
PointRight: A System for Pointer/Keyboard Redirection Among
Multiple Displays and Machines

Brad Johanson, Greg Hutchins, Terry Winograd
Stanford University

Gates 3B-376
Serra Mall

Stanford, CA 94305-9035
{bjohanso,gmh,winograd}@graphics.stanford.edu

ABSTRACT

As hardware becomes cheaper, rooms with many large
displays become practical. The machines driving the
displays need to run standard operating systems in order for
legacy applications to be used. Getting keyboard and
mouse input to all the screens in the room creates
complexity and potential confusion—although it is possible
to have multiple wired or wireless keyboards and mice, it
becomes confusing to know which one to use. PointRight
is a software system that allows pointer and mouse control
to be smoothly switched among displays. A single free-
floating mouse and keyboard can be used to control
multiple screens. When the cursor reaches the edge of a
screen it seamlessly moves to the adjacent screen and
keyboard control is simultaneously redirected to that
machine. Laptops may also redirect their keyboard and
pointing device, and multiple pointers are supported
simultaneously. The system automatically reconfigures
itself as displays go on or off or change the machine they
are currently displaying.

KEYWORDS: Mouse control, Pointer redirection, Large
displays, shared display groupware, interactive workspaces.

INTRODUCTION

The Interactive Workspaces Project at Stanford [2] is
experimenting with an environment containing multiple
large simultaneously visible displays (Figure 1). Each
display is driven by a projector that has several possible
machines as sources. A drop cable allows display to any of
the screens from a laptop. The machines all run standard
Windows operating systems, to allow the use of legacy
applications. The three side screens are touch sensitive.

Our goal is to allow a user to control all of the machines
that display to the screens in the room in an intuitive
fashion. For example, if something is on the touch screen
the user should be able to interact with it by touch,
independently of the machine being displayed.

SmartBoard
One

SmartBoard
Two

SmartBoard
Three

Figure 1 - Pointer Transition Paths Between Screens

The PointRight system allows a free-floating wireless
mouse and keyboard to control all visible screens. The
wireless mouse controls a cursor on one screen at a time.
Going off the edge of the screen takes it to the next
adjacent screen, if there is one. This "pointer space" of
adjacent screens functions similarly to a large virtual
desktop except that each display is a different machine.
Touch screens automatically re-route themselves to the
displaying computer, and laptop users can redirect their
keyboard and pointer into the pointer space. The
functionality is accomplished by installing a client on all
machines that can receive pointer and keyboard events, and
a server on those that can generate them.

RELATED WORK

In addition to the obvious solution of a separate input
device for each screen, there are several other solutions to
the problem of controlling multiple machines Keyboard-
Video-Mouse switches allow several machines to be
controlled with one keyboard and mouse in a modal fashion
(the user must perform explicit switching actions and
remember the current mapping).

Apple has supported multiple display desktops from one
machine for many years, and Microsoft Windows now
supports this as well. VNC [6] and similar commercial
products allow keyboard and mouse re-routing from one
machine to another along with mirroring the remote
display. The Pebbles system [4] and other CSCW systems
allow multiple-mice controlled by PDAs (in the case of
Pebbles) simultaneously on a single machine, but don’t
support transferring control between many adjacent
screens. Rekimoto in [5] has shown an augmented desktop

where a laptop mouse can drag items on and off a top
projected table display.

POINTRIGHT FUNCTION

With PointRight, user-controlled pointers move seamlessly
across screen boundaries in a pointer space according to an
adjacency map, as illustrated in Figure 1. Pointer and
keyboard events go to the machine that is currently the
source of that display. If a display is off or not running the
PointRight software, the pointer skips over that display. In
order to avoid losing track of the cursor, a special larger
moving cursor is displayed when the mouse is wiggled.

Touch screens are also automatically re-routed, sending
input to whatever machine is displaying, rather than the one
to which the touch screen hardware is connected. Client-
side mapping compensates for screen-resolution differences
among machines. Any laptop running the PointRight
Software can also become the controller for any machine,
in the same mode as the shared wireless mouse.

The system supports an arbitrary number of pointers at
once, including those redirected from laptops. It currently
does not attempt to resolve actions by multiple pointers on
one screen (as addressed in [4]), allowing the operating
system to intermix mouse events as they arrive. Since we
set cursor position as absolutes, when multiple people move
control pointers on one screen at the same time, they see
ghosts of each cursor as the cursors are drawn in a round
robin fashion.

POINTRIGHT MECHANICS

There is a client for each machine that receives pointer and
mouse input, and a server for each machine that can act as a
source. Clients listen for absolute coordinate pointer events
that they convert to local screen coordinates and then
submit to the local event queue. Each server maintains a
database of the display topology and a current position of
their pointer. The database contains information about the
screens and machines in the space and their current
connections and is used by servers to determine which
machine should receive the events. Since the database is
per server, each pointer can potentially apply to different
sets of screens and different interconnection topologies.

Each server sends events to the current target screen over a
direct connection formed the first time the server has an
event for that source. The local databases track state by
receiving configuration update events through the Event
Heap [2]. These events come from PointRight clients
saying their machine is on or off, from projector
controllers, and from laptops indicating that they are
available to be connected to displays in the room.

The system currently works with Windows 9x/NT/2000 in
both client and server mode, and in Linux in server mode

DISCUSSION

PointRight provides flexible layout. Screens need not be
tiled on a plane—note that in Figure 1 the left side of the
table display connects to the bottom of the front display.
The layout can be changed dynamically through the use of
database update events.

The system is in active use for meetings in our Interactive
Room. Its simplicity seems quite intuitive—on several
occasions we have come across groups using the
PointRight mouse and keyboard without any training.
Future plans include control of mouse acceleration across
the different servers and machines in a uniform manner and
convenient specification of configurations.

ACKNOWLEDGEMENTS

The Interactive Workspaces project is the result of efforts
by many students; see [2] for an exhaustive list and more
complete project information. Thanks to Bryn Forbes, and
Rito Trevino in particular, who helped figure out how to tap
into the Windows and Linux mouse and keyboard event
systems. Thanks to Susan Shepard for her help making the
video and keeping the iRoom stable enough to develop in.
The work described here is supported by DoE grant
B504665, and by donations of equipment and software
from Intel Corp., InFocus, IBM Corp. and Microsoft Corp.

REFERENCES

[1] Fox, A., Johanson, B., Hanrahan, P., Winograd, T.,
“PDAs in Interactive Workspaces,” Computer
Graphics and Animation, May, 2000.

[2] Interactive Workspaces Project at Stanford University,
http://graphics.stanford.edu/projects/iwork. See also
http://graphics.stanford.edu/projects/iwork/pointright.

[3] Johanson, B., Fox, A., Hanrahan, P., Winograd, T.,
“The Event Heap: An Enabling Infrastructure for
Interactive Workspaces”, submitted to UIST’2000, San
Diego, CA, USA, 2000.

[4] Brad A. Myers, Herb Stiel, and Robert Gargiulo.
"Collaboration Using Multiple PDAs Connected to a
PC." Proceedings CSCW'98: ACM Conference on
Computer-Supported Cooperative Work, November
14-18, 1998, Seattle, WA. pp. 285-294.

[5] Rekimoto, J. "Augmented Surfaces: A Spatially
Continuous Work Space for Hybrid Computing
Environments." CHI'99, pp. 378-385.

[6] Richardson, Tristan, Quentin Stafford-Fraser, Kenneth
R. Wood & Andy Hopper, "Virtual Network
Computing", IEEE Internet Computing , Vol.2 No.1,
Jan/Feb 1998 pp33-38.

