
Rigel: Flexible Multi-Rate Image Processing Hardware

James Hegarty Ross Daly Zachary DeVito Jonathan Ragan-Kelley Mark Horowitz Pat Hanrahan

Stanford University

Multi-Rate Line-Buffered Pipeline

4,4 2,2Convolve

{kernel}

Fast FPGA Implementation

Rigel Depth From Stereo
149 Megapixels/sec

Lucas-Kanade
166 Megapixels/sec

SIFT Descriptor
38 Megapixels/sec

...

Figure 1: Rigel takes a flexible multi-rate architecture based on synchronous dataflow and compiles it to efficient FPGA implementations.
Our architecture supports pyramid image processing, sparse computations, and space-time implementation tradeoffs. We show depth from
stereo, Lucas-Kanade, the SIFT descriptor, and a Gaussian pyramid running at between 20-436 megapixels/second on two FPGA platforms.

Abstract

Image processing algorithms implemented using custom hardware
or FPGAs of can be orders-of-magnitude more energy efficient and
performant than software. Unfortunately, converting an algorithm
by hand to a hardware description language suitable for compilation
on these platforms is frequently too time consuming to be practical.
Recent work on hardware synthesis of high-level image processing
languages demonstrated that a single-rate pipeline of stencil kernels
can be synthesized into hardware with provably minimal buffering.
Unfortunately, few advanced image processing or vision algorithms
fit into this highly-restricted programming model.

In this paper, we present Rigel1, which takes pipelines specified in
our new multi-rate architecture and lowers them to FPGA imple-
mentations. Our flexible multi-rate architecture supports pyramid
image processing, sparse computations, and space-time implemen-
tation tradeoffs. We demonstrate depth from stereo, Lucas-Kanade,
the SIFT descriptor, and a Gaussian pyramid running on two FPGA
boards. Our system can synthesize hardware for FPGAs with up to
436 Megapixels/second throughput, and up to 297× faster runtime
than a tablet-class ARM CPU.

Keywords: Image processing, domain-specific languages, hard-
ware synthesis, FPGAs, video processing.
Concepts: •Computing methodologies → Image processing;
•Hardware → Hardware description languages and compila-
tion;

1http://rigel-fpga.org
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org. © 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper,, July 24 - 28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925892

1 Introduction

The smartphone revolution has yielded a proliferation of small,
cheap, and low power cameras and processors. We think this
presents an opportunity for computer vision technology to become
pervasive, leading to innovation in new interfaces, augmented real-
ity, and the internet of things.

The challenge is that image processing, particularly computer vi-
sion, does a tremendous number of operations per second. For
example, a simple brute force depth from stereo algorithm does
around 10,000 mathematical operations per pixel [Scharstein and
Szeliski 2002]. Running this algorithm on 1080p/60fps video re-
quires 1.2 Terraops/second. While CPU/GPU platforms exist that
can perform computation at this rate, they also use a large amount
of power, and are not suitable for use in mobile devices. Simply
offloading the computation to a datacenter does not solve the prob-
lem, since wireless transmission uses 1,000,000×more energy than
a local arithmatic operation [Huang et al. 2012].

Often the only way to implement these compute-heavy image pro-
cessing applications within the power limits of a mobile platform
is with custom fixed-function hardware. Prior work has shown
that fixed-function hardware implementations of image process-
ing can increase energy efficiency by 500× compared to general-
purpose processors [Hameed et al. 2010]. Much of this efficiency
comes from reducing the number of indirections through DRAM
and SRAM by using custom datapaths and local on-chip storage.
DRAM reads use 1,000× the energy of performing an arithmatic
operation, so these savings can be significant.

While most developers will not be fabricating custom hardware,
FPGAs are a widely-available alternative that have energy effi-
ciency significantly higher than CPUs/GPUs. FPGA boards are
available in many different I/O and performance configurations,
which makes them a compelling platform for experimentation and
prototyping. Many existing cameras such as the Edgertronic high
framerate camera, Red cinema camera, and Digital Bolex already
use FPGAs to implement part of their image processing pipelines.

Unfortunately, implementing custom hardware and FPGA designs
remains inaccessible to most application developers. Conventional

http://rigel-fpga.org
http://dx.doi.org/10.1145/2897824.2925892

hardware description languages like Verilog require the user to
work at an extremely low level, manually dealing with tasks like
pipelining and conforming to hardware interfaces, which is tedious
and error-prone.

Prior work on the Darkroom system shows how to synthesize a
high-level image processing language based on pipelines of stencil
computations into custom hardware and FPGA designs [Hegarty
et al. 2014]. Darkroom keeps all intermediates on-chip using a
provably minimal amount of buffering, which is crucial for energy
efficiency. Unfortunately, Darkroom only supports pipelines that
operate on one pixel per cycle, which limits it to single-scale image
processing algorithms, and couples chip area to algorithm complex-
ity.

In this paper, we present a new multi-rate architecture for im-
age processing based on foundational work in Darkroom and Syn-
chronous Dataflow. We show how a set of simple multi-rate prim-
itives can be used to simultaneously support three features that are
crucial to synthesizing hardware for advanced image processing
and vision algorithms: pyramid image processing, sparse compu-
tations, and space-time implementation tradeoffs.

Pyramid image processing enables efficient implementation of al-
gorithms that operate at different scales. Pyramidal implementa-
tions can improve the quality of the result for little extra compu-
tational cost [Bouguet 2001; Adelson et al. 1984]. Sparse compu-
tations improve efficiency by terminating work early that will not
improve quality, e.g., in sparse feature matching [Lowe 1999]. Fi-
nally, space-time implementation tradeoffs allow the user to choose
to use less chip area at the expense of more computation time. Sup-
porting space-time tradeoffs is necessary to efficiently implement
multi-rate algorithms like pyramids and sparse computations.

This paper makes the following contributions:

• We present the multi-rate line-buffered pipeline architecture,
based on extensions to Synchronous Dataflow and Dark-
room’s line-buffered pipeline architecture.

• We show how our multi-rate architecture can be used to im-
plement pyramid image processing, sparse computations, and
support space-time implementation tradeoffs.

• We implement depth from stereo, Lucas-Kanade, the SIFT
descriptor, and Gaussian pyramids in our architecture, and
use our compiler to map these algorithms to two FPGA
boards. Our synthesized designs for FPGA have throughputs
between 20 megapixels/second and 436 megapixels/seconds.
We demonstrate that our system can efficiently support pyra-
mids, sparse computations, and space-time tradeoffs. Finally,
we demonstrate a camera test rig we have built to verify our
FPGA implementations.

2 Background

2.1 Line-buffered Pipelines

Prior work on fixed-function image processing hardware formal-
ized the line-buffered pipeline architecture [Hegarty et al. 2014;
Brunhaver 2015]. In a line-buffered pipeline, each kernel can only
read from its inputs in a statically-known bounded region around
the current pixel called a stencil. These stencil reads can be real-
ized in hardware with a small local RAM called a line buffer (fig.
2). Restricting kernels to only read stencils allows the compiler to
provably minimize the size of the line buffers by changing when
kernels are computed relative to each other.

load

store

f
g

line buffer

Figure 2: The line-buffered pipeline architecture requires that each
kernel in the pipeline only reads from its inputs in a bounded region
around the output pixel.

2.2 Dataflow Languages

Dataflow languages model programs as directed graphs of nodes
representing computations. Edges in the graph indicate producer-
consumer relationships. Each time a node in the graph fires, or
executes, it consumes a certain number of tokens from its inputs,
and sends a certain number of tokens to its outputs.

Foundational work in dataflow languages is Synchronous Dataflow
(SDF) [Lee and Messerschmitt 1987]. In SDF, each node consumes
exactly N input tokens, and produces exactly M output tokens per
firing. Here we show these input and output rates (tokens/firing) as
annotations on each incoming and outgoing edge:

Low Pass Downsample Low PassIn Out
1 1 2 1 1 1

In order for buffering along each edge to be bounded, it must be the
case that the rate of data flowing into and out of each edge is the
same. SDF solves for firing rates to satisfy this requirement. Firing
rates set how frequently nodes fire relative to each other. Effective
rates along each edge are then each node’s input or output rate mul-
tiplied by the node’s firing rate. Here we show one possible SDF
solution for the previous example. Firing rates are shown inside
each circle, and effective rates along edges are calculated:

In Out
1 1 2*(½)=1

1 ½ ½
1*(½)=½ 1*(½)=½ 1*(½)=½

For some SDF graphs, it is impossible to find firing rates that make
rates along all edges match. These graphs will always deadlock,
because no matter how many tokens are put into the pipeline, there
will be a node that is still waiting for data. This can occur, for
example, by merging an upsampled stream with the original stream.
No matter what firing rate is used for the rightmost node, it will
never match all its input rates:

In Out
1 1

1 ?

1

1

1

1
1

2

Solving for firing rates of a graph only involves finding the
nullspace of a matrix, so it can be computed quickly [Lee and
Messerschmitt 1987]. Followup work shows how to implement a
SDF computation as statically-scheduled CPU code with provably
minimal buffering [Murthy et al. 1997].

Statically-scheduled SDF requires each node to consume and pro-
duce exactly its number of input and output tokens each time it
fires. While this works well in the 1D domain, many modules in
a 2D scanline architecture do not fit into this restriction. For ex-
ample, a vertical downsample produces pixels in line-sized bursts
when executed pixel at a time in scanline order:

Downsample Y
Scanline Order

X XX X

X XX X
X XX X X XX X

Modules like downsample have a known total number of input/out-
put tokens, but a latency (number of firings before each output ac-
tually appears) that varies within a bounded number of firings. We
call modules with this property variable-latency modules.

Embedding variable-latency modules in our architecture requires
extensions beyond statically-scheduled SDF. Followup work on im-
proving the functionality of SDF has taken either a static or dy-
namic scheduling approach. Static scheduling work, such as cy-
clostatic dataflow, increases the flexibility of SDF but keeps some
restrictions that allow for static analysis [Bilsen et al. 1995]. These
models keep some or all of SDF’s deadlock and buffering proper-
ties, at the expense of added scheduling complexity [Bilsen et al.
1995; Murthy and Lee 2002]. Dynamic scheduling approaches
such as GRAMPS place no restrictions on the number of tokens
that can be produced or consumed each firing, but also cannot prove
any properties about deadlock or buffering [Sugerman et al. 2009].
Prior work exists on compiling SDF graphs to hardware (such as
[Horstmannshoff et al. 1997]), but to our knowledge no system ex-
ists that supports variable-latency modules.

Rigel takes a hybrid approach between SDF and dynamic schedul-
ing, which we call variable-latency SDF. We restrict our pipeline
to be a Directed Acyclic Graph (DAG) of SDF nodes. However,
we allow nodes to have variable latency, and implement the SDF
execution in hardware using dynamic scheduling. We use first-in-
first-out (FIFO) queues to hide latency variation, creating a graph
of kernels that behaves at the top level similarly to a traditional SDF
system. This allows us to use SDF to prove that the pipeline will not
deadlock, but also support the variable-latency modules we need for
our target applications.

2.3 Image Processing Languages

Halide is a CPU/GPU image processing language with a separate
algorithm language and scheduling language [Ragan-Kelley et al.
2012]. Halide’s scheduling language is used to map the algorithm
language into executable code, based on a number of loop trans-
forms. Halide’s algorithm and scheduling languages are general, so
making scheduling decisions requires either programmer insight,
autotuning, or heuristics [Mullapudi et al. 2016]. However, experi-
menting with different Halide schedules is faster than rewriting the
code by hand in lower-level languages like C.

Rigel was inspired by Halide’s choice to focus on programmer pro-
ductivity instead of automated scheduling, which often necessitates
a loss in flexibility. Rigel attempts to make an equivalent system
for hardware, where we allow the user manual control of a set of
flexible and powerful hardware tradeoffs with more convenience
and ease of experimentation than is possible in existing hardware
languages like Verilog.

2.4 High-Level Synthesis

An emerging technology in recent years is high-level synthesis
(HLS), which takes languages such as C or CUDA and compiles
them to hardware. For example, Vivado synthesizes a subset of C
into a Xilinx FPGA design guided by a number of pragma annota-
tions [Vivado 2016]. In our experience, CPU-targeted image pro-
cessing code requires extensive modification to perform well with
HLS tools.

Line buffer

Core Modules

Expr

Math Expr
{tap name}

Tap Constant

11 1 1 1

Multi-Rate Modules

Higher-Order Modules

Module Definition

Module Name

Module Application

Fn. Name

1/N 1

Devectorize

1 1/N

Vectorize

1/X*Y 1

Upsample*

Downsample*

Map(fn,N)

X,Y

1/X*Y1 X,Y

Reduce(fn,N) ReduceSeq(fn,N)

v

W,H

1 1/N
N N

1/N1
1

FilterSeq*

Figure 3: List of the built-in modules in Rigel. As in SDF, numbers
on edges indicate the input and output rates. (*) indicates variable-
latency modules.

Rigel is a higher-level programming model than languages like C.
In particular, Rigel performs domain-specific program checking us-
ing SDF rules, and contains domain-specific image processing op-
erations such as line buffering. In the future, we may consider HLS
as a compile target for Rigel instead of Verilog to simplify our im-
plementation.

3 Multi-Rate Line-Buffered Pipelines

We now describe the multi-rate line-buffered pipeline architecture,
and show how it can be used to implement advanced image pro-
cessing pipelines. Applications are implemented in our system by
creating a DAG of instances of a set of built-in static and variable-
latency SDF modules. The core modules supported by our archi-
tecture are listed in figure 3.

As in synchronous dataflow, each of our modules has an SDF input
and output rate. Our modules always have rates M/N ≤ 1, which
indicates that the module consumes/produces a data token on aver-
age every M out of N firings. Each data token in our system has an
associated type. Our type system supports arbitrary-precision ints,
uints, bitfields, and booleans. In addition, we support 2D vectors
and tuples, both of which can be nested.

3.1 Core Modules

Our architecture inherits a number of core modules from the line-
buffered pipeline architecture.

Our line buffer module takes a stream of pixels and converts it
into stencils. Many of our modules can operate over a range of
types. The line buffer has type A → A[stencilW, stencilH] for
an arbitrary type A, indicating that its input type is A and output
type is the vector A[stencilW, stencilH].

A Math Expr is an arbitrary expression built out of primitive math-
ematical operators (+,*,�, etc). Math exprs also include operations
for slicing and creating vectors, tuples, etc. Our math exprs support
all of the operators in Darkroom’s image functions plus some ad-
ditional functionality. In particular, we added arbitrary precision
fixed-point types to represent non-integer numbers. Since FPGAs
do not have general floating point support, we found that better sup-
port for fixed-point types was necessary. We also include some
primitive floating point support, such as the ability to normalize
numbers.

Tap Constants are programmable constant values with arbitrary
type. Taps can be reset at the start of a frame, but cannot be modi-
fied while a frame is being computed.

These core modules can be used to implement a pipeline that
matches hardware produced by the line-buffered pipeline architec-
ture. For example, we can use a 4×4 stencil line buffer, a math expr
that implements convolution (multiplies and a tree sum unrolled),
and a tap constant with the convolution kernel to get a line-buffered
pipeline:

Input
uint32

4,4

Convolution
{kernel}

uint32[4,4]
Output
 uint32uint32[4,4]

3.2 Higher-Order Modules

Our architecture has higher-order modules, which are modules built
out of other modules. Map takes a module with type A → B and
lifts it to operate on type A[N]→ B[N] by duplicating the module
N times. Reduce takes a binary operator with type {A,A} → A
and uses it to perform a tree fold over an vector of size N , producing
a module with type A[N]→ A.

We can use map and reduce to build the convolution function from
modules in our architecture, instead of creating it by hand as math
ops. We also show a module definition, which defines a pipeline
so that it can be reused multiple times later. We parameterize the
pipeline over stencil width/height. This is not a core feature of our
architecture, but is instead accomplished with metaprogramming:

* +
Map(*,W,H) Reduce(+,W,H)

Convolve(W,H)

W,HW,H
Output
uint32

Input
uint32[4,4]

Kernel
uint32[4,4]

Our higher-order modules can also be used to implement space-
time tradeoffs. Implementing space-time tradeoffs in our system
involves creating multiple implementations of an algorithm with a
range of parallelisms. We formally define parallelism, p, to be the
width of the datapaths in the pipeline. For example, p=2 indicates
that the pipeline can process two pixels per firing, p=1/2 indicates
that the pipeline can only do half a pixel’s worth of computation per
firing.

Here we demonstrate an 8-wide data-parallel implementation of
convolution (p=8). We use the map operator to make 8 copies of
the Convolve module we defined above. The line buffer module
shown previously can be configured to consume/produce multiple
stencils per firing. To feed this pipeline with data, we configure
the runtime system to provide a vector of 8 pixels as input. These
changes yield a pipeline that can produce 8 pixels/firing:

Input
uint32[8] 4,4, 8 wide

{kernel}

uint32[4,4][8]

Output
uint32[8]Convolve(4,4)

uint32[4,4][8]

8

3.3 Multi-Rate Modules

Next we introduce a number of our architecture’s multi-rate mod-
ules. We first show multi-rate modules that are used to reduce the
parallelism of a pipeline (p<1), so designs can trade parallelism for
reduced area.

To reduce parallelism, we need to perform a computation on less
than a full stencil’s worth of data. We accomplish this with the
devectorize module. Devectorize takes a vector type, splits it into
smaller vectors, and then outputs the smaller vectors over multi-
ple firings. With 2D vectors we devectorize the rows. Vectorize
performs the reverse operation, taking a small vector over multiple
firings and concatenating them into a larger vector:

1/4 1
uint32[4] uint32[1]

1 1/4
uint32[1] uint32[4]

Devectorize Vectorize

ReduceSeq is a higher-order module that performs a reduction se-
quentially over T firings (type A → A). Here we combine devec-
torize (which increases the number of tokens, at lower parallelism)
and reduceSeq (which decreases the number of tokens). The convo-
lution module can now operate on stencil size 1×4 instead of 4×4,
reducing its amount of hardware by 4×. We refer to this pipeline
as the reduced parallelism ConvRP:

Input
uint32[W,H]

Output
uint32

1/T 1

1/T 1
Convolve(W/T,H)

uint32[W/T,H]

v1 1/T+
ReduceSeq(+,T)

ConvRP(W,H,T)

Kernel
uint32[W,H]

uint32[W/T,H]

We can connect our new ConvRP module to the line buffer and
convolution kernel as in the previous examples:

Input
uint32

4,4 Output
uint32ConvRP(4,4,4)

{kernel}

1/4

1/4
1/4

The total throughput of a pipeline is limited by the module instance
with the lowest throughput. In this example, ConvRP has input/out-
put rate of 1/4, which means that the resulting pipeline can only
produce one output every 4 firings.

3.4 Multi-Scale Image Processing Modules

Next, we introduce multi-rate modules in our architecture that are
used to implement multi-scale image processing. Rigel’s down-
sample module discards pixels based on the user’s specified in-
teger horizontal and vertical scale factor (module type A → A).
Similarly, Rigel’s upsample module upsamples a stream by dupli-
cating pixels in X and Y a specified number of times (module type
A→ A):

1/X*Y 1
X,Y

1/X*Y1 X,Y

Upsample(X,Y) Downsample(X,Y)

We can use these modules to downsample following a convolution,
which is a component of a pipeline for computing Gaussian pyra-
mids. A basic implementation simply adds a downsample module
to the convolution example shown previously:

4,4
2,2Convolve(4,4)Input

uint32

1/4 Output
uint32

1

{kernel} Downsample(2,2)

This implementation is suboptimal, however, because the convolu-
tion hardware is sized to produce 1 output pixel/firing, but is only
used for 1/4 the pixels. When we perform the SDF solve on this
pipeline, we will see that the firing rate for Convolve is 1/4, indi-
cating it will sit idle 3/4 of the cycles. We can use the reduced
parallelism ConvRP module from the previous example to increase
the efficiency of the design:

4,4 2,2 ConvRP(4,4,4)Input
uint32

1 1/4 Output
uint32

1/4 1/4

Because ConvRP(4,4,4) has input/output rate 1/4, it matches the
rate of the downsample, and all hardware does useful work every
cycle.

3.5 FilterSeq Module

Next we introduce a module that can be used to implement sparse
computations. FilterSeq takes two inputs: a stream of data of type
A to be filtered and a stream of booleans. FilterSeq only outputs
data when the boolean stream is true:

1/N1
1

FilterSeq

Output (A)Data Stream (A)
Filter Stream (bool)

To fit into the synchronous dataflow model, filterSeq overrides the
user’s boolean function if it produces too few or too many total out-
puts. In addition, to fit into the bounded latency restriction of the
variable-latency SDF model, filterSeq overrides the user’s boolean
function if it has not produced an output within a certain number
of firings. Users can tune the amount of latency-variance each fil-
terSeq instance allows to suit their application, with more variance
requiring a larger FIFO.

The filterSeq module can be used to implement a sparse convolu-
tion. The Thresh function outputs boolean true if the center pixel in
the stencil is above a certain threshold (type uint32[4, 4]→ bool).
As in the previous example, we use the reduced parallelism ConvRP
module for efficiency, because the stream after the filterSeq runs at
1/4 the rate of the input. The resulting pipeline reduces the input
data stream by 1/4:

Input
uint32 4,4

Thresh

Output
uint32

1/4
1
1 ConvRP(4,4,4)

{kernel}

3.6 Additional Modules

Rigel also includes a number of additional modules. pad and crop
are used to pad and crop 2D vectors. We use this to implement im-
age boundary conditions. When combined, pad and crop reduce the
throughput of the entire pipeline slightly, which corresponds to the
extra cycles required to prime the pipeline with boundary values.
Serialize takes multiple pixels streams and serializes them into a
single stream based on a user-specified ordering function. We use
this to write out an image pyramid into a human-readable format.
Rigel also includes a number of fused modules (e.g., a fused line
buffer and devectorize) which implement the same functionality at
reduced hardware cost.

4 Scheduling Model

Rigel’s compiler takes an application specified in the multi-rate
line-buffered pipeline architecture and lowers it to a concrete FPGA

implementation. Our compiler allows for manual control of a num-
ber of aspects of the hardware that we generate, so that the user
can tweak their implementation to get the best performance. In
particular, we allow for manual specification of static vs dynamic
scheduling, and FIFO sizes.

4.1 Static vs Dynamic Scheduling

Rigel supports generating hardware for both statically-scheduled
pipelines and dynamically-scheduled pipelines. Statically-
scheduled pipelines behave like the pipelines in Darkroom, where
each module assumes that its inputs have valid data every cycle, and
that downstream modules are ready to read every cycle [Hegarty
et al. 2014]. In contrast, dynamically-scheduled pipelines have ad-
ditional hardware to check the validity of inputs, and stall if down-
stream modules are not ready.

For every module instance, the user specifies whether they want it
to be statically or dynamically scheduled. Mult-rate modules, such
as downsample and upsample, can only be dynamically scheduled.

4.2 FIFO Allocation

Rigel gives the user manual control over FIFO placement and siz-
ing. Manual control allows the user to to make performance trade-
offs, such as reducing FIFO size when it has a small effect on run-
time.

FIFOs only need to be manually allocated for dynamically-
scheduled pipelines. Scheduling for statically-timed pipelines is
performed automatically by our compiler using standard retiming
techniques [Leiserson and Saxe 1991; Hegarty et al. 2014]. FIFOs
must be added to a dynamically-scheduled pipeline for two reasons:

Delay Matching

...

...

As in statically-timed hardware pipelines, DAG fan-out and recon-
vergence requires delay matching along the paths so that data can
arrive at the reconvergence point at the same time. Because FIFOs
adjust their size dynamically, the user does not need to match delays
exactly, only provide an upper bound.

Rigel has two sources of delay along paths that must be accounted
for: hardware pipeline delay, and data decimation (e.g., modules
like crop). We have found that adding a minimum size (128 ele-
ment) FIFO along each branch is sufficient for most cases. Hard-
ware pipeline delay is usually much less than 128 cycles, and
pipelines that do data decimation differently along branches are
rare.

Variable Latency Hiding

Variable
Latency

Static Latency Wrapper

As explained in section 2.2, we allow SDF modules in our archi-
tecture to have variable, but bounded, latency. Downsample in Y
for example would produce pixels for one whole line, and then sit
idle for one whole line. This can cause performance problems with
neighboring modules. For example, a downstream module that ex-
pects an input every 1/2 cycle would sit idle more than expected,

because it would have no data to work on while the downsampleY
produces an empty line.

To fix these performance problems, we wrap these variable-latency
modules with a FIFO that is large enough to absorb the variability.
Because the variability is bounded, this is always possible by def-
inition. To assist in sizing these FIFOs, we implemented a simple
simulator for a number of our variable-latency modules to measure
the FIFO size needed to hide their variability.

FIFOs can also serve to improve clock cycle time. All of our
dynamically-scheduled modules are driven by a stall signal from
downstream. If many modules are driven by the same stall, this can
limit the clock period of the design. To solve this, the user can in-
sert a FIFO to break the stall into different domains. In addition, if
the FIFO is sized large enough that it will never fill, we allow the
user to disable the stall signal entirely.

5 Implementation

We implemented a compiler that takes a multi-rate line-buffered
pipeline (sec. 3) along with scheduling choices (sec. 4) and low-
ers it to Verilog. Our multi-rate line-buffered pipeline construction
library and compiler is embedded in Lua. An embedded implemen-
tation is convenient because it allows for easy metaprogramming of
the pipelines, which we use to create parameterized pipelines.

5.1 Semantic Checking

Prior to lowering to Verilog, we run a simple typechecker that
checks that types along edges in the pipeline match and that dy-
namic vs static scheduling options match.

We also run standard SDF scheduling [Lee and Messerschmitt
1987]. SDF performs two important functions in our compiler.
First, we use it to check for malformed pipelines that will dead-
lock, as explained in section 2.2. Second, the SDF firing rates for
each module correspond to the throughput the module will have at
runtime. The user can use these rates to determine if they have any
underutilized modules, and improve the efficiency of their design
by applying the techniques shown in section 3. This saves the user
from having to execute an expensive simulation or synthesis pro-
cess to determine pipeline performance characteristics.

5.2 Lowering to Verilog and Simulation

Because all of our built-in modules match the desired hardware
closely, lowering to Verilog is straightforward. For each of the mod-
ules shown in section 3, we implement a function to lower them to
a Register Transfer Level (RTL) intermediate of our own design.
RTL is a low-level language that specifies hardware as registers and
the circuits that drive them. For statically-scheduled pipelines, we
then perform a pipelining transform on the RTL to improve clock
cycle time, using standard techniques [Leiserson and Saxe 1991].
Finally, we translate our RTL representation to Verilog.

We also use the Terra language to lower our graph of modules to
a near-cycle-accurate CPU simulation [DeVito et al. 2013]. Each
hardware module yields a Terra class that implements it, with a
cycle-accurate clock-tick simulation function. Our simulator is de-
signed for accuracy, not speed, but it is many times faster than Ver-
ilog simulation.

5.3 Camera Test Rig

VGA

Camera

Camera AX
I M

em
or

y
Bu

s

FPGA Fabric

ARM CPURigel Pipeline

DRAM

We implemented a camera test rig on the Xilinx Zynq System On
a Chip (SOC) platform to test and evaluate our system (above).
All devices communicate through a standard ARM AXI memory
bus. Two Omnivision OV7660 cameras and VGA are driven by
lightweight controllers implemented in the FPGA fabric. The ARM
core runs standard Linux, and is used to configure devices on the
FPGA fabric using memory-mapped IO (e.g., framebuffer sizes/lo-
cations, camera registers, start/stop instructions).

We synthesized bitstreams from our Verilog for the Zynq 7020 and
7100 using Xilinx ISE 14.5. The Zynq 7020 is an entry-level FPGA
costing around $300 (∼1.3M ASIC gate equivalent), and the Zynq
7100 is a high-end FPGA costing around $2000 (∼6.6M ASIC
gate equivalent) [Xil 2016]. We disabled DSP slices (fixed ALUs)
for our synthesis to make slice numbers across different configura-
tions more comparable. We configured the clocking infrastructure
of each board to execute our tests at the numbers we report.

We implemented two system configurations on this SOC platform.
First, we have a test configuration that writes the input image into
a DRAM framebuffer using Linux, executes the Rigel pipeline on
the framebuffer, and reads the output framebuffer in Linux to save
to disk. We automatically run 100s of directed and integration tests
using this setup to verify correctness of our compiler and modules.
We check that the output of each test executed in the Terra simu-
lator, Verilog simulator, and on the board match exactly. Second,
we have a live demo configuration that has 1 or 2 camera(s), VGA,
and the Rigel pipeline configured to write into framebuffers in a
continuous streaming fashion. We demonstrate our camera/display
configuration of the test rig running a camera pipeline and depth
from stereo in the accompanying video.

6 Evaluation

We implemented a number of image processing algorithms in our
system, and used Rigel to synthesize hardware designs for them
running on the Zynq 7020 and Zynq 7100 FPGAs.

CONVOLUTION is an implementation of a single 8×8 convolution.
This example will be used to demonstrate the scalability of our sys-
tem, from very small to very large pixel throughputs.

STEREO is a simple implementation of depth from stereo based on
brute force search [Scharstein and Szeliski 2002]. This example op-
erates on a stereo pair of images. We search 64 neighboring pixels
in the second camera to find the offset with the lowest 8×8 Sum
of Absolute Difference (SAD). Our brute force search is extremely
regular and compute intensive, and thus demonstrates the advantage
of FPGAs compared to CPUs/GPUs on this type of workload.

FLOW is an implementation of the Lucas-Kanade optical flow al-
gorithm [Lucas et al. 1981]. We use 1 iteration of Lucas-Kanade
to compute dense flow information with a 12×12 window search.
Lucas-Kanade is challenging on FPGAs because it performs a float-
ing point matrix inversion. For this example, we used Rigel’s fixed-
point types to create an equivilant fixed-point implementation. The

STEREO

FLOW

DESCRIPTOR

PYRAMID

Figure 4: We implemented a number of fundamental image pro-
cessing algorithms in Rigel. STEREO and FLOW test Rigel’s chip
area scaling. PYRAMID and DESCRIPTOR test Rigel’s multi-rate
modules.

output of our integer implementation only differs from the floating
point version by a few bits.

PYRAMID computes a pyramid of 8×8 Gaussian blurs. Pyramids
are a core component of many image processing algorithms [Adel-
son et al. 1984]. We use this example to evaluate the effectiveness
of our space-time tradeoff techniques and dynamic scheduling.

DESCRIPTOR is an implementation of the feature descriptor in the
Scale Invariant Feature Transform (SIFT) algorithm [Lowe 1999].
We use Rigel’s filterSeq module to compute the descriptors sparsely
at Harris corners [Harris and Stephens 1988]. This example is used
to evaluate how sparse computations perform in our system.

6.1 Space-Time Tradeoffs
To evaluate the effectiveness of Rigel at supporting space-time
tradeoffs, we implemented CONVOLUTION, STEREO, and FLOW at
a range of differents parallelisms (p), as defined in section 3.2. Ide-
ally, chip area should scale linearly with parallelism, and execution
time should scale inversely with parallelism. For each example pro-
gram, we will use the p=1 case as a reference point, and expect
Areap = Area1 ∗ p and Cyclesp = Cycles1/p.

We show the area scaling of CONVOLUTION, STEREO, and
FLOW normalized to their size at p=1 in figure 5. The p>1 cases are

0.02 0.05 0.1 0.2 0.5 1 2 5 10
Design Parallelism (p)

5.00%

10.00%

20.00%

50.00%

100.00%

200.00%

500.00%

1000.00%

Ar
ea

 S
ca

lin
g

(s
lic

es
 re

la
tiv

e
to

 p
=1

)

CONVOLUTION
STEREO
FLOW

Figure 5: Area scaling on the Zynq 7100, shown as slices nor-
malized to the slices at parallelsim 1. Ideally, area should scale
linearly with parallelism. Designs deviate from this ideal scaling at
low parallelism, where non-scalable hardware like the line buffer
starts to dominate the cost.

implemented using the technique in section 3.2, and the p<1 cases
are implemented as in section 3.3. STEREO and FLOW are only dis-
played for p≤1 because this is the largest size that fits on the 7100.
We see that area is close to expected at high parallelisms, but that
area is higher than expected at low parallelisms. Area scaling effi-
ciency is limited by the percentage of hardware that can actually be
scaled, which decreases at low parallelisms. This effect is partic-
ularly noticeable with CONVOLUTION: at low parallelism the total
amount of hardware generated is so small (1.06% of the slices) that
small non-scalable hardware like the line buffer starts to dominate
the cost.

CONVOLUTION (1080p)
p SDF Px/Cyc Measured Px/Cyc % Inc FIFO KBs
1/8 0.1236 0.1236 0% 0
1 0.9885 0.9885 0% 2.00
4 3.9541 3.9539 0% 8.00

STEREO (720x400)
p SDF Px/Cyc Measured Px/Cyc % Inc FIFO KBs
1/16 0.0550 0.0550 0% 0.625
1/4 0.2200 0.2200 0% 0.625
1 0.8801 0.8800 0.01% 2.25

FLOW (1080p)
p SDF Px/Cyc Measured Px/Cyc % Inc FIFO KBs
1/12 0.0818 0.0818 0% 20.6
1/6 0.1637 0.1637 0% 36.7
1 0.9820 0.9819 0% 4.00

Figure 6: Predicted and measured pixels/cycle for each design
over a range of parallelisms. We see that predicted and measured
pixels/cycle match the parallelism (p) closely. On these examples,
FIFOs are only necessary to match delays and improve clock tim-
ing, which results in small FIFO sizes.

Next, we evaluate execution time scaling of CONVOLUTION,
STEREO, and FLOW. Ideally, the average pixels/clock of the
pipeline should be equal to p. Figure 6 shows the pixels/clock
predicted by the SDF model. The SDF prediction number is the

0 100 200 300 400 500 600
Throughput (Megapixels/sec)

Rigel 7020

Rigel 7100

Darkroom 7020

Darkroom 7100

Rigel 7020

Rigel 7100

Darkroom 7020

Darkroom 7100

Rigel 7020

Rigel 7100

Darkroom 7020

Darkroom 7100

C
O

N
V

O
LU

TI
O

N
ST

ER
EO

 F
LO

W

(too big)

(too big)

Figure 7: Each of the example programs synthesized to the highest
throughput that fits on each FPGA board. Compared to Darkroom,
Rigel is able to scale up the parallelism of memory-bound com-
putations like CONVOLUTION to get higher throughput. Rigel is
also able to scale down compute-bound examples like STEREO and
FLOW to fit on the smaller Zynq 7020.

throughput of the lowest throughput module found in the SDF
solve, which limits the throughput of the entire pipeline. We see
that the pixels/clock predicted by the SDF model shown in figure
6 are very near p. Small deviations from p are due to extra cycles
needed to compute the boundary region (sect. 3.6).

We also report the pixels/cycle attained by running the design on the
FPGA board (including DRAM stalls, etc). We see that the mea-
sured pixels/cycle rate is almost identical to the value predicted by
SDF (fig. 6). This indicates that our dynamic scheduling hardware
is working correctly. We also see that the FIFO sizes needed to at-
tain these measured pixels/clock rates are low for these examples.
In these designs, FIFOs were only inserted to improve clock cycle
timing, or to match delays along branches.

Finally, we report the highest throughput (clock∗pixels/cycle) im-
plementation for each board synthesized and run using our system
(fig. 7). We see that CONVOLUTION can support 632 megapixel-
s/second on the 7100, STEREO can support 148 megapixels/second
and FLOW can support 165 megapixels/second.

We also compare our results to Darkroom, which always syn-
thesizes pipelines with parallelism p=1. We see that for small
memory-bound computations like CONVOLUTION, Darkroom can-
not take advantage of the extra compute available on the FPGA. For
large designs like STEREO and FLOW, Darkroom cannot synthesize
designs for the 7020 because it has no way to reduce the area of
these examples to fit on this smaller board.

In figure 8, we break down p, the clock rate, and resource utiliza-
tion of the highest-throughput designs measured in figure 7. We
see that Rigel generates designs that achieve a typical clock rate for
FPGAs, indicating that our automatic pipelining works correctly,
and that our generated Verilog has no problems that limit the clock
rate. Finally, we see that the % utilization of the FPGA slices is
consistently high (too large to double), with the exception of CON-

Zynq 7020
Pipeline p Clock Slices BRAMs
CONVOLUTION 4 111Mhz 39% 6.4%
STEREO 1/4 125Mhz 96% 5.0%
FLOW 1/6 125Mhz 79% 25.4%

Zynq 7100
Pipeline p Clock Slices BRAMs
CONVOLUTION 4 160Mhz 7% 1.2%
STEREO 1 169Mhz 65% 1.0%
FLOW 1 169Mhz 50% 4.7%

Figure 8: Rigel’s synthesized designs have typical clock periods
for large designs on FPGAs. For compute-bound applications
like STEREO and FLOW, Rigel successfully synthesizes designs that
use the majority of the compute resources available on the FPGA.
BRAMs are used to implement line buffers and FIFOs, and are not
a limiting factor for these designs.

0.05 0.1 0.2 0.5 1 2 5 10
Design Parallelism (p)

500

1,000

2,000

5,000

10,000

20,000

50,000

Ar
ea

 (S
lic

es
)

Da
rk

ro
om

Zynq 7020

CONVOLUTION
STEREO

FLOW

Figure 9: Summary of the entire design space supported by Rigel.
Points above the Zynq 7020 line use too many slices to fit on the
smaller Zynq. Darkroom only supports a single parallelism in this
design space, which couples chip area to algorithm complexity.

VOLUTION, which is limited by the width of the memory bus. This
indicates that Rigel’s flexible programming model allows us to use
the compute resources available.

Finally, we summarize the entire design space supported by Rigel
in figure 9, showing different algorithms, parallelisms, and their
resulting areas. We see that Rigel’s space-time tradeoffs allows us
to decouple chip area from algorithm complexity.

6.2 Performance Comparison

While not intended to be a full evaluation of the merits of FPGAs
compared to CPUs/GPUs, we want to estimate our system’s per-
formance relative to some existing low-power platforms that are
available today. We evaluate Rigel on FPGA against the four core
2.32 Ghz ARM Cortex A15 on the Nvidia Jetson TK1.

In figure 10 we see that Rigel on the Zynq 7020 is between 3×-
55× faster than the A15 on our two computer vision applica-
tions, STEREO and FLOW. Crucially, this improved performance
allows the pipelines to run on real image sizes, such as 720p/30fps
and 640×480/60fps, whereas the ARM can only support at most

0 20 40 60 80 100 120 140 160
Throughput (Megapixels/Second)

ST
ER

EO
ST

ER
EO

4x ARM A15
ST

ER
EO

Rigel 7020
ST

ER
EO

Rigel 7100

FL
O

W
FL

O
W

4x ARM A15

FL
O

W

Rigel 7020

FL
O

W

Rigel 7100

Figure 10: We compared Rigel on FPGA to multi-threaded and
vectorized CPU implementations of our applications compiled us-
ing Darkroom running on a 4 core Cortex A15 . The 7020 is 3×-
55× faster than the A15. The 7100 is 25×-297× faster than the
A15.

640×480/20fps on FLOW. The FPGAs show more of a speedup
on STEREO than FLOW because they can perform specialized low-
precision integer ops on STEREO, but must emulate floating point
math with expensive high-precision integers on FLOW.

We also compared STEREO to the brute force depth from stereo
example in the CUDA SDK running on the Jetson TK1’s GPU.
CUDA Stereo is highly optimized, making use of shared memory
and a 4 channel SAD intrinsic which performs 7 math ops in 1 cy-
cle. On a 4 channel 8×8 configuration, the TK1 performs stereo at
4.2 Megapixels/second compared to 3.16 Megapixels for the 7020.
However, on a 1 channel 8×8 configuration the TK1 no longer gets
an advantage from the SAD intrinsic, so it performs at 4.2 Megapix-
els/seconds, compared to 27 Megapixels/second on the 7020. The
TK1 uses 5-10 watts total board power depending on load [Elinux
2015], compared to ∼5 watts total board power for the Zynq 7020.
On the high end, the Nvidia Titan Black (∼225 watts) performs
1 channel 8×8 STEREO at 128 Megapixels/second, compared to
the same configuration on the Zynq 7100 (30 watts or less, [Xilinx
2016]) running at 148 Megapixels/second. These results indicate
that FPGAs can have a significant performance/watt advantage on
some applications compared to a GPU.

6.3 Pyramid Image Processing

To evaluate Rigel’s ability to support pyramid workloads, we imple-
mented two variants of a Gaussian pyramid, PYRAMID FULL and
PYRAMID. In PYRAMID FULL, each pyramid depth is computed in
parallel with the same parallelism factor. So, we expect the chip
area to grow linearly for each pyramid depth. This is highly ineffi-
cient however, as the deeper levels of the pyramid process much
less data, so the hardware will be sitting idle for many cycles.
To solve this problem, PYRAMID applies the parallelism reduction
techniques from section 3.3. The pipeline for one level of this ex-
ample is presented in section 3.4.

To compare PYRAMID FULL and PYRAMID, we synthesized each
at a range of depths. Figure 11 shows the number of slices for each
depth. As expected, PYRAMID FULL’s chip area grows by a large
amount for each depth (a 4.67× increase from depth 1 to 4). In
contrast, PYRAMID grows less (a 1.58× increase from depth 1 to
4).

Next, we report the predicted and measured pixels/cycle for PYRA-
MID FULL and PYRAMID in figure 12. Because PYRAMID FULL is
computed in parallel with excess parallelism, we see that it is pre-
dicted to generate the pyramid in the same amount of time regard-
less of pyramid depth. As in the pipelines in section 6.1, predicted
pixels/cycle is slightly less than the parallelism (p = 4) due to

1 2 3 4
Pyramid Depth

0K

10K

20K

30K

Sl
ic

es

PYRAMID FULL
PYRAMID

Figure 11: PYRAMID FULL and PYRAMID over a range of pyra-
mid depths. PYRAMID can implement a deep pyramid using only
1.58× the slices, compared to 4.67× with PYRAMID FULL, but at
the expense of some reduction in throughput.

PYRAMID FULL (384x384, P=4)
Depth SDF Px/Cyc Measured Px/Cyc % Inc FIFO KBs
1 3.8384 3.8358 0.07% 16
2 3.8384 3.8035 0.92% 296
3 3.8384 3.7640 1.98% 576
4 3.8384 3.6930 3.94% 856

PYRAMID (384x384, P=4)
Depth SDF Px/Cyc Measured Px/Cyc % Inc FIFO KBs
1 3.8384 3.8358 0.07% 16
2 3.8384 3.7940 1.17% 296
3 3.6864 3.0620 20.39% 346
4 3.6864 2.9591 24.58% 396

Figure 12: Predicted and measured pixels/cycle of pyramid
pipelines on the Zynq 7100. These pipelines amplify data, so
Pixels/cycle reports the number of input pixels read and processed
per cycle. There is a serial dependency between pyramid levels,
which causes measured pixels/cycle to diverge from predicted on
deeper pyramids. FIFOs are used to hold stencil intermediates be-
fore they are processed or written out, which results in large FIFO
size.

the boundary region calculation. On smaller images, the bound-
ary region is a higher percentage of the runtime. This effect, com-
bined with parallelism reduction causes deeper pyramid versions
of PYRAMID with smaller images to have slightly lower predicted
pixels/cycle.

Unlike the examples in section 6.1, PYRAMID FULL and PYRA-
MID have composed stencil operations, which cause there to be
serial dependencies between layers of the pyramid. Deeper pyra-
mid levels cannot proceed until a stencil’s worth of pixels in the
finer level have been computed. SDF does not model latency ef-
fects like these. The SDF prediction is calculated with all mod-
ules in the pipeline proceeding immediately in parallel. Because of
this, we see that both PYRAMID and PYRAMID FULL have higher
measured pixel/cycle than predicted. This effect is particularly pro-
nounced with PYRAMID, whose deepest level is running at much
lower throughput, so takes longer to complete given a late start time.

Finally, we show the total throughput of PYRAMID FULL and
PYRAMID in figure 13. Both implementations have similar perfor-
mance, with minor differences due to clock cycle time and different
pixels/cycle. In addition, we show the resource utilization of our
pyramid implementations in figure 14. Most significantly, we see
that the optimizations in PYRAMID allow it to fit on the Zynq 7020,
whereas PYRAMID FULL takes up a large percentage of the area of
the 7100.

0 100 200 300 400
Throughput (Megapixels/sec)

PYRAMID FULL Rigel 7100

PYRAMID
Rigel 7020

Rigel 7100

Figure 13: Measured throughput of PYRAMID and PYRAMID
FULL. All three implementations have the same parallelism, so dif-
ferences in performance are due to differences in clock and execu-
tion cycles.

p Clock % Slices % BRAMs
PYRAMID FULL (Zynq 7100)
4 85 Mhz 49% 32.1%
PYRAMID (Zynq 7020)
4 77 Mhz 85% 85.7%
PYRAMID (Zynq 7100)
4 111 Mhz 16% 22.3%

Figure 14: FPGA resource utilization for pyramid pipelines.
PYRAMID reduces the number of slices sufficiently compared to
PYRAMID FULL that the design is able to fit on the Zynq 7020.

6.4 Sparse Computations

To demonstrate how Rigel performs on sparse computations, we
implemented DESCRIPTOR, a sparsely-computed feature descrip-
tor based on the feature descriptor in SIFT. We report the predicted
and measured pixels/cycle for DESCRIPTOR in figure 16. DESCRIP-
TOR takes 256 cycles to calculate each feature descriptor, and calcu-
lates descriptors sparsely on average once every 128 pixels, yield-
ing p=1/2. We see that both the SDF prediction and measured
pixels/cycle closely match the expected number of cycles. FIFOs
are used to hide the variable latency of the filterSeq operator, and
do not use a prohibitive amount of buffering (283KBs). We show
in the accompanying video that implementing Harris corners within
the restrictions of our static-rate bounded-latency filterSeq mod-
ule (sec. 3.5) does not prevent this pipeline from reliably tracking
single-scale objects.

DESCRIPTOR performs roughly 60 total floating point operations.
The Zynq FPGA platform does not have native support for floating
point operations, so we emulated these operations using a Xilinx
floating-point library. This results in relatively high hardware us-
age per op compared to integer pipelines (fig. 16). Despite this cost,
both boards are able to execute this pipeline at 38 Megapixels/sec-
ond (fig. 15). We believe FPGA vendors will add better support for
floating point operations in the near future.

7 Discussion and Future Work

Rigel takes pipelines specified in the multi-rate line-buffered
pipeline architecture and compiles them to FPGA designs. Efficient
hardware implementation of advanced image processing and vision
algorithms necessitates a system that can support image pyramids,
sparse computations, and space-time implementation tradeoffs. We
showed how the simple multi-rate primitives in our architecture
can support all three features simultaneously. Our implementations
of depth from stereo, Lucas-Kande, Gaussian pyramids, and the
SIFT descriptor use these techniques to achieve high performance
on FPGA platforms. Our system is able to support these applica-

0 10 20 30 40
Throughput (Megapixels/sec)

DESCRIPTOR
Rigel 7020

Rigel 7100

Figure 15: Measured throughput of DESCRIPTOR. Both boards
are running the same design, so they have similar performance, 38
Megapixels/sec.

DESCRIPTOR (1080p)
Board p SDF Px/Cyc Measured Px/Cyc FIFO KBs
7020 1/2 0.50000 0.49646 283
7100 1/2 0.50000 0.49646 283

Board Clock % Slices % DSP48s % BRAMs
7020 77 Mhz 86% 58% 70%
7100 75 Mhz 17% 6% 13%

Figure 16: Runtime and synthesis statistics for DESCRIPTOR.
Rigel’s synthesized hardware is able to execute this sparse,
variable-latency pipeline in very near to the predicted number of
cycles. DSP48s were used to emulate floating point operations,
which are not natively supported by the Zynq FPGA.

tions end-to-end, from a high-level pipeline description to an FPGA
design running at 20–463 megapixels/second.

Implementing image processing applications in Rigel is faster and
higher-level than in existing hardware languages like Verilog. In
the future, we would like to examine ways to make Rigel’s compiler
infrastructure even more productive and convenient. In particular,
while our compiler uses SDF to inform the user what modules in
their pipeline are running at low throughputs, it requires them to fix
these problems manually or with metaprogramming. We also re-
quire the user to manually specify scheduling choices like FIFO
sizes. We think that in both these cases some simple heuristics
could be used to save programmer effort while still providing suffi-
cient performance.

While we demonstrated the viability of our system with a camera
test rig, in the future we would like to see this developed into a
full, user-friendly research platform, possibly as an extension to
existing models for programmable cameras [Adams et al. 2010].
We envision this platform allowing the user to easily configure and
run different multi-camera and output setups, making hardware and
FPGA design for image processing accessible to a wider audience.

8 Acknowledgments

Thanks to Niels Joubert for help with the camera test rig and quad-
copter video. This work has been supported by the DOE Of-
fice of Science ASCR in the ExMatEx and ExaCT Exascale Co-
Design Centers, program manager Karen Pao; DARPA Contract
No. HR0011-11-C-0007; DARPA Agreement No. FA8750-14-
2-0009; fellowships and grants from NVIDIA, Intel, and Google;
and the Stanford Pervasive Parallelism Lab (supported by Oracle,
AMD, Intel, and NVIDIA). Any opinions, findings and conclusion
or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of DARPA.

References

ADAMS, A., TALVALA, E.-V., PARK, S. H., JACOBS, D. E.,
AJDIN, B., GELFAND, N., DOLSON, J., VAQUERO, D., BAEK,

J., TICO, M., LENSCH, H. P. A., MATUSIK, W., PULLI, K.,
HOROWITZ, M., AND LEVOY, M. 2010. The Frankencamera:
An experimental platform for computational photography. ACM
Transactions on Graphics 29, 4 (July), 29:1–29:12.

ADELSON, E. H., ANDERSON, C. H., BERGEN, J. R., BURT,
P. J., AND OGDEN, J. M. 1984. Pyramid methods in image
processing. RCA engineer 29, 6, 33–41.

BILSEN, G., ENGELS, M., LAUWEREINS, R., AND PEPER-
STRAETE, J. 1995. Cyclo-static data flow. In 1995 International
Conference on Acoustics, Speech, and Signal Processing, vol. 5,
3255–3258.

BOUGUET, J.-Y. 2001. Pyramidal implementation of the affine
Lucas Kanade feature tracker description of the algorithm. Tech.
rep., Intel Corporation.

BRUNHAVER, J. 2015. Design and Optimization of a Stencil En-
gine. PhD thesis, Stanford University.

DEVITO, Z., HEGARTY, J., AIKEN, A., HANRAHAN, P., AND
VITEK, J. 2013. Terra: A multi-stage language for high-
performance computing. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, 105–116.

ELINUX, 2015. Jetson computer vision performance. http://elinux.
org/Jetson/Computer Vision Performance. [Online; accessed 12-April-
2016].

HAMEED, R., QADEER, W., WACHS, M., AZIZI, O., SOLOMAT-
NIKOV, A., LEE, B. C., RICHARDSON, S., KOZYRAKIS, C.,
AND HOROWITZ, M. 2010. Understanding sources of ineffi-
ciency in general-purpose chips. In Proceedings of the 37th An-
nual International Symposium on Computer Architecture, ACM,
37–47.

HARRIS, C., AND STEPHENS, M. 1988. A combined corner and
edge detector. In Proceedings of the 4th Alvey Vision Conference,
147–151.

HEGARTY, J., BRUNHAVER, J., DEVITO, Z., RAGAN-KELLEY,
J., COHEN, N., BELL, S., VASILYEV, A., HOROWITZ, M.,
AND HANRAHAN, P. 2014. Darkroom: Compiling high-level
image processing code into hardware pipelines. ACM Transac-
tions on Graphics 33, 4 (July), 144:1–144:11.

HORSTMANNSHOFF, J., GROTKER, T., AND MEYR, H. 1997.
Mapping multirate dataflow to complex rt level hardware mod-
els. In Application-Specific Systems, Architectures and Proces-
sors, 1997. Proceedings., IEEE International Conference on,
283–292.

HUANG, J., QIAN, F., GERBER, A., MAO, Z. M., SEN, S., AND
SPATSCHECK, O. 2012. A close examination of performance
and power characteristics of 4g lte networks. In Proceedings of
the 10th international conference on Mobile systems, applica-
tions, and services, ACM, 225–238.

LEE, E. A., AND MESSERSCHMITT, D. G. 1987. Static scheduling
of synchronous data flow programs for digital signal processing.
IEEE Transactions on Computers 100, 1, 24–35.

LEISERSON, C. E., AND SAXE, J. B. 1991. Retiming synchronous
circuitry. Algorithmica 6, 1-6, 5–35.

LOWE, D. 1999. Object recognition from local scale-invariant
features. In The Proceedings of the Seventh IEEE International
Conference on Computer Vision, vol. 2, 1150–1157 vol.2.

LUCAS, B. D., KANADE, T., ET AL. 1981. An iterative image
registration technique with an application to stereo vision. In
International Joint Conference on Artificial Intelligence, vol. 81,
674–679.

MULLAPUDI, R. T., ADAMS, A., SHARLET, D., RAGAN-
KELLEY, J., AND FATAHALIAN, K. 2016. Automatically
scheduling halide image processing pipelines. ACM Transac-
tions on Graphics 35, 4 (July).

MURTHY, P. K., AND LEE, E. 2002. Multidimensional syn-
chronous dataflow. IEEE Transactions on Signal Processing 50,
8, 2064–2079.

MURTHY, P., BHATTACHARYYA, S., AND LEE, E. 1997. Joint
minimization of code and data for synchronous dataflow pro-
grams. Formal Methods in System Design 11, 1, 41–70.

RAGAN-KELLEY, J., ADAMS, A., PARIS, S., LEVOY, M., AMA-
RASINGHE, S., AND DURAND, F. 2012. Decoupling algo-
rithms from schedules for easy optimization of image processing
pipelines. ACM Transactions on Graphics 31, 4, 32.

SCHARSTEIN, D., AND SZELISKI, R. 2002. A taxonomy and eval-
uation of dense two-frame stereo correspondence algorithms. In-
ternational Journal of Computer Vision 47, 1-3, 7–42.

SUGERMAN, J., FATAHALIAN, K., BOULOS, S., AKELEY, K.,
AND HANRAHAN, P. 2009. Gramps: A programming model for
graphics pipelines. ACM Transactions on Graphics 28, 1 (Feb.),
4:1–4:11.

VIVADO, 2016. Vivado high-level synthesis. http://www.xilinx.com/
products/design-tools/vivado/integration/esl-design/. [Online; accessed 12-
April-2016].

XILINX. 2016. Zynq-7000 All Programmable SoC Overview.
DS190 Rev. 1.9.

XILINX, 2016. Power efficiency. http://www.xilinx.com/products/
technology/power.html. [Online; accessed 12-April-2016].

http://elinux.org/Jetson/Computer_Vision_Performance
http://elinux.org/Jetson/Computer_Vision_Performance
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/
http://www.xilinx.com/products/technology/power.html
http://www.xilinx.com/products/technology/power.html

