Space-Time Tracking

 

Lorenzo Torresani, Christoph Bregler


Presented at the
European Conference on Computer Vision 2002

 

 


Abstract

We propose a new tracking technique that is able to capture non-rigid motion by exploiting a space-time rank constraint. Most tracking methods use a prior model in order to deal with challenging local features. The model usually has to be trained on carefully handlabeled example data before the tracking algorithm can be used. Our new model-free tracking technique can overcome such limitations. This can be achieved in redefining the problem. Instead of first training a model and then tracking the model parameters, we are able to derive trajectory constraints first, and then estimate the model. This reduces the search space significantly and allows for a better feature disambiguation that would not be possible with traditional trackers. We demonstrate that sampling in the trajectory space, instead of in the space of shape configurations, allows us to track challenging footage without use of prior models.

 

 


ltorresa@cs.stanford.edu