile with one of 64 precomputed per-
mutations). The permutations preserve stratification of UVT values
within each pixel. There remains exactly one sample per image tile
located at UV Ti, but these samples no longer form a regular grid
in the image.

The zoomed images in the right column of Figure 7 show the ef-
fect of these permutations. Although the same tile size and number
of UVT tuples is used, artifacts visible in the center column are
replaced by less objectionable noise. Our current implementation
permutes only the pixel offset of a UVT tuple within a tile (the same
subpixel offset is always used for each UV Ti). This simplification
produces satisfactory results, simplifies implementation, and per-
mits compact representation of permutations (a permutation for a
2x2 pixel tile is encoded using only four, four bit numbers). We
have not rigorously studied how to optimally construct mappings
of UVT values to XY positions.

4 Implementation

In this section we describe generic data-parallel implementations
of NOMOTION, INTERVAL, and INTERLEAVEUVT that are used
to evaluate performance in Section 5. We do not target any spe-
cific architecture with our implementations. Instead, we assume
an abstract set of data-parallel operations. In addition to standard
floating-point and integer operations, this set includes memory scat-
ters and gathers, and the ability to manipulate vector bit-masks.

Figure 8 formats pseudo-code for the three algorithms to highlight
important similarities in structure. Each algorithm (optionally) be-
gins with a small amount of per-micropolygon setup (Setup). All
algorithms then bound the micropolygon at various points in time
or aperture (Bound) and iterate over sets of samples within these
bounds (Test). When samples are covered by the micropolygon,
fragments are generated for downstream frame buffer processing
(ProcessHit). We focus only on the costs directly associated with
computing coverage and generating fragments and do not consider
the costs of frame buffer operations.

There are two sources of conditional control flow common to all
algorithms. First, iteration over candidate samples within a microp-
olygon bound depends on the micropolygon’s spatial extent. Sec-
ond, only samples covered by the micropolygon trigger fragment
processing. When STE is low (as is the case, in particular for the
full 5D algorithms), fragment processing will occur infrequently in
comparison to sample tests: an STE of 10% will lead to 10× as
many sample tests as generated fragments.

4.1 No Motion

A micropolygon covers only a few image sample points when ras-
terized with low multi-sampling. Therefore, there is insufficient
per-micropolygon sample testing work to utilize many parallel ex-
ecution units. There is, however, no shortage of micropolygons, so
we parallelize NOMOTION by operating on multiple micropolygons
in parallel. Our implementation takes parallelism along this axis to
its extreme. Given W data parallel execution units, we perform
the same operation simultaneously on W unique micropolygons.
This implementation does not perform work associated with a sin-
gle polygon in parallel so computing tight subpixel bounding boxes
(bounds are clamped to strata boundaries to maximize STE) does

not decrease available parallelism. Parallelizing across micropoly-
gons also results in a data-parallel implementation of setup.

Our parallelization scheme is susceptible to load imbalance across
execution units because the number of samples tested against each
micropolygon varies. Utilization during Test depends heavily on
the ability of upstream pipeline stages to tessellate surfaces into
micropolygons that are uniform in size and similar in orientation
and aspect ratio.

Parallelizing across micropolygons introduces a number of imple-
mentation costs not present in raster-stamp-based approaches. First,
in NOMOTION, fetching sample data requires a memory gather. In
contrast, sample data for a stamp is obtained using aligned loads.
Second, our scheme incurs increased memory footprint because
data for W micropolygons must be kept accessible at once. How-
ever, we assume micropolygon shading occurs prior to the rasteri-
zation stage of the pipeline, so we only require position and color
data at each vertex. Last, processing many micropolygons in par-
allel places a burden on downstream frame-buffer processing to re-
establish the required order of generated fragments. Our microp-
olygon rasterizer does not generate large blocks of logically inde-
pendent fragments. Fragments generated from micropolygons pro-
cessed in parallel are mixed in the output stream.

We compute fragment color and depth in ProcessHit via smooth
interpolation of per-vertex values. We have observed that when mi-
cropolygons are very small in size (near the Nyquist rate: 0.5 pixel
edge length), fragment color can be computed using flat shading
without producing visible artifacts. This optimization reduces the
cost of ProcessHit by 38% and reduces storage requirements for mi-
cropolygon data. The edges of micropolygons used in our render-
ings are approximately one pixel in length, so the results discussed
in Section 5 do not include this optimization.

4.2 Interval and Interleave UVT

INTERVAL and INTERLEAVEUVT test each micropolygon against a
large set of candidate samples due to the difficulty of tightly bound-
ing polygons in 5D space. As a result, unlike NOMOTION, many
candidate samples can be tested against a single moving or defo-
cused micropolygon in parallel.

INTERVAL’s outer loop over intervals and INTERLEAVEUVT ’s loop
over UVT tuples (highlighted in blue in Figure 8) do not involve
dynamic loop bounds. The number of intervals or UVT tuples is
a property of the sampling scheme, so the number of iterations
through these loops is micropolygon invariant. We select sampling
rates such that loop bounds (S or N ) are multiples of the data-
parallel width of the machine and parallelize across micropolygon-
sample coverage tests involving different intervals or UVT tuples.

Because the number of unique UVT tuples used by INTER-
LEAVEUVT is large (we use N=64 unique tuples in our final re-
sults), parallelization across tuples can make full use of many exe-
cution units while considering only a single micropolygon at a time.
Values of S used in practice are smaller, so we achieve wide data-
parallelism by running INTERVAL on a few micropolygons simulta-
neously when W < S. For example, to run INTERVAL with S=16
on a platform with 64 data-parallel execution units, we process four
micropolygons at a time.

In both algorithms, utilization during Test depends on the variance
of the dynamic loop bounds. For example, if all interval bound-
ing boxes contain the same number of samples, Test will run at full
utilization. The same result applies for INTERLEAVEUVT if the mi-
cropolygon overlaps the same number of tiles when positioned for
each UVT tuple. Utilization decreases with increasing Test loop



for each MP

   Backface cull              // 9 ops

   

   Compute MP bbox            // 29 ops

   for all samples in bbox

      Compute sample XY       // 29 ops

      

      Test MP-sample coverage // 24 ops

      If sample covered

        Interpolate color,Z   // 31 ops

        Push to fragment queue 

NoMotion (2D) Interval (5D) InterleaveUVT (5D)

Setup

Bound

Test

Process

Hit

for each MP

   Backface cull                 // 17 ops

   for each UVT tuple            // N iters

      Position MP given UVT      // 36 ops 

      Compute MP tile bbox       // 27 ops

      for all tiles in bbox 

         Compute sample XY       // 23 ops

         

         Test MP-sample coverage // 24 ops

         If sample covered

            Interpolate color,Z  // 31 ops

            Push to fragment queue

for each MP

   Backface cull                    // 17 ops                    

   for each interval                // S iters

      

      Compute MP bbox for interval  // 70 ops

      for all samples in interval bbox

         Compute sample XYUVT       // 33 ops

         Position MP given UVT      // 36 ops

         Test MP-sample coverage    // 24 ops

         If sample covered

            Interpolate color,Z     // 31 ops

            Push to fragment queue

Figure 8: Our three rasterization algorithms formatted to show similarities in structure. We parallelize execution over iterations of loops
highlighted in blue. Additional parallelization across micropolygons in INTERVAL occurs when there are fewer intervals than data-parallel
execution units. Dynamic control flow exists in loops over samples (Test) and due to conditional processing of sample hits (ProcessHit).

bound variance because units done with testing work wait idle until
the micropolygon with the most work finishes.

Operation counts for the INTERVAL and INTERLEAVEUVT algo-
rithms in Figure 8 correspond to our implementation in the full 5D
sampling case, where both motion blur and defocus blur effects are
produced. If only motion blur or defocus is desired, operations such
as backface culling or positioning the micropolygon at the UVT po-
sition of a sample can be simplified. For example, a micropolygon’s
normal is not affected by defocus approximations, so performing
backfacing checks on a defocus blurred micropolygon is the same
as for 2D rasterization. The normal of a motion blurred microp-
olygon may flip while the shutter is open, so motion blur requires
backfacing checks at both the beginning and end of the shutter in-
terval.

We compute a micropolygon’s position at a given time via linear
interpolation of positions at the start and end of the shutter inter-
val. In the full 5D sampling case, once the micropolygon has been
positioned for a given time, circle of confusion radii are computed
and its vertices are shifted according to the lens sample UV. When
motion is not present, the circle of confusion can be computed as
part of micropolygon setup and reused in each sample test.

5 Evaluation

We evaluate the rasterizer implementations presented in Section 4
in three primary areas. First, we characterize the overall cost of mi-
cropolygon rasterization as well as the breakdown of work among
the four algorithm “phases”. Second, we measure the impact of
conditional execution on utilization of data-parallel execution units.
Last, we measure the cost of enabling support for motion blur and
camera defocus by studying the relative performance of INTER-
VAL and INTERLEAVEUVT under varying amounts of scene motion
and defocus.

We perform experiments using the four animated scenes shown in
Figure 9. All animations contain motion blur and are rendered at
1728× 1080. TALKING also incorporates a defocus effect to draw
viewer attention to the character facing the camera (TALKING re-
quires full 5D sampling). Our rendering pipeline tessellates scene
geometry, represented as Catmull-Clark patches, into micropoly-
gons whose vertices are spaced by approximately one pixel on
screen. Shading is performed prior to rasterization, on 2D grids
of vertices similar to [Cook et al. 1987]. After shading, the raster-
izer receives a stream of triangle micropolygons. Two triangles are
created from the vertices forming each 2D grid cell, yielding trian-

25%

50%

No Multi-sampling 4x multi-sampling 16x multi-sampling

NoMotion: Sample Test E�ciency

Quad MP, 1x1 stamp Tri MP, 1x1 stamp 
Tri MP, 2x2 stamp Tri MP, 4x4 stamp Tri MP, 8x8 stamp

Figure 10: NOMOTION (grey and red bars) processes many mi-
cropolygons simultaneously but tests micropolygons against a sin-
gle sample at a time. Large raster stamps yield low STE.

gles that are, on average, 0.5 pixels in area. All experiments are
performed with backface culling enabled.

To conduct detailed analysis of algorithm performance, we created
a library of fixed-width data-parallel operations. Library instrumen-
tation counts the number of operations performed as well as the
utilization of execution units by each operation (utilization is de-
termined by explicitly-programmed masks). Using this library we
implement versions of each algorithm that utilize 8, 16, 32, and 64-
wide operations. In this evaluation, references to operation count
refer to 16-wide operations unless otherwise stated.

5.1 No Motion

Figure 10 quantifies the STE benefit of parallelizing rasterization
across micropolygons, rather than candidate samples for a single
polygon. Recall that NOMOTION effectively uses a raster stamp
size of one sample (1x1 stamp, red bars). When multi-sampling
is disabled, the screen area of this “stamp” is already larger than
a micropolygon (0.5 pixel area). Testing stamps of 4, 16, and 64
samples against a single micropolygon at once results in low STE,
as illustrated by the gold bars in the figure. In our scenes, raster-
izing micropolygons onto a 4x multi-sampled frame buffer (a com-
mon design point for modern GPUs) using an 8x8 sample stamp
results in 2% STE. In contrast, NOMOTION’s single sample stamp
yields 18% STE under this configuration (on average, a microp-
olygon bounding box covers approximately 11 sample strata). Al-
though NOMOTION’s STE for triangle micropolygons increases to
26% under 16x multi-sampling, we note that the STE of rasteriz-
ing micropolygons is fundamentally lower than when polygons are
large in size.



Figure 9: Animation sequences used in algorithm evaluation from left to right: BALLROLL, COLUMNPIVOT, TIGERJUMP, and TALKING.
All scenes feature motion blurred geometry. TALKING also features camera defocus and requires full 5D (XY,UV,T) rasterization.

Data-Parallel Execution Units
8 16 32 64

NO MULTI-SAMPLING

Bound .18 (.99) .16 (.98) .15 (.96) .14 (.94)
Test .67 (.77) .65 (.71) .64 (.65) .63 (.60)
Process .14 (.21) .18 (.15) .20 (.11) .22 (.09)

Overall Util .74 .66 .59 .54
Par Ops/MP 30.4 17.2 9.7 5.6

4X MULTI-SAMPLING

Bound .09 (.99) .08 (.98) .07 (.96) .07 (.94)
Test .69 (.80) .67 (.74) .66 (.67) .66 (.62)
Process .21 (.25) .25 (.19) .26 (.16) .27 (.14)

Overall Util .70 .62 .56 .51
Par Ops/MP 64.6 36.6 20.7 11.8

16X MULTI-SAMPLING

Bound .03 (.99) .03 (.98) .03 (.96) .03 (.94)
Test .71 (.83) .69 (.76) .69 (.69) .68 (.63)
Process .25 (.33) .27 (.27) .29 (.23) .29 (.20)

Overall Util .71 .63 .57 .52
Par Ops/MP 170.1 95.8 54.3 31.3

Table 1: Fraction of total execution time and data-parallel unit
utilization (in parentheses) of each stage of NOMOTION (Setup is
negligible and not shown). Even at low multi-sampling, over 65%
of operations are spent in Test. Average per-micropolygon cost (in
data-parallel ops) is provided for each configuration.

We can improve efficiency by rasterizing quadrilateral micropoly-
gon inputs in addition to triangles. The black bars in Figure 10 show
that STE can be as much as 2x greater when tessellated geometry
is provided directly to the rasterizer as a stream of quadrilateral
micropolygons. Quadrilateral primitives have twice the area of tri-
angles and yield better coverage of an axis-aligned bounding box.
Further, using quadrilateral micropolygons as a visibility primitive
decreases the number of primitives reaching the rasterizer (we do
not break cells of the tessellated grid into two triangles). We mea-
sure that directly rasterizing quadrilateral micropolygons decreases
overall rasterization cost by 20%.

Table 1 breaks down the cost of each phase of NOMOTION, aver-
aged over all scenes (Setup is omitted from the table as it consti-
tutes less than 1% of execution time in all cases). Separate results
for implementations using 8, 16, 32, and 64 data-parallel execu-
tion units are given. Even at low sampling rates, over 63% of ex-
ecution time is spent in Test. We find that variance in the amount
of testing work per micropolygon is low and that Test maintains
high utilization of many data-parallel execution units. In the com-
mon case of 4x multi-sampling, Test sustains approximately 80%
utilization when mapped onto eight data-parallel execution units.
Scaling the implementation eight-fold to 64 units results in only a
18% drop in utilization. We conclude that parallelizing rasteriza-
tion across micropolygons is not limited by variance in the amount
of work per polygon. Maintaining polygon state (despite compact
representation, 64 micropolygons require over 5 KB of storage), or

the complexity of processing fragments from many micropolygons
in subsequent frame buffer operations, are more likely to limit the
scalability of NOMOTION.

The average cost (in units of data-parallel operations) of rasterizing
a micropolygon using our implementation of NOMOTION is also
given in Table 1. Although our implementation can benefit signif-
icantly from further optimization, these costs indicate that microp-
olygon rasterization is expensive, even in the absence of camera
defocus and motion blur. For example, NOMOTION requires 11
billion 16-wide operations per second to rasterize ten million mi-
cropolygons (depth-complexity 2.5 rendering at 1728 × 1080 res-
olution) onto a 4x multi-sampled frame buffer at 30 Hz. We note
that this cost is equivalent to 11 Larrabee units [Seiler et al. 2008].
These costs strongly suggest a need for fixed-function hardware ac-
celeration.

5.2 Interval and Interleave UVT

The remainder of our evaluation focuses on rasterizing micropoly-
gons with motion blur and defocus. Estimating time and lens in-
tegrals via stochastic sampling requires high pixel sampling rates
to eliminate noise. Although the high super-sampling rates used in
offline cinematic rendering will remain out of reach for real-time
systems for some time, we have found that 16 samples per pixel
is sufficient to reduce noise (in our opinion) to visually acceptable
amounts. Further, our experiences indicate that only a small num-
ber of UVT tuples are necessary for INTERLEAVEUVT to generate
compelling animations. In general, we are satisfied with INTER-
LEAVEUVT’s output using 16x multi-sampling, and 64 unique UVT
tuples (N=64, 2x2 pixel tile size). In this section, references to IN-
TERLEAVEUVT imply N=64 unless otherwise stated. At these low
sampling levels, artifacts such as temporal aliasing and noise are
not fully eliminated from rendered output. We refer the reader to
this paper’s accompanying video to compare the output quality of
various sampling configurations.

Switching rasterizer implementations from NOMOTION to INTER-
VAL or INTERLEAVEUVT has inherent cost, even when all scene
geometry is stationary and in sharp focus. Recall from Figure 10
that NOMOTION yields 26% STE when rendering the test scenes at
16x multi-sampling. We temporarily disable object movement and
defocus blur in the test scenes 9, making the visual output of all
algorithms the same. Under these conditions, we find that INTER-
VAL’s STE (10%) is twice as high as INTERLEAVEUVT’s (5%), but
less than half that of NOMOTION (26%). Simply enabling support
for motion and defocus blur decreases STE by 2.6x. INTERVAL’s
STE is approximately equal to that of the 4x4 raster stamp in Fig-
ure 10 (a 4x4 sample stamp spans a 16x multi-sampled pixel in area,
thus its bound as tight as the pixel bounds computed by INTER-
VAL). The overall cost of INTERVAL is 3.1x greater than NOMO-
TION. This difference is greater than the relative difference in STE
because sample tests in the (XY,T) or full (XY,UV,T) sampling case
cost more.



Rasterization Cost: Animations
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Figure 11: INTERVAL exhibits significant variation in rasteriza-
tion cost (measured in data parallel operations). In the TIGER-
JUMP animation sequence, INTERVAL’s per-micropolygon rasteri-
zation cost varies by nearly 4x over just 45 frames of animation.
INTERLEAVEUVT’s cost is significantly less dependent on amount
of scene motion or defocus.

5.2.1 Animated Scene Costs

As stated in Section 3.2, as scene motion or defocus increases, we
expect relative performance of INTERLEAVEUVT to improve with
respect to INTERVAL. In Figure 11, we compare algorithm perfor-
mance rendering each animation sequence at 1728 × 1080 resolu-
tion. We simulate a camera shutter that remains open for 1/48 of a
second (a common exposure setting for film cameras).

As expected, INTERVAL’s performance fluctuates more widely over
the sequences than that of INTERLEAVEUVT. Even within a short
sequence such as TIGERJUMP (1.5 sec), the performance of INTER-
VAL varies as much as 4x. The performance of INTERLEAVEUVT is
not constant, but varies much less dramatically. We find that IN-
TERLEAVEUVT’s STE is nearly uniform over the sequences, and
attribute variation in operation-count to two causes. First, INTER-
LEAVEUVT’s utilization of parallel execution units increases mod-
erately at low amounts of blur (this effect is discussed further in the
next section). Second, under conditions of fast motion, we backface
cull fewer micropolygons (polygons that begin the shutter interval
back facing but flip as a result of motion cannot be culled) resulting
in increased average per-micropolygon cost.

From our animations we conclude that object motion must be very
fast (quickly moving hands in conversation, a camera jerk, an ath-
letic jump) to equate algorithm performance. Although INTER-
VAL may introduce variation in rasterization costs, these costs are
often lower than those of INTERLEAVEUVT. However, when defo-
cus is present, INTERLEAVEUVT outperforms INTERVAL. The dif-
ference in cost can be extreme. For example, INTERLEAVEUVT is
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Figure 12: INTERVAL’s STE (and performance) drops as motion
blur (top) and defocus blur (bottom) increase. At high motion,
but only small defocus, INTERVAL’s performance drops below that
of INTERLEAVEUVT. INTERLEAVEUVT’s parameter N determines
where the performance crossover point lies.

7x faster than INTERVAL when rendering TALKING.

5.2.2 Controlled Study

To gain further insight into the amount of blur required to equate IN-
TERVAL and INTERLEAVEUVT performance, we construct a scene
containing randomly positioned and randomly oriented triangle mi-
cropolygons of exactly 0.5 pixels in area. We measure the STE and
per-micropolygon operation-count of both algorithms as the magni-
tude of micropolygon motion (Figure 12-top) or defocus blur (Fig-
ure 12-bottom) is steadily increased.

The results in Figure 12 are consistent with results from our anima-
tion scenes. The y-intercept of the STE curves is similar to the 5%
and 10% STE measured when rendering animation scenes without
scene movement and in sharp focus. In this controlled setup, we
find that between 21 and 40 pixels of motion blur are required to
equate INTERVAL’s STE with that of INTERLEAVEUVT. This cor-
responds to fast object motion (an object motion crossing 40 pixels
in 1/48 of a second will cross a 1728×1080 screen in 0.9 seconds).

INTERLEAVEUVT obtains the same STE as INTERVAL when a mi-
cropolygon’s defocus blur radius is only two pixels. At high screen
resolutions, modest camera defocus yields a blur radius signifi-
cantly larger than this amount. Under these conditions, the cost of
INTERVAL increases greatly. With only ten pixels of defocus blur,
INTERLEAVEUVT can utilize 256 unique lens samples and still pro-
vide greater performance. This explains the extreme difference in
algorithm cost in TALKING.



Data Parallel Execution Units
8 16 32 64

INTERVAL

Setup .01 (.12) .02 (.06) .02 (.06) .02 (.06)
Bound .05 (1.0) .05 (1.0) .05 (1.0) .04 (.99)
Test .88 (.84) .85 (.82) .82 (.79) .79 (.77)
Process .05 (.15) .08 (.09) .11 (.06) .15 (.04)

Overall Util .80 .75 .70 .66
INTERLEAVEUVT N=64
Setup .02 (.12) .03 (.06) .05 (.03) .09 (.02)
Bound .24 (1.0) .22 (1.0) .20 (1.0) .17 (1.0)
Test .66 (.66) .63 (.62) .59 (.59) .54 (.57)
Process .08 (.15) .12 (.08) .16 (.05) .20 (.04)

Overall Util .69 .62 .56 .49
INTERLEAVEUVT N=256
Setup .01 (.12) .01 (.06) .02 (.03) .03 (.02)
Bound .34 (1.0) .32 (1.0) .28 (1.0) .24 (1.0)
Test .62 (.68) .62 (.63) .62 (.55) .61 (.50)
Process .03 (.13) .05 (.07) .08 (.04) .12 (.02)

Overall Util .77 .71 .62 .55

Table 2: Fraction of total execution time and data-parallel unit
utilization (in parentheses) of each stage of INTERVAL and INTER-
LEAVEUVT (N=64 and N=256 configurations shown).

Figure 12’s STE and operation-count curves differ in two notable
ways. First, the INTERVAL-INTERLEAVEUVT crossover points shift
upward when operation-count is considered (between 38 and 60
pixels of motion blur is necessary to equate algorithm cost). This
is primarily due to higher utilization of data-parallel execution by
INTERVAL. Second, notice that for smaller amounts of blur, IN-
TERLEAVEUVT’s STE curves are flat, but its operation-count curves
are not. This effect is also due to utilization. When a microp-
olygon is not blurred, it has the same tile bounds for all UVT tu-
ples; iteration in Test exhibits perfect utilization. As the polygon
is blurred, variance in tile bounds increases, dropping utilization.
Utilization stabilizes once blur becomes large with respect to the
INTERLEAVEUVT tile size. This effect is partially responsible for
the dips in the INTERLEAVEUVT curves in Figure 11.

5.2.3 Utilization

Table 2 provides detailed execution statistics for each phase of IN-
TERVAL and INTERLEAVEUVT. As done in our NOMOTION analy-
sis, we average statistics over a collection of frames from our ani-
mation scenes and provide results for implementations using 8, 16,
32, and 64 execution units.

Both INTERVAL and INTERLEAVEUVT realize lower STE than
NOMOTION and correspondingly spend an even higher fraction of
time performing sample tests (note that since positioning the mi-
cropolygon is hoisted out of the inner loop of INTERLEAVEUVT,
much of the time spent in Bound can be considered “testing” work).
INTERVAL’s Test phase constitutes over 79% of execution time and
maintains over 77% utilization when scaling to 64 execution units.
Dividing UVT-space into equal intervals yields similarly sized spa-
tial bounds for each interval, resulting in low variance in the num-
ber of iterations through the inner Test loop. Recall that scaling
INTERVAL to many execution units requires several micropolygons
to be processed at once. Micropolygons reaching the rasterizer in
succession typically originate from the same region of a tessellated
surface and undergo similar motion.

INTERLEAVEUVT achieves lower utilization in these critical re-
gions because there is higher variance in micropolygon-tile over-

lap than in the size of INTERVAL’s bounding boxes. Still, INTER-
LEAVEUVT remains amenable to wide data-parallel scale out. Al-
though INTERLEAVEUVT does not fully utilize eight execution units
(64%), its utilization drops off less than 4% each time the number
of execution units is doubled. INTERLEAVEUVT spends a larger
fraction of time in Bound, which always runs at full utilization. As
a result, further optimization to increase utilization of Test, such
as aggregating work into batches, will yield a performance benefit
of at most 37%. We implemented (but do not report on) a more
complex version of INTERLEAVEUVT that gains testing efficiency
through these optimizations.

This analysis has focused on rasterization of triangle micropoly-
gons to a 16x multi-sampled frame buffer. We have conducted sim-
ilar studies of INTERVAL and INTERLEAVEUVT using variations in
micropolygon area and sampling rate, and using quadrilaterals in-
stead of triangles. While changing the INTERLEAVEUVT tile size
or number of intervals used by INTERVAL has notable impacts on
STE, we observe the data-parallel execution characteristics of each
of these variations to be very similar to the results presented here.

6 Discussion

We have studied micropolygon rasterization with a focus on high-
throughput, data-parallel implementation. We have shown that
when rasterizing non-blurred micropolygons, many micropolygons
must be processed simultaneously to efficiently utilize data-parallel
processing (NOMOTION). We have provided an implementation of
Pixar’s INTERVAL algorithm that scales to wide data-parallel pro-
cessing. Last, we have applied interleaved sampling to provide
a data-parallel algorithm, INTERLEAVEUVT, whose performance,
relative to our implementation of Pixar’s algorithm, varies from less
than half (in cases of minimal blur: small motion and no defocus)
to greater than seven times (in cases of significant blur: large mo-
tion or almost any camera defocus). Given these properties, a mi-
cropolygon rendering system would benefit substantially from the
ability to dynamically switch between these two approaches.

Although micropolygon rasterization makes good use of data-
parallel processing resources, it still entails extremely high cost.
NOMOTION will require hundreds of giga-operations per second to
rasterize complex scenes at real-time rates. In terms of sample test
efficiency, both INTERVAL and INTERLEAVEUVT are inefficient.
Most of the sample tests performed by these algorithms do not re-
sult in fragments. Although the computational horsepower avail-
able to software is growing rapidly, real-time systems that adopt mi-
cropolygons as a fundamental rendering primitive should strongly
consider fixed-function processing to accelerate rasterization work.

We have not studied the extent to which micropolygons place new
demands on frame-buffer processing. Micropolygon rasterization
generates fragments at fine granularity (it does not yield pixel quads
or large stamps of hits) and, when motion and defocus blur are en-
abled, these fragments might be distributed widely across the frame
buffer. An important area of future work investigates the efficiency
of frame-buffer operations in a micropolygon system.

The ultimate goal of our research is the design of an efficient mi-
cropolygon rendering pipeline for real time rendering. We expect
both large polygons and micropolygons to be common in future
scenes, thus our approach seeks to evolve (not replace) the exist-
ing graphics pipeline abstraction and its corresponding implemen-
tations. Rasterization algorithms constitute only one aspect of this
evolution. Ongoing work considers pipeline interface modifications
for motion blur and defocus and addresses the challenges of adap-
tive tessellation and micropolygon shading.

Last, we observe that micropolygons, motion blur, and camera de-



focus establish a compelling context within which the trade-offs of
computing visibility using rasterization or ray tracing should be re-
examined. Optimizations to support motion and defocus blurred
micropolygons require considerable re-design of current rasteriza-
tion systems. We are interested to understand the extent to which a
high-throughput ray tracer must evolve under these conditions.
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