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Abstract
Pomegranate is a parallel hardware architecture for polygon ren-
dering that provides scalable input bandwidth, triangle rate, pixel
rate, texture memory and display bandwidth while maintaining
an immediate-mode interface. The basic unit of scalability is a
single graphics pipeline, and up to 64 such units may be com-
bined. Pomegranate’s scalability is achieved with a novel “sort-
everywhere” architecture that distributes work in a balanced fash-
ion at every stage of the pipeline, keeping the amount of work per-
formed by each pipeline uniform as the system scales. Because of
the balanced distribution, a scalable network based on high-speed
point-to-point links can be used for communicating between the
pipelines.

Pomegranate uses the network to load balance triangle and frag-
ment work independently, to provide a shared texture memory and
to provide a scalable display system. The architecture provides one
interface per pipeline for issuing ordered, immediate-mode render-
ing commands and supports a parallel API that allows multiproces-
sor applications to exactly order drawing commands from each in-
terface. A detailed hardware simulation demonstrates performance
on next-generation workloads. Pomegranate operates at 87–99%
parallel efficiency with 64 pipelines, for a simulated performance
of up to 1.10 billion triangles per second and 21.8 billion pixels per
second.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Parallel Processing

Keywords: Graphics Hardware, Parallel Computing

1 Introduction
The performance of interactive graphics architectures has been im-
proving at phenomenal rates over the past few decades. Not only
have the speed improvements kept up with or exceeded Moore’s
Law, but each successive generation of graphics architecture has
expanded the feature set. Despite these great improvements, many
applications cannot run at interactive rates on modern hardware.
Examples include scientific visualization of large data sets, photo-
realistic rendering, low-latency virtual reality, and large-scale dis-
play systems. A primary goal in graphics research is finding ways
to push this performance envelope, from the details of the chip ar-
chitecture to the overall system architecture.

The past few years have also marked a turning point in the his-
tory of computer graphics. Two decades ago, interactive 3D graph-
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Figure 1: Each Pomegranate pipeline is composed of five
stages: geometry (Geom), rasterization (Rast), texture (Tex),
fragment (Frag) and display (Disp). A network (Net) con-
nects the pipelines and a sequencer (Seq) orders their execu-
tion of multiple graphics streams submitted by the application
threads (App).

ics systems were found only at large institutions. As semiconductor
technologies improved, graphics architects found innovative ways
to place more functionality on fewer chips, and interactive graphics
workstations made their way to the desktops of engineers. Today,
the entire graphics pipeline can be placed on a single chip and sold
at a mass-market price point. Because of the enormous economies
of scale afforded by commoditization, this trend has a significant
impact on how high-end systems must be built: it is much more
cost effective to design a single low-end, high-volume system and
replicate it in an efficient manner in order to create high-end, low-
volume systems. For example, supercomputers used to be designed
with unique, proprietary architectures and esoteric technologies.
With the commoditization of microprocessors, these designs were
replaced by highly parallel multiprocessor systems that made use
of microprocessor technology. The Pomegranate architecture pro-
vides a way of scaling the base unit of a single graphics pipeline to
create higher performance systems.

Pomegranate is composed of n graphics pipelines interconnected
by a scalable point-to-point network, as depicted in figure 1. Each
pipeline accepts standard, immediate-mode OpenGL commands
from a single context as well as parallel API commands for ordering
the drawing commands of the context with the drawing commands
of other contexts. As with any parallel system, Pomegranate will
only operate efficiently if the load is balanced across its functional
units. However, graphics primitives can vary substantially in the
amount of processing time they require. Furthermore, the amount
of work a primitive will require is not known a priori. Distribut-
ing and balancing this workload in a dynamic fashion while min-
imizing work replication is a key innovation of the Pomegranate
architecture and directly contributes to its scalability. A novel se-
rial ordering mechanism is used to maintain the order specified by
the OpenGL command stream, and a novel parallel ordering mech-
anism is used to interleave the work of multiple graphics contexts.
Because the use of broadcast communication is minimized in both
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Figure 2: The serial graphics pipeline consists of an applica-
tion (A), a geometry processor (G), a rasterizer (R), a texture
processor (T), a fragment processor (F) and a display pro-
cessor (D). The units with a direct impact on each scalability
measure are underlined.

the data distribution and the ordering, Pomegranate is able to scale
to a high degree of parallelism.

In addition to scalability, an equally important characteristic of
the Pomegranate architecture is its compatibility with a modern
graphics API. OpenGL has strict ordering semantics, meaning that
all graphics commands must appear to execute in the order they
are specified. For example, two overlapping polygons must appear
on the screen in the order they were submitted by the user, and a
state change command applies to all subsequent primitives. This
constraint forces any parallel OpenGL hardware architecture to be
capable of maintaining the serial order specified by the application.
This restriction is one of the major obstacles to building a scalable
OpenGL hardware renderer. As an analogy, C has become the de
facto standard for programming, and as a result microprocessor ar-
chitects focus the bulk of their efforts addressing the difficulties it
introduces — pointer aliasing, limited instruction-level parallelism,
strict order of operations, etc. Similarly, we felt it was important
to design within the ordering constraints of OpenGL. In addition to
specifying ordered semantics, OpenGL is an immediate-mode in-
terface. Commands that are submitted by the application are drawn
more or less immediately thereafter. APIs that are built around dis-
play lists, scene graphs, or frame semantics all provide the oppor-
tunity for the hardware to gather up a large number of commands
and partition them among its parallel units. An immediate-mode in-
terface does not enable this approach to extracting parallelism, and
thus provides a further challenge.

A fully scalable graphics architecture should provide scalability
on the five key metrics depicted in figure 2: input rate, triangle rate,
rasterization rate, texture memory and display bandwidth.

• Input rate is the rate at which the application can transmit
commands (and thus primitives) to the hardware.

• Triangle rate is the rate at which geometric primitives are as-
sembled, transformed, lit, clipped and set up for rasterization.

• Pixel rate is the rate at which the rasterizer samples primi-
tives into fragments, the texture processor textures the frag-
ments and the fragment processor merges the resultant frag-
ments into the framebuffer.

• Texture memory is the amount of memory available to unique
textures.

• Display bandwidth is the bandwidth available to transmit the
framebuffer contents to one or more displays.

Pomegranate provides near-linear scalability in all five metrics
while maintaining an ordered, immediate-mode API.

We motivate our discussion of Pomegranate by suggesting two
possible implementations: a scalable graphics pipeline and a multi-
pipeline chip. A scalable graphics pipeline could be flexibly de-
ployed at many levels of parallelism, from a single pipeline solu-
tion with performance comparable to a modern graphics accelerator
up to a 64 pipeline accelerator with “supercomputer” performance.
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Figure 3: Sort-first (a) sorts triangles before the geometry
stage. Sort-middle (b) sorts triangles between geometry and
rasterization. Sort-last fragment (c) sorts fragments between
rasterization and fragment processing. Sort-last image (d)
sorts pixels between fragment processing and the display. The
texture stage has been eliminated in this diagram, but in prac-
tice will either be located at the end of the rasterization stage
or the beginning of the fragment stage.

The incremental cost of the Pomegranate pipeline over a traditional
graphics pipeline is the area required for approximately 1MB of
buffering, 256KB for supporting 64 contexts, and the area and pins
of a high-speed network interface. We estimate that the incremen-
tal cost of the Pomegranate pipeline is an additional 200 pins and
50mm2 for memory in a modern 0.18µm process. A network chip,
replicated as necessary to interconnect all of the pipelines, would
weigh in at approximately 1000 pins, which is feasible. Our second
possible implementation is a single chip with multiple Pomegranate
pipelines. In such a chip the Pomegranate architecture would be
leveraged as a practical method for using the hundreds of millions
of transistors which will soon be practical in even a consumer-level
graphics accelerator. Current graphics accelerators already stretch
the capabilities of VLSI tools and engineers with their size and
complexity. Pomegranate would enable the design of a compara-
tively smaller pipeline which could then be replicated to consume
the available transistor count, rather than requiring the design of a
huge monolithic pipeline.

In this paper, we will first briefly review previous work in par-
allel graphics architectures. Then, we will give an overview of the
Pomegranate architecture and the details of its key components, de-
scribing how work is distributed in a balanced way at each stage of
the pipeline to give scalable performance in each of the five metrics.
Next, we describe the serial ordering algorithm that maintains the
serial order mandated by a single OpenGL context as well as a par-
allel ordering algorithm that interleaves work according to the order
specified by a parallel API. Finally, we present results from a de-
tailed hardware simulation that demonstrates Pomegranate’s scala-
bility and compares it to traditional parallel graphics architectures.

2 Background
2.1 Parallel Graphics Architectures
There are a number of published systems that use parallelism to
achieve high performance levels. How this parallelism is organized
has a direct effect on the scalability of these architectures. Mol-
nar et al. describe a taxonomy for classifying parallel rendering
architectures as sort-first, sort-middle or sort-last based on where
they transition from object-space parallelism to screen-space par-
allelism [9]. A variation of this taxonomy is illustrated in figure 3.
All of these architectures typically exploit parallelism at each of the
geometry, rasterization and fragment stages, either in object-space
(assigning work by primitive) or in screen-space (assigning work
by screen location). Historically, while addressing scalable triangle



rate and pixel rate, most architectures have used a single host inter-
face, replicated texture memory across the rasterizers, and shared
a single bus for display, all of which eventually limit the system’s
capabilities.

In a sort-first architecture, the screen is subdivided so that each
graphics pipeline is responsible for a fraction of the pixels. The
application processor distributes primitives only to the overlap-
ping pipelines. Because the overlap computation can be time-
consuming, it is usually amortized over groups of primitives. The
primary advantage of this technique is its ability to use relatively
standard graphics pipelines as its building block, with only glue
logic for the display, and a straightforward mechanism of provid-
ing ordering. A major challenge of sort-first architectures has been
the load balancing of both triangle work and pixel work. One
scheme is to dynamically subdivide the screen into a small num-
ber of large tiles [12]. These schemes typically require a retained-
mode interface with frame semantics so that each tile comprises
an equal amount of work, and finding an efficient, accurate esti-
mator of work is challenging. Another scheme is to subdivide the
screen into a large number of small regions and either statically or
dynamically assign the regions. While such schemes work with
immediate-mode interfaces, minimizing overlap while balancing
the load across a wide variety of workloads is difficult.

As with sort-first architectures, sort-middle architectures exploit
image parallelism by dividing responsibility for primitive rasteri-
zation and fragment processing in image-space. However, any ge-
ometry unit is allowed to process any primitive. Thus, a sort must
occur between the geometry units and the rasterizers, which are re-
sponsible for specific areas of the screen. Generally, the partitioning
of the screen has been done on a very fine granularity. For exam-
ple, 2-pixel wide stripes are used on the SGI Infinite Reality [11]
to ensure a good load balance of pixel work across all rasterizers.
While providing excellent load balancing of pixel work, these small
tiles impose a high cost in redundant triangle work because every
triangle is assumed to overlap every tile. This broadcast of triangle
work sets an upper limit on the triangle rate the system can sustain.
However, this broadcast mechanism does provide a natural point
to return the primitives processed by the parallel geometry stage to
their specified serial order. Larger tiles have been used to remove
this broadcast limitation at the cost of large reorder buffers [7].
Minimizing redundant work due to primitives overlapping multi-
ple tiles while efficiently addressing the temporal load imbalances
of an immediate-mode API is a major challenge for these systems.

Unlike the sort-first and sort-middle architectures, sort-last ar-
chitectures exploit object parallelism in both the geometry and ras-
terization stages. In fragment sorting architectures, any primitive
may be given to any geometry unit, and each geometry unit dis-
tributes its work to a single rasterization unit. The rasterization
units then distribute the resultant fragments to the specific fragment
processor responsible for the corresponding region of the screen.
Because each fragment is communicated only once from a single
rasterizer to a single fragment processor, no broadcast is involved.
The Evans & Sutherland Freedom 3000 [1] and the Kubota De-
nali [2] are both examples of fragment sorting architectures. The
advantage of these architectures is that they potentially have greater
triangle scalability than sort-middle since each triangle is processed
by only one geometry and rasterization unit. However, even though
a fine image-space interleaving ensures load balancing at the frag-
ment processors, there is little or no flexibility to load balance ras-
terization work. If a few large primitives are submitted, they may
push the system significantly out of balance as one or a few ras-
terizers are given much more work to do than the other rasterizers.
This is problematic since primitive sizes are not known a priori.

A second variation of sort-last architectures are image compo-
sition architectures such as PixelFlow [10]. Multiple independent
graphics pipelines render a fraction of the scene into independent
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Figure 4: The scene to be rendered consists of 1000 opaque
primitives and 1000 transparent primitives. The opaque primi-
tives are rendered with depth buffering enabled, and the trans-
parent primitives are rendered in back to front order. The
pseudocode uses two contexts to submit this scene in parallel.
The first barrier ensures that the clear performed by context
A is complete before context B starts drawing. The second
barrier ensures that all the opaque primitives are drawn before
any transparent primitives. The semaphore pair ensures that
context A’s half of the transparent primitives are drawn first.
The final barrier ensures that all drawing is done before the
swapbuffers occurs.

framebuffers. Then, these framebuffers are composited based on
color and depth to form a final image for display. Image composi-
tion architectures are a significant departure from the architectures
discussed so far because they forfeit ordering altogether in order
to scale to higher levels of performance. As with fragment sort-
ing architectures, large primitives can cause significant load imbal-
ance in image composition architectures. Furthermore, while the
displays on the previous architectures could be made scalable using
approaches similar to Pomegranate, image composition displays are
difficult to scale robustly.

2.2 Parallel Interface
While building internally parallel graphics hardware is challeng-
ing in its own right, recent graphics accelerators outstrip the abil-
ity of the host interface to supply them with data (e.g. NVIDIA’s
GeForce256). Igehy et al. introduced a parallel API for graphics
to address this bandwidth limitation [7]. The parallel API extends
OpenGL with synchronization primitives that express ordering re-
lationships between two or more graphics contexts that simultane-
ously submit commands to the hardware. The significance of these
primitives is that they do not execute at the application level, which
allows the application threads to execute past the synchronization
primitives and continue submitting work. These synchronization
commands are then later executed by the graphics system. This al-
lows the programmer to order the execution of the various contexts
without being reduced to using a serial interface. The primitives we
focus our attention on are barriers and semaphores.

A barrier synchronizes the execution of multiple graphics con-
texts, ensuring that all of the commands executed by any of the
contexts previous to the barrier have completed before any of the
commands subsequent to the barrier have any effect. A barrier
is defined with glBarrierCreate (name, count), which as-
sociates a graphics barrier that has count contexts participating
in it with name. A graphics context enters a barrier by calling
glBarrierExec (name). A semaphore provides a point-to-point
ordering constraint, and acts as a shared counter. A semaphore “V”
(or up) operation atomically increments the counter. A semaphore
“P” (or down) operation blocks until the counter is greater than
zero, and then atomically decrements the counter. A semaphore
is defined with glSemaphoreCreate (name, initialCount), V’d
by glSemaphoreV (name) and P’d by glSemaphoreP (name).
Figure 4 provides an example of the use of these primitives.
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Figure 5: The Pomegranate pipeline. The bandwidth require-
ments of the communication channels are labeled.

3 Pomegranate Architecture
The Pomegranate architecture is composed of graphics pipelines
and a high-speed network which connects them. The pipeline,
shown in figure 5, is composed of five stages: geometry, raster-
ization, texture, fragment and display. The geometry stage re-
ceives commands from an application; transforms, lights and clips
the primitives; and sends screen-space primitives to the rasterizer.
The rasterizer performs rasterization setup on these primitives, and
scan converts them into untextured fragments. The texturer ap-
plies texture to the resultant fragments. The fragment processor
receives textured fragments from the texturer and merges them with
the framebuffer. The display processor reads pixels from the frag-
ment processor and sends them to a display. The network allows
each pipeline of the architecture to communicate with all the other
pipelines at every stage. For example, each geometry processor can
distribute its transformed primitives over all the rasterizers.

Pomegranate achieves its scalability through a combination of
a parallel host interface and multiple types of communication be-
tween the functional units.

• Each geometry unit has a host interface that may receive
graphics commands simultaneously and independently. Or-
dering constraints between different graphics contexts may be
specified by parallel API commands. This provides scalabil-
ity of input rate. Because the geometry unit is limited by the
interface speed, there is no purpose in distributing commands
from a single interface across multiple geometry units. The
application must therefore provide a balanced number of tri-
angles to each interface. This provides scalability of triangle
rate.

• A virtual network port allows each geometry unit to transmit
screen-space primitives to any rasterizer. There is no con-
straint on this mapping, thus allowing the geometry units to
load balance triangle work among rasterizers. This provides
scalability of triangle rate.

• The sequencer, shared among all pipelines, determines the in-
terleaving of the execution of the primitives emitted by each
geometry unit. It allows multiple contexts to simultaneously
submit commands to the hardware and to have their order of
execution described by the parallel API. This provides scala-
bility of input rate.

• Each rasterizer scan converts screen-space triangles into un-
textured fragments, and then passes them to the texturer where
they are textured. The geometry units may load balance the
amount of pixel work sent to each rasterizer in addition to the
number of triangles. The geometry units may also subdivide
large triangles so that their work is distributed over all the ras-
terizers. This provides scalability of pixel rate.

• Textures are distributed in a shared fashion among the pipeline
memories, and each texture processor has a network port for
reading and writing of remote textures. This provides scala-
bility of texture memory.

• Each texture processor has a network port that enables it to
route its resultant fragments to the appropriate fragment pro-
cessor according to screen-space location. This sorting stage
performs the object-space to image-space sort, and allows
the unconstrained distribution of triangles between the geom-
etry and rasterization stages that balances object-space par-
allelism. Fine interleaving of the fragment processors load
balances screen-space parallelism and provides scalability in
pixel rate.

• Each display unit has a network port that allows it to read
pixels from all of the fragment processors and output them to
its display. This provides scalability of display bandwidth.

The Pomegranate architecture faces the same implementation
challenges as other parallel graphics hardware: load balancing and
ordering. Load balancing issues arise every time that work is dis-
tributed. The four main distributions of work are: primitives to
rasterizers by the geometry processors; remote texture memory ac-
cesses by the texturers; fragments to fragment processors by the
texturers; and pixel requests to the fragment processors by the dis-
play engine. Additionally a balanced number of primitives must be
provided to each geometry processor, but that is the responsibility
of the application programmer.

Two distinct ordering issues arise in Pomegranate. First, the
primitives of a single graphics context will be distributed twice, first
over the rasterizers, and then over the fragment processors. This
double distribution results in the work for a single context arriv-
ing out of order at the fragment processors, where it must be re-
ordered. Second, each serial graphics context will execute its own
commands in order, but it must in turn be interleaved with the other
graphics contexts to provide parallel execution in accordance with
any parallel API commands. In this section, we discuss in detail
the different stages of the pipeline and their mechanisms for load
balancing, and defer the discussion of maintaining a correct serial
and parallel order and the associated sequencer unit until later.

3.1 Network
Central to the Pomegranate architecture is a scalable network that
supports the balanced distribution of work necessary for load bal-
ancing and the synchronization communication necessary for or-
dering. We chose to implement the network as a multi-stage butter-
fly, depicted in figure 6. A discussion of other candidate networks
is beyond this paper, and readers are encouraged to see the text
by Duato, Yalmanchili and Ni [4] for a deeper discussion of high-
performance scalable interconnects.
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Figure 6: The butterfly network is composed of a single build-
ing block (a) which may be cascaded into a multi-stage net-
work to support an arbitrary number of inputs (b & c), with a
number of stages that grows logarithmically with the number
of inputs.

Networks, and butterflies in particular, are notorious for suffer-
ing severe performance penalties under imbalanced loads and in-
creasing latency with increasing utilization. Pomegranate’s net-
work usage is engineered to be both uniform and latency tolerant to
avoid these problems. For example, in an n-pipeline system, a ge-
ometry unit will send 1/nth of its triangles to each rasterizer. This
distribution pattern occurs similarly during texture, fragment and
display communication, and is balanced over very fine time scales.
Furthermore, the algorithms used in Pomegranate are designed to
be able to tolerate latency through the use of buffering.

At the heart of a butterfly network is a k × k switch (k = 2 for
figure 6). Every cycle, this switch is able to read a single quan-
tum of data (a flit) from each of its input channels and write a flit
to each of its output channels. Internally, the switch must arbitrate
its outputs according to the requests of incoming packets, which
are composed of multiple flits. Channels are virtualized to provide
multiple virtual channels per physical channel to increase the likeli-
hood that an output channel will have a packet that needs it on every
cycle [3]. Virtual channels are critical to large butterfly networks as
they increase bandwidth efficiency from the range of 25% to over
75%.

In order to scale a butterfly network beyond the k inputs and out-
puts of a single switch, an additional stage of switches is introduced.
The first stage routes based on the most significant digits of the des-
tination address, and the second stage routes based on the least sig-
nificant digits. An n-interface network may be constructed using
log k n stages of n/k switches. As the number of interfaces in-
creases the aggregate bandwidth available increases linearly, while
the cost increases as n logk n.

The multiple networks of figure 5 are actually virtualized ports
within a single unified network. Two messages from the same
source to the same destination, e.g. geometry processor 0 to ras-
terizer 3, are guaranteed to arrive in order, but no other ordering
guarantees are made by the network. A unified network allows the
network to be used efficiently for all types of traffic, rather than
having some networks left idle while other networks are overloaded
with traffic. In order to support the expected workload and network
inefficiencies, each channel runs at 10 GB/sec. Each channel is 32
bits wide and operates at 2.5 GHz. Each 160-bit flit in our system is
transferred over 5 32-bit clocks, and thus the switching logic runs at
500 MHz. We use 4 × 4 switches and 16 virtual channels per physi-
cal channel, each capable of buffering 16 flits. Ignoring contention,
each hop through a switch imposes 8 flits of latency. Packets are
constrained to be an integral number of flits, with a 24 bit header in
the first flit, which imposes a small overhead.

3.2 Geometry
The geometry unit consists of a DMA engine, a transform and light-
ing engine, a clip processor and a distribution processor. Each ge-
ometry unit supports a single hardware context, although the con-
text may be virtualized.

• The DMA engine is responsible for transferring blocks of
commands across the host interface and transferring them to
the transform and lighting engine. In our model the host in-
terface bandwidth is 1 GB/sec. This is representative of AGP
4x, a current graphics interface.

• The transform and lighting (T&L) engine is a vertex parallel
vector processor. It transforms, culls and lights the primitives.
Clipping is not performed in the T&L engine because it in-
troduces a potentially large number of new vertices and cor-
responding primitives which must be correctly ordered in the
primitive stream. Deferring this generally infrequent opera-
tion to a dedicated clip processor greatly simplifies the T&L
engine. The T&L engine has a maximum performance of 20
million transformed and lit vertices per second.

• The clip processor performs geometric clipping for any prim-
itives that intersect a clipping plane. Computation of the clip
state for each vertex is performed by the T&L engine, so the
clip processor’s fast path has no computation. After geomet-
ric clipping, the clip processor subdivides large primitives into
multiple smaller primitives by specifying the primitives mul-
tiple times with different rasterization bounding boxes. This
subdivision ensures that the work of rasterizing a large tri-
angle can be distributed over all rasterizers. Large primi-
tives are detected by the signed area computation of back-face
culling and subdivided according to a primitive-aligned 64 ×
64 stamp.

• The distribution processor distributes the clipped and subdi-
vided primitives to the rasterizers. This is Pomegranate’s first
“sort” . Because the rasterizers are primitive parallel (object-
space parallel) rather than fragment parallel (image-space par-
allel), the distribution processor has the freedom to distribute
primitives as it sees fit.

The distribution processors transmit individual vertexes with
meshing information over the network to the rasterizers. A vertex
with 3D texture coordinates is 228 bits plus 60 bits for a description
of the primitive it is associated with and its rasterization bounding
box, resulting in 320 bit (2 flit) vertex packets. At 20 Mvert/sec,
each distribution processor generates 0.8 GB/sec of network traf-
fic. The distribution processor generates additional network traffic
in two cases. First, large primitives are subdivided to ensure that
they present a balanced load to all the rasterizers. In such a case the
additional network traffic is unimportant, as the system will be ras-
terization limited. Second, commands that modify rasterizer state
(e.g. the texture environment) must be broadcast to all the rasteriz-
ers.

The distribution processor governs its distribution of work under
conflicting goals. It would like to give the maximum number of
sequential triangles to a single rasterizer to minimize the transmis-
sion of mesh vertexes multiple times and to maximize the texture
cache efficiency of the rasterizer’s associated texture processor. At
the same time it must minimize the number of triangles and frag-
ments given to each rasterizer to load balance the network and allow
the reordering algorithm, which relies on buffering proportional to
the granularity of distribution decisions, to be practical. The dis-
tribution processor balances these goals by maintaining a count of
the number of primitives and an estimate of the number of frag-
ments sent to the current rasterizer. When either of these counts



exceeds a limit, the distribution processor starts sending primitives
to a new rasterizer. While the choice of the next rasterizer to use
could be based on feedback from the rasterizers, a simple round-
robin mechanism with a triangle limit of 16 and a fragment limit of
4096 has proven effective in practice. When triangles are small, and
thus each rasterizer gets very few fragments, performance is geom-
etry limited and the resulting inefficiencies at the texture cache are
unimportant. Similarly, when triangles are large, and each rasterizer
gets few triangles, or perhaps even only a piece of a very large tri-
angle, the performance is rasterization limited and the inefficiency
of transmitting each vertex multiple times is inconsequential.

3.3 Rasterizer
The rasterizer scan converts triangles, as well as points and lines,
into a stream of fragments with color, depth and texture coordi-
nates. The rasterizer emits 2 × 2 fragment “quads” at 100 MHz
and requires 3 cycles for triangle setup, for a peak fill rate of 400
Mpixel/sec. Partially covered quads can reduce the rasterizer’s effi-
ciency to 100 Mpixel/sec in the worst case. We achieve 1.34 to 3.95
fragments per quad for the scenes in this paper. Each rasterizer re-
ceives primitives from all the geometry processors and receives ex-
ecution order instructions from the sequencer (see section 4). Each
of the geometry units maintains its own context, and thus each ras-
terizer maintains n contexts, one per geometry processor. The frag-
ment quads emitted by the rasterizer are in turn textured by the tex-
ture processor.

3.4 Texture
The texture stage consists of two units, the texture processor which
textures the stream of quads generated by the rasterizer, and the
texture access unit which handles texture reads and writes. The
input to the rasterization stage has already been load balanced by
the distribution processors in the geometry stage, so each texture
processor will receive a balanced number of fragments to texture.

In order to provide a scalable texture memory, textures are dis-
tributed over all the pipeline memories in the system. Igehy et
al. have demonstrated a prefetching texture cache architecture that
can tolerate the high and variable amount of latency that a system
with remote texture accesses, such as Pomegranate, is likely to in-
cur [6]. Igehy et al. subsequently showed that this cache architec-
ture could be used very effectively under many parallel rasteriza-
tion schemes, including an object-space parallel rasterizer similar
to Pomegranate [5]. Based on these results, we distribute our tex-
tures according to 4 × 4 texel blocks. Texture cache misses to a
non-local memory are routed over the network to the texture access
unit of the appropriate pipeline. The texture access unit reads the
requested data and returns it to the texture processor, again over
the network. A texture cache miss requires that a 160-bit texture
request be sent over the network, which will be followed by a 640-
bit reply, for a total of 800 bits of network traffic per 16 texels, or
6.25 bytes per texel. If we assume 1–2 texels of memory bandwidth
per fragment, our rasterizer requires 4–8 bytes of texture memory
bandwidth and 6.25–12.5 bytes of network bandwidth per fragment.
At 400 Mpixel/sec, this becomes 1.6–3.2 GB/sec of memory band-
width and 2.5–5 GB/sec of network bandwidth.

After texturing the fragments, the texture processor routes the
fragment quads to the appropriate fragment processors. The frag-
ment processors finely interleave responsibility for pixel quads on
the screen. Thus, while the texture engine has no choice in where
it routes fragment quads, the load it presents to the network and
all of the fragment processors will be very well balanced. A quad
packet contains 4 fragment colors, 4 corresponding sample masks,
the depth of the lower-left fragment, the depth slopes in x and y
and the location of the quad on the screen. This representation en-
codes a quad in 241 bits, or 320 bits (2 flits) on the network. Due to
network packet size constraints, this is only twice the size of an in-
dividually encoded fragment, which is transmitted as 1 flit. At 100

Mquad/sec, the texture processor sends 4 GB/sec of traffic to the
fragment processors. Just as the distribution processor broadcasts
rasterization state changes to the rasterizers, the texture processor
must also broadcast fragment processor state changes.

3.5 Fragment
The fragment stage of the pipeline consists of the fragment proces-
sor itself and its attached memory system. The fragment processor
receives fragment quads from the texture processor and performs all
the per-fragment operations of the OpenGL pipeline, such as depth-
buffering and blending. The memory system attached to each frag-
ment processor is used to store the subset of the framebuffer and
the texture data owned by this pipeline.

The use of fragment quads, in addition to reducing network
bandwidth, allows efficient access to the memory system by group-
ing reads and writes into 16-byte transactions. Each pixel quad is
organized by pixel component rather than by pixel, so, for example,
all of the depth components are contiguous and may be accessed in
a single transaction. This improves Pomegranate’s efficiency in the
peak performance case of fully covered fragment quads, and when
fragment quads are only partially covered Pomegranate is already
running beneath peak pixel rates, so the loss of memory efficiency
is not as important.

The memory system provides 6.4 GB/sec of memory bandwidth.
At 400 Mpixel/sec and 8 to 12 bytes per pixel (a depth read, depth
write, and color write), fragment processing utilizes 3.2 to 4.8
GB/sec. When combined with texture accesses of 1.6 to 3.2 GB/sec
and display accesses of 0.5 GB/sec, the memory system bandwidth
is overcommitted. Memory access is given preferentially to the dis-
play processor, since it must always be serviced, then to the frag-
ment processor, because it must make forward progress for the tex-
ture processor to continue making forward progress, and finally the
texture access unit. The majority of our results are not memory
access limited.

Pomegranate statically interleaves the framebuffer at a fragment
quad granularity across all of the fragment processors. This image-
space parallel approach has the advantage of providing a near per-
fect load balance for most inputs. As with the rasterizers, the frag-
ment processors maintain the state of n hardware contexts. While
the rasterizers will see work for a single context from any particu-
lar geometry unit, the fragment processor will see work for a single
context from all the texture processors because the geometry stage’s
distribution processor distributes work for a single context over all
the rasterizers.

3.6 Display
The display processor is responsible for retrieving pixels from the
distributed framebuffer memory and outputting them to a display.
Each pipeline’s display processor is capable of driving a single dis-
play. The display processor sends pipelined requests for pixel data
to all of the fragment processors, which in turn send back strips of
non-adjacent pixels. The display processor reassembles these into
horizontal strips for display. Unlike the use of the network every-
where else in Pomegranate, the display system is very sensitive to
latency — if pixels arrive late, gaps will appear in the displayed im-
age. We address this issue with a combination of buffering, which
enables the display processor to read ahead several scanlines, and
a priority channel in the network. Dally has shown that a bounded
percentage of the traffic on a network can be made high priority
and delivered with guaranteed latency [3]. At a display resolution
of 1920 × 1280 and a 72 Hz refresh rate, the display bandwidth is
0.5 GB/sec, 5% of Pomegranate’s per-pipeline bandwidth.

4 Ordering
Ordered execution of the application command stream must be
maintained everywhere its effects are visible to the user. The work
distribution algorithms described in the previous section explain
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After rasterizing primitive 1, rasterizer 0 broadcast a NextR
to all the fragment processors, announcing that they should
now process fragments from rasterizer 1. The texture proces-
sors have been omitted for clarity.

how the Pomegranate architecture scales performance, but the con-
straint of ordering was ignored. By far the most prevalent place
this constraint is exposed is the OpenGL API itself, which is state-
ful. For example, a glBlendFunc command modifies the blend-
ing state for all subsequent primitives and no previous primitives.
Second, many commands (i.e. points, lines, triangles) modify the
contents of the framebuffer, and these modifications must occur in
order at each pixel. Finally, changes to the texture memory must be
ordered.

Pomegranate faces two distinct ordering issues. First, the com-
mands for a single context are distributed over all the rasterizers,
which in turn distribute their fragments over all the fragment pro-
cessors. This double sort means that the original order of the com-
mand stream must be communicated to the fragment processors to
allow them to merge the fragments in the correct order. Second,
the operations of different contexts must be interleaved in a manner
that observes constraints specified by the parallel API.

4.1 Serial Ordering
The key observation to implementing ordering within a single con-
text is that every place work is distributed, the ordering of that work
must be distributed as well. The first distribution of work is per-
formed by the distribution processor, which distributes blocks of
primitives over the rasterizers. Every time it stops sending primi-
tives to the current rasterizer and starts sending primitives to a new
rasterizer it emits a NextR command to the current rasterizer, an-
nouncing where it will send subsequent primitives. Figure 7 shows
the operation of this mechanism. These NextR commands provide
a linked list of the primitive order across the rasterizers. The ras-
terizers in turn broadcast the NextR commands to all the fragment
processors. Each rasterizer has dedicated command buffering for
each geometry unit, so that the commands from different geometry
units may be distinguished.

The fragment processors each have dedicated buffering for re-
ceiving commands from each of the rasterizers, as illustrated in fig-
ure 8. Each fragment processor processes commands from a single

rasterizer at a time. When a fragment processor receives a NextR
command, it ceases listening to the current rasterizer and starts lis-
tening to the specified next rasterizer. This is analogous to follow-
ing the linked list of NextR commands emitted by the distribution
processor. While a fragment processor will only ever process com-
mands from a single rasterizer at any point in time, all of the raster-
izers can continue to make forward progress and transmit fragments
to the fragment processors where they will be buffered.

The Pomegranate architecture is designed with the expectation
that the same parts which construct the base units are repeated to
create larger, more powerful systems. As part of this assumption,
the amount of buffering at the input of each fragment processor is
fixed. However, this buffering is always divided evenly among all
the rasterizers, so as the number of pipelines increases the buffering
available per rasterizer at each fragment processor shrinks. How-
ever, the increase in the number of pipelines matches this decrease,
and the total amount of buffering per rasterizer across all fragment
processors remains constant.

The amount of traffic generated by NextR commands from a
geometry unit to a rasterizer is limited. When the scene is triangle
limited, one single-flit NextR packet is sent to a rasterizer for ev-
ery 16 two-flit vertex packets sent to a rasterizer. This represents an
overhead of approximately 3%, which remains constant as the sys-
tem scales. The NextR messages from the rasterizers to the frag-
ment processors, on the other hand, represent a potential broadcast
in the system because each rasterizer must broadcast each NextR it
receives to all the fragment processors. Fortunately, this broadcast
may be avoided by employing a lazy algorithm. Because NextR
commands take only a few bits to encode, we can include space for
a potential NextR command in every fragment quad without in-
creasing its size in network flits. Because the fragment processors
have very finely interleaved responsibility for quads on the screen,
chances are that a fragment quad will be sent to the fragment pro-
cessor shortly after the NextR command is observed by the raster-
izer. A timeout ensures that a NextR command that is waiting to
piggyback on a fragment quad is not excessively delayed, prompt-
ing the rasterizer to send as many outstanding NextR commands
as possible in a single network packet.

In general, the fragment processors operate independently, each
processing fragments at its own rate. The exception is when
a command observes or modifies shared state beyond that on a
single fragment processor, the fragment processors must be syn-
chronized. Pomegranate uses an internal fragment barrier com-
mand, BarrierF, to support this synchronization. For example,
glFinish has an implementation similar to this pseudocode:

glFinish( ) {
BarrierF
hardware writeback to device driver

}

The BarrierF ensures that all previous operations by this con-
text are complete before the writeback signaling completion of the
glFinish occurs.

A similar issue arises at the rasterizers. If a command modifies
the current texture state, which is shared among the multiple raster-
izers, it must be executed in the correct serial order with respect to
the other commands from that context. Pomegranate enforces this
constraint with an internal BarrierR command which forces all
of the rasterizers to synchronize. A texture modification command
can be bracketed between BarrierR commands and thus be made
atomic within the hardware. For example, glTexImage2D has an
implementation similar to this pseudocode:

glTexImage2D( ) {
BarrierR
texture download



BarrierR
}

The initial BarrierR ensures that all previous commands for this
context are complete on all rasterizers before the texture download
starts so that the new texture does not appear on any previous prim-
itives. The final BarrierR ensures no subsequent commands for
this context are executed on any rasterizer before the texture down-
load completes so that the old texture does not appear on any sub-
sequent primitives.

4.2 Parallel Ordering
The internal hardware commands NextR, BarrierR and
BarrierF suffice to support serial ordering semantics. The exten-
sion of the hardware interface to a parallel API requires additional
support. The parallel API requires that some or all of the graph-
ics resources must be virtualized, and more importantly, subject to
preemption and context switching. Imagine an application of n+1
graphics contexts running on a system that supports only n simul-
taneous contexts. If a graphics barrier is executed by these n + 1
contexts, at least one of the n running contexts must be swapped
out to allow the n + 1th context to run. Furthermore, the parallel
API introduces the possibility of deadlock. Imagine an incorrectly
written graphics application that executes a glSemaphoreP that
never receives a corresponding glSemaphoreV. At the very least,
the system should be able to preempt the deadlocked graphics con-
text and reclaim those resources. Resolving the preemption prob-
lem was one of the most difficult challenges of the Pomegranate
architecture.

One solution to the preemption problem is the ability to read
back all of the state of a hardware context and then restart the con-
text at a later time. Although this may seem straightforward, it is
a daunting task. Because a context may block at any time, the pre-
empted state of the hardware is complicated by partially processed
commands and large partially-filled FIFOs. As a point of compari-
son, microprocessor preemption, which has a much more coherent
architecture compared to a graphics system, is generally viewed by
computer architects as a great complication in high-performance
microprocessors.

A second approach to the preemption problem is to resolve the
API commands in software, using the preemption resources of the
microprocessor. With this approach, even though ordering con-
straints may be specified to the hardware, every piece of work spec-
ified has been guaranteed by the software to eventually execute.
Figure 9 illustrates this approach. Each graphics context has an
associated submit thread that is responsible for resolving the paral-
lel API primitives. The application thread communicates with the
submit thread via a FIFO, passing pointers to blocks of OpenGL
commands and directly passing synchronization primitives. If the
submit thread sees a pointer to a block of OpenGL commands, it
passes this directly to the hardware. If the submit thread sees a
parallel API command, it actually executes the command, possi-
bly blocking until the synchronization is resolved. This allows the
application thread to continue submitting OpenGL commands to
the FIFO beyond a blocked parallel API command. In addition to
executing the parallel API command, the submit thread passes the
hardware a sequencing command that maintains the order resolved
by the execution of the parallel API command. The important part
of this hardware sequencing command is that even though an order-
ing is specified, the commands are guaranteed to be able to drain:
the hardware sequencing command for a glSemaphorePwill not
be submitted until the hardware sequencing command for the corre-
sponding glSemaphoreV is submitted. Thus, a blocked context
is blocked entirely in software, and software context switching and
resource reclamation may occur.

In order to keep hardware from constraining the total number
of barriers and semaphores available to a programmer, the inter-
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Figure 9: Each graphics context has an associated submit
thread which is responsible for resolving the parallel API
primitives. In this figure submit thread 0 is blocked waiting
to resolve a semaphore P that will be released by context 1.
Both application threads are continuing to submit work, and
the hardware is continuing to consume work.

nal hardware sequencing mechanism is based on a single sequence
number per hardware context. Upon executing a glSemaphoreV
operation, the submit thread increments the hardware context’s
sequence number by one to indicate a new ordering boundary,
annotates the semaphore with a (ctx, seq) pair and issues an
AdvanceContext (ctx, seq) command to the hardware. Upon
completing the glSemaphoreP operation, the signaled submit
thread removes the corresponding (ctx , seq) annotation from the
semaphore and issues a AwaitContext (ctx, seq) command to
the hardware. A similar mechanism is used to implement barriers.1

The sequence numbers are associated with a particular hardware
context, not with a virtual graphics context, and when a context
switch occurs, it is not reset. This allows us to express dependen-
cies for contexts that have been switched out of the hardware, and
thus execute an n + 1 context barrier on n context hardware.

Given the AdvanceContext/ AwaitContext commands
for expressing ordering constraints among contexts, Pomegranate
now needs a way of acting on these constraints. The sequencer unit
provides a central point for resolving these ordering constraints and
scheduling the hardware. The distribution processors at the end of
the geometry stage, each of which is dedicated to a single hard-
ware context, inform the sequencer when they have work available
to be run and what ordering constraints apply to that work. The
sequencer then chooses a particular order in which to process work
from the various contexts and broadcasts this sequence to all of
the rasterizers, which, along with all the subsequent stages of the
pipeline, are shared among all the contexts.

Whenever a distribution processor starts emitting primitives, it
sends a Start command to the sequencer to indicate that it has
work available to be scheduled. In addition, the distribution proces-
sor transmits all AdvanceContext and AwaitContext com-
mands for its context to the sequencer, which in turn enforces the
ordering relationships expressed by these commands when making
its scheduling decisions. The counterpart of the Start command
is the Yield command which the distribution processors broadcast
to all the rasterizers at the end of a block of work. When a raster-
izer encounters a Yield it reads the next execute command from
the sequencer and starts executing that context. The Yield com-

1The first n − 1 submit threads to arrive at the barrier execute an
AdvanceContext to create a sequence point and block. The last context
to arrive at the barrier executes an AwaitContext on the previous n − 1
contexts, an AdvanceContext to create its own sequence point and then
unblocks the waiting contexts. The n−1 waiting contexts then each execute
an AwaitContext on the nth context’s just created sequence point, for a
total of n AdvanceContexts and n AwaitContexts.



scene March Nurbs Tex3D
input 4003 volume 1632 patches, 2563 volume

8 passes
output 2.5K × 2K 2.5K × 2K 1K × 1K
triangles 1.53M 6.68M 512
fragments 10.4M 5.81M 92.5M

Table 1: Benchmark scenes.

mand provides context switching points to support ordering and to
allow the pipelines to be shared. First, if a context waits on an-
other context, it must then yield to allow the rasterizers to work
on other contexts, which will eventually allow this context to run
again. Second, a context must occasionally yield voluntarily, to al-
low the hardware to be shared among all the contexts so that a single
context does not unfairly monopolize the machine. The frequency
of these yields is determined by the relationship of the triangle rate
of the geometry units to the command buffering provided at each
rasterizer. In our implementation, a context yields once it has sent
one NextR command to each rasterizer. Because the sequencer is
decoupled from the rasterizers, it will make scheduling decisions
as far in advance as it can, limited only by the available informa-
tion from the distribution processors and the available buffering for
execution commands at the rasterizers.

5 Results
We have implemented an OpenGL software device driver and hard-
ware simulator to verify our architecture. Our system supports all
of the major functionality of OpenGL.

The Pomegranate hardware is modeled under an event-driven
simulator. The simulator is composed of multiple independent
threads of execution which communicate with each other via
events. Threads advance events and await on events to coordinate
their execution. The simulator provides a shared global knowledge
of time, so threads may both wait for other threads to complete a
task, as well as simply wait for time to pass, to model clock cycles,
etc. The simulator is non-preemptive and a particular thread of ex-
ecution only ceases execution when it explicitly waits for time to
pass or waits on a semaphore.

Our simulator masquerades as the system OpenGL dynamic li-
brary on Microsoft Windows NT and SGI IRIX operating systems.
Application parallelism is supported through additional functions
exported by our OpenGL library that allow the creation of user
threads within our simulator. This simulation methodology allows
us to deterministically simulate Pomegranate, which aids both de-
bugging and analysis of performance. In particular, performance
problems can be iteratively analyzed by enabling more and more
instrumentation in different areas of the hardware, with the confi-
dence that subsequent runs will behave identically.

We analyzed Pomegranate’s performance with three applica-
tions, shown in table 1. The first, March, is a parallel implementa-
tion of marching cubes [8]. The second, Nurbs, is a parallel patch
evaluator and renderer. The final, Tex3D, is a 3D texture volume
renderer.

• March extracts and draws an isosurface from a volume data
set. The volume is subdivided into 123 voxel subcubes that
are processed in parallel by multiple application threads. Each
subcube is drawn in back to front order, allowing the use of
transparency to reveal the internal structure of the volume.
The parallel API is used to order the subcubes generated by

entries bytes/entry bytes
Primitive 4096 120 480K
Texture 256 72 18K
Fragment 16384 32 512K

Table 2: Total FIFO sizes for each of functional unit. The
FIFO size is listed as the total number of commands it can
contain.

each thread in back to front order. Note that while March
requires a back to front ordering, there are no constraints be-
tween cubes which do not occlude each other, so substantial
inter-context parallelism remains for the hardware.

• Nurbs uses multiple application threads to subdivide a set of
patches and submit them to the hardware. We have artificially
chosen to make Nurbs a totally ordered application in order
to stress the parallel API. Such a total order could be used to
support transparency. Each patch is preceded by a semaphore
P and followed by a semaphore V to totally order it within the
work submitted by all the threads. Multiple passes over the
data simulate a multipass rendering algorithm.

• Tex3D is a 3D texture volume renderer. Tex3D draws a set
of back to front slices through the volume along the viewing
axis. Tex3D represents a serial application with very high fill
rate demands and low geometry demands, and it is an example
of a serial application that can successfully drive the hardware
at a high degree of parallelism.

We measure Pomegranate’s performance on these scenes in four
ways. First we examine Pomegranate’s raw scalability, the speedup
we achieved as a function of the number of pipelines. Next we
examine the load imbalance across the functional units, which will
determine the best achievable speedup for our parallel system. Then
we quantify the network bandwidth demanded by the different
stages of the pipeline and analyze the lost performance due to net-
work imbalance. Finally we compare Pomegranate’s performance
to simulations of sort-first, sort-middle and sort-last architectures.

All of these simulations are based on the parameters outlined in
our description of the architecture, and the FIFO sizes listed in ta-
ble 2. The primitive FIFO is the FIFO at the input to the rasterizer,
and determines how many primitives a geometry unit can buffer
before stalling. The texture FIFO is the FIFO that receives texture
memory requests and replies and determines how many outstand-
ing texture memory requests the texture system can have. The final
major FIFO is the fragment FIFO, which is where the fragment pro-
cessors receive their commands from the texture processors. The n
pipeline architecture uses the same FIFOs as the 1 pipeline archi-
tecture, but divides them into n pieces. The FIFO sizes have been
empirically determined.

5.1 Scalability
Our first measure of parallel performance is speedup, presented for
our scenes in figure 10. Nurbs exhibits excellent scalability, de-
spite presenting a totally ordered set of commands to the hardware.
At 64 processors the hardware is operating at 99% efficiency, with
a triangle rate of 1.10 Gtri/sec and a fill rate of 0.96 Gpixel/sec.
The only application tuning necessary to achieve this level of per-
formance is picking an appropriate granularity of synchronization.
Because Nurbs submits all of its primitives in a total order, the se-
quencer has no available parallel work to schedule, and is always
completely constrained by the API. This results in only 1 geometry
unit being schedulable at any point in time, and the other geometry
units will only make forward progress as long as there is adequate
buffering at the rasterizers and fragment processors to receive their
commands. This requirement is somewhat counterintuitive, as the



1 4 8 16 32 64
pipelines

1
4
8

16

32

64
sp

ee
du

p

Ideal
Nurbs
March
Tex3D

1102 Mtri/s
0.96 Gpix/s

557 Mtri/s
3.79 Gpix/s
0.12 Mtri/s
21.8 Gpix/s

Figure 10: Pomegranate speedup vs. number of pipelines.

usual parallel programming rule is to use the largest possible gran-
ularity of work.

March runs at a peak of 557 Mtri/sec and 3.79 Gpixel/sec in a
64-pipeline architecture, a 58× speedup over a single pipeline ar-
chitecture. While this scalability is excellent, it is substantially less
than that of Nurbs. If we examine the granularity of synchroniza-
tion, the problem becomes apparent. Nurbs executes a semaphore
pair for every patch of the model, which corresponds to every 512
triangles. March, on the other hand, executes 3 semaphore pairs for
every 123 voxel subcube of the volume, and the average subcube
only contains 38.8 triangles. Thus, the number of synchronization
primitives executed per triangle is more than an order of magnitude
greater than that of Nurbs. Furthermore, there is high variance in
the number of triangles submitted between semaphores. These ef-
fects cause March to encounter scalability limitations much sooner
than Nurbs despite its much weaker ordering constraints.

Tex3D runs at 21.8 Gpixel/sec on a 64-pipeline Pomegranate,
with a tiny 0.12 Mtri/sec triangle rate, a 56× speedup over a single
pipeline architecture. Tex3D scales very well, considering that it
is a serial application. If Tex3D’s input primitives were skewed
towards smaller triangles it would rapidly become limited by the
geometry rate of a single interface and execution time would cease
improving as we add pipelines.

5.2 Load Balance
In order to achieve a high parallel efficiency, the work performed by
the hardware must be balanced across the functional units and com-
munication must be balanced across the network. Table 3 presents
the load imbalance for Nurbs on our architecture with 4, 16, and
64 pipelines. The load balance is within a few percent for all the
functional units. This indicates that Pomegranate’s methodology
for distributing work is providing us with an excellent load balance.
By the time Nurbs reaches 64 pipelines the network is significantly
out of balance. This is an artifact of Nurbs’s relatively low net-
work usage, as it is geometry limited, and the asymmetry of the
network traffic generated by the sequence processor, as discussed
in section 5.3. The results for March are not shown, but they are
qualitatively similar.

Table 4 shows the load imbalance for Tex3D. Despite all of the
application commands arriving through a single interface, the sub-
sequent rasterization and fragment stages still receive an extremely
balanced load. The texture load imbalance is the ratio of the most
texture requests handled by a pipeline to the average. Numbers
close to 1 indicate that the shared texture memory is working effec-
tively, because all of the texture requests are well distributed over
the pipelines. Tex3D’s network imbalance is becoming significant

pipelines 4 16 64
Geometry 1.00/1.00 1.00/1.00 1.00/1.00
Rasterizer 1.00/1.00 1.00/1.00 0.98/1.02
Fragment 1.00/1.00 0.99/1.01 0.99/1.01
Network 0.98/1.04 0.97/1.27 0.95/2.63

Table 3: Load balance for Nurbs. Each entry in the table
presents the minimum/maximum work done by any functional
unit as a fraction of the average work per functional unit. Ge-
ometry work is measured in triangles; rasterization and com-
position work is measured in fragment quads. The network
imbalance is measured in bytes of traffic per pipeline.

pipelines 4 16 64
Geometry 0.00/4.00 0.00/16.0 0.00/64.0
Rasterization 1.03/1.00 1.00/1.00 1.00/1.00
Texture 1.00/1.00 1.00/1.00 0.99/1.00
Fragment 1.00/1.00 1.00/1.00 1.00/1.01
Network 1.00/1.01 1.00/1.04 0.99/1.15

Table 4: Load balance for Tex3D. Each entry in the table
presents the minimum/maximum work done by any functional
unit , as a fraction of the average work per functional unit. Ge-
ometry work is measured in triangles; rasterization and com-
position work is measured in fragment quads.

by the time we reach 64 pipelines. This large asymmetry is the re-
sult of all of the primitives entering through a single interface and
being distributed from a single geometry unit. As Pomegranate is
scaled, the total rasterization speed increases, but the entire geome-
try traffic is borne by a single pipeline.

5.3 Network Utilization
There are five main types of network traffic in Pomegranate: ge-
ometry, sequencer, texture, fragment and display. Geometry traffic
is comprised of vertexes transmitted from the geometry processor
to the rasterizers and the NextR ordering commands, as well as
any state commands, textures, etc. for the subsequent stages. Se-
quencer traffic is the communication between the distribution pro-
cessors and the sequencer as well as the sequencer and the raster-
izers, and encapsulates all the traffic which allows the hardware
to be shared among multiple contexts and the parallel API com-
mands. Texture traffic is made up of the texture request and texture
reply traffic generated by each texture processor. Fragment traffic
is composed of the quads emitted by the texture processors and sent
to the fragment processors. Display traffic is the pixel read requests
and replies between the display processors and the fragment pro-
cessors. The network bandwidth for each traffic type across our
scenes on a 64-pipeline Pomegranate is presented in table 5. The
sequencer numbers are extremely skewed because there is a single
sequencer in the system, so all sequencing information from the
distribution processors flows into a single point, and all sequencing
decisions for the rasterizers flow back out of that point, which intro-
duces a broadcast into the system. A future version of Pomegranate
will use a low bandwidth broadcast ring connecting all the pipelines
specifically for the distribution of the sequencing information.

5.4 Comparison
We compare Pomegranate’s performance to 4 other parallel graph-
ics architectures:

Sort-First introduces a communication stage between the DMA
units and transform & lighting in the geometry processor. The
screen is statically partitioned in 32 × 32 tiles among the
pipelines. The screen-space bounding boxes of blocks of 16
vertexes are used to route primitives to pipelines.



March Nurbs Tex3D
Geometry 0.84/0.85 0.54/0.58 0.01/0.93
Sequence 0.02/1.06 0.05/2.95 0.00/0.14
Texture 0/ 0 0/ 0 3.00/3.01
Fragment 1.82/1.84 1.19/1.20 3.31/3.32
Total 2.68/3.71 1.78/4.67 6.33/7.26

Table 5: The network traffic by type for each of our scenes
on a 64-pipeline Pomegranate. Each row corresponds to a
particular type of traffic and each pair of numbers is the av-
erage/maximum amount of traffic per pipeline of that type in
gigabytes per second. These simulations do not include a dis-
play processor.

Sort-Middle Tiled is a sort-middle architecture with the screen
statically partitioned in 32 × 32 tiles among the rasterizers.
Individual primitives are only transmitted to the rasterizers
whose tiles they overlap.

Sort-Middle Interleaved partitions the screen in 2× 2 tiles to en-
sure rasterization and fragment load balancing. Each geome-
try processor broadcasts its primitives to all rasterizers.

Sort-Last Fragment partitions the screen in 2×2 tiles among the
fragment processors. Each rasterizer is responsible for all the
primitives transformed by its corresponding geometry proces-
sor.

All of these architectures are built on top of the Pomegranate
simulator, and only differ in how the network is deployed to inter-
connect the various components. We provide each of these archi-
tectures, although not Pomegranate, with an ideal network — zero
latency and infinite bandwidth — to illustrate fundamental differ-
ences in the work distribution. All of these architectures have been
built to support the parallel API and a shared texture memory. The
ordering mechanisms necessary to support the parallel API are bor-
rowed from Pomegranate, although they are deployed in different
places in the pipeline.

Our simulator requires substantial time to run — over 24 hours
for some the 64 pipeline simulations. In order to provide these re-
sults across all these architectures we were forced to reduce the size
of the benchmarks for the remaining simulations. Point simulations
of the full data sets give us confidence that the results presented
here are quantitatively very similar to the results for the full scenes
used in the previous sections.

Figure 11a shows the performance of all of these architectures
for the March data set. As March runs, all of the primitives are
clustered along the isosurface, which results in high screen-space
temporal locality. Sort-first, which uses coarse-grained screen-
space parallelism for both geometry and rasterization, is most
severely impacted because temporal locality causes spatial load
imbalances over short periods of time, the length of which are de-
termined by the amount of FIFOing available. Sort-middle tiled
employs object-space parallelism for the geometry stage, and be-
cause this scene is not rasterization limited, exhibits substantially
more scalability than sort-first, although its limitations are exposed
at higher levels of parallelism. Sort-middle interleaved behaves
much more poorly than sort-middle tiled because it broadcasts tri-
angle work to every rasterizer, and each rasterizer can process a
limited number of triangles per second. Sort-last and Pomegranate
both scale very well because they rasterize each triangle only once
(eliminating redundant work) and use object-space parallelism for
rasterization (eliminating any issues with temporal locality). The
main difference between Pomegranate and sort-last, the balancing
of fragment work across rasterizers by the geometry processors,
does not matter here because the triangles are relatively uniformly
sized.

Nurbs, shown in figure 11b, exhibits much worse scalability
for sort-first and sort-middle than March, and in fact even slows
down at high degrees of parallelism. The granularity of work for
Nurbs is a patch, which exhibits a great degree of temporal locality
in screen-space, even greater than March, which explains the per-
formance at low degrees of parallelism. However, unlike March,
Nurbs is a totally ordered application, and when combined with
architectures that use screen-space parallelism for geometry or ras-
terization, the result is hardware that performs almost no better than
the serial case. As the number of pipelines increases, the system is
capable of processing more work. However, the amount of FIFO-
ing available from each pipeline to each tile decreases, reducing the
window over which temporal load imbalance may be absorbed. The
hump in performance at moderate numbers of pipelines is a result
of these effects. As with March, sort-last and Pomegranate exhibit
excellent scalability.

Unlike March and Nurbs, Tex3D, shown in figure 11c, is a com-
pletely rasterization limited application. The speedup for sort-first
and sort-middle tiled here is limited purely by the rasterization load
balance of the entire frame, illustrating that even scenes which ap-
pear very well balanced in screen-space may suffer large load im-
balances due to tiling patterns at high degrees of parallelism. Sort-
middle interleaved, which was previously limited by its reliance
on broadcast communication, is now limited by texture cache per-
formance, which is severely compromised by the use of extremely
fine-grained rasterization. Each triangle is so large in this applica-
tion that it serializes sort-last at the fragment processor stage: the
fragment FIFOs provide elasticity for the rasterizers to continue or-
dered rasterization on subsequent triangles while the current trian-
gle is merged with the framebuffer, but when a single large triangle
fills up the entire FIFO this elasticity is lost and the rasterizers are
serialized. If we greatly increase the buffering at the fragment pro-
cessors, shown by the “sort-last big” curve, so that sort-last is no
longer serialized by the large primitives, the fundamental problem
with sort-last is exposed: imbalances in triangle size cause load im-
balances across the rasterizers. In Tex3D at 64 pipelines, the worst
rasterizer has almost twice the work of an average rasterizer. Many
applications (e.g. architectural walkthroughs) have a few very large
polygons and exhibit much more severe imbalance in rasterization
work than the relatively innocuous Tex3D. Pomegranate addresses
this fundamental problem by load balancing both the number of
triangles and the number of fragments across the rasterizers, and
exhibits excellent scalability on Tex3D.

6 Discussion
Pomegranate was designed to support an immediate-mode parallel
graphics interface and uses high-speed point-to-point communica-
tion to load balance work across its pipelines. Our results have
demonstrated the quantitative impact of these choices, and we will
now revisit their qualitative benefits and costs.

6.1 OpenGL and the Parallel API
The decision to support OpenGL, a strict serial API, has proven
somewhat complicated to implement, but has not resulted in a per-
formance impact. In fact, Nurbs, which totally orders the submis-
sion of its work across all contexts, achieves almost perfectly linear
speedup, despite its very strong ordering constraints. The expense
of supporting ordering is FIFOs which allow the various pipeline
stages to execute commands in application order.

While it may be necessary for the application programmer to
choose an appropriate granularity of parallelism, particularly in a
strongly ordered scene, it is not required that the application balance
fragment work, only primitive work. This is a desirable feature, as
in general application programmers have little knowledge of the
amount of fragment work that will be generated by a primitive, but
they are well aware of the number of primitives being submitted.
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Figure 11: Performance of each architecture on each scene.

6.2 Communication

Pomegranate uses a network to interconnect all the pipeline stages.
This approach to interconnecting a graphics system has become
much more practical recently due to the advent of high-speed point-
to-point signaling, which reduces the cost of providing the multiple
high bandwidth links necessary in such a network. Nonetheless, we
expect the cost of the network to dominate the cost of implementing
an architecture like Pomegranate.

Pomegranate only achieves high scalability when it is able to use
the network as a point-to-point communication mechanism. Ev-
ery time broadcast communication is performed, scalability will be
lost. However, some commands must be broadcast. Commands
that modify the state of a particular context (e.g. glBlendFunc)
must be broadcast to all of the units using that state. The command
distribution could potentially be implemented lazily, but is still fun-
damentally a broadcast communication, which will impose a scala-
bility limit. Most high performance applications already try to min-
imize the frequency of state changes to maximize performance. It
remains to be seen how the potentially greater cost of state changes
in Pomegranate would impact its scalability.

7 Conclusions

We have introduced Pomegranate, a new fully scalable graphics
architecture. Simulated results demonstrate performance of up to
1.10 billion triangles per second and 21.8 billion pixels per second
in a 64-way parallel system.

Pomegranate uses a high-speed point-to-point network to inter-
connect its pipeline stages, allowing each pipeline stage to provide
a temporally balanced work load to each subsequent stage, without
requiring broadcast communication. A novel ordering mechanism
preserves the serial ordered semantics of the API while allowing
full parallel execution of the command stream. Hardware support
for a parallel host interface allows Pomegranate to scale to previ-
ously unreached levels of performance for immediate-mode appli-
cations.
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