
Ray Tracing on Programmable Graphics Hardware

Timothy J. Purcell Ian Buck William R. Mark ∗ Pat Hanrahan

Stanford University †

Abstract

Recently a breakthrough has occurred in graphics hardware: fixed
function pipelines have been replaced with programmable vertex
and fragment processors. In the near future, the graphics pipeline
is likely to evolve into a general programmable stream processor
capable of more than simply feed-forward triangle rendering.

In this paper, we evaluate these trends in programmability of
the graphics pipeline and explain how ray tracing can be mapped
to graphics hardware. Using our simulator, we analyze the per-
formance of a ray casting implementation on next generation pro-
grammable graphics hardware. In addition, we compare the perfor-
mance difference between non-branching programmable hardware
using a multipass implementation and an architecture that supports
branching. We also show how this approach is applicable to other
ray tracing algorithms such as Whitted ray tracing, path tracing, and
hybrid rendering algorithms. Finally, we demonstrate that ray trac-
ing on graphics hardware could prove to be faster than CPU based
implementations as well as competitive with traditional hardware
accelerated feed-forward triangle rendering.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing

Keywords: Programmable Graphics Hardware, Ray Tracing

1 Introduction

Real-time ray tracing has been a goal of the computer-graphics
community for many years. Recently VLSI technology has reached
the point where the raw computational capability of a single chip
is sufficient for real-time ray tracing. Real-time ray tracing has
been demonstrated on small scenes on a single general-purpose
CPU with SIMD floating point extensions [Wald et al. 2001b], and
for larger scenes on a shared memory multiprocessor [Parker et al.
1998; Parker et al. 1999] and a cluster [Wald et al. 2001b; Wald
et al. 2001a]. Various efforts are under way to develop chips spe-
cialized for ray tracing, and ray tracing chips that accelerate off-line
rendering are commercially available [Hall 2001]. Given that real-
time ray tracing is possible in the near future, it is worthwhile to
study implementations on different architectures with the goal of
providing maximum performance at the lowest cost.

∗Currently at NVIDIA Corporation
†{tpurcell, ianbuck, billmark, hanrahan}@graphics.stanford.edu

In this paper, we describe an alternative approach to real-time ray
tracing that has the potential to out perform CPU-based algorithms
without requiring fundamentally new hardware: using commodity
programmable graphics hardware to implement ray tracing. Graph-
ics hardware has recently evolved from a fixed-function graph-
ics pipeline optimized for rendering texture-mapped triangles to a
graphics pipeline with programmable vertex and fragment stages.
In the near-term (next year or two) the graphics processor (GPU)
fragment program stage will likely be generalized to include float-
ing point computation and a complete, orthogonal instruction set.
These capabilities are being demanded by programmers using the
current hardware. As we will show, these capabilities are also suf-
ficient for us to write a complete ray tracer for this hardware. As
the programmable stages become more general, the hardware can
be considered to be a general-purpose stream processor. The stream
processing model supports a variety of highly-parallelizable algo-
rithms, including ray tracing.

In recent years, the performance of graphics hardware has in-
creased more rapidly than that of CPUs. CPU designs are opti-
mized for high performance on sequential code, and it is becoming
increasingly difficult to use additional transistors to improve per-
formance on this code. In contrast, programmable graphics hard-
ware is optimized for highly-parallel vertex and fragment shading
code [Lindholm et al. 2001]. As a result, GPUs can use additional
transistors much more effectively than CPUs, and thus sustain a
greater rate of performance improvement as semiconductor fabri-
cation technology advances.

The convergence of these three separate trends – sufficient raw
performance for single-chip real-time ray tracing; increasing GPU
programmability; and faster performance improvements on GPUs
than CPUs – make GPUs an attractive platform for real-time ray
tracing. GPU-based ray tracing also allows for hybrid rendering
algorithms; e.g. an algorithm that starts with a Z-buffered rendering
pass for visibility, and then uses ray tracing for secondary shadow
rays. Blurring the line between traditional triangle rendering and
ray tracing allows for a natural evolution toward increased realism.

In this paper, we show how to efficiently implement ray tracing
on GPUs. The paper contains three main contributions:

• We show how ray tracing can be mapped to a stream pro-
cessing model of parallel computation. As part of this map-
ping, we describe an efficient algorithm for mapping the in-
nermost ray-triangle intersection loop to multiple rendering
passes. We then show how the basic ray caster can be ex-
tended to include shadows, reflections, and path tracing.

• We analyze the streaming GPU-based ray caster’s perfor-
mance and show that it is competitive with current CPU-based
ray casting. We also show initial results for a system including
secondary rays. We believe that in the near future, GPU-based
ray tracing will be much faster than CPU-based ray tracing.

• To guide future GPU implementations, we analyze the com-
pute and memory bandwidth requirements of ray casting on
GPUs. We study two basic architectures: one architecture
without branching that requires multiple passes, and another
with branching that requires only a single pass. We show that

the single pass version requires significantly less bandwidth,
and is compute-limited. We also analyze the performance of
the texture cache when used for ray casting and show that it is
very effective at reducing bandwidth.

2 Programmable Graphics Hardware

2.1 The Current Programmable Graphics Pipeline

Application

Vertex Program

Rasterization

Fragment Program

Display

Figure 1: The programmable graphics pipeline.

A diagram of a modern graphics pipeline is shown in figure 1.
Today’s graphics chips, such as the NVIDIA GeForce3 [NVIDIA
2001] and the ATI Radeon 8500 [ATI 2001] replace the fixed-
function vertex and fragment (including texture) stages with pro-
grammable stages. These programmable vertex and fragment en-
gines execute user-defined programs and allow fine control over
shading and texturing calculations. An NVIDIA vertex program
consists of up to 128 4-way SIMD floating point instructions [Lind-
holm et al. 2001]. This vertex program is run on each incoming ver-
tex and the computed results are passed on to the rasterization stage.
The fragment stage is also programmable, either through NVIDIA
register combiners [Spitzer 2001] or DirectX 8 pixel shaders [Mi-
crosoft 2001]. Pixel shaders, like vertex programs, provide a 4-way
SIMD instruction set augmented with instructions for texturing, but
unlike vertex programs operate on fixed-point values. In this pa-
per, we will be primarily interested in the programmable fragment
pipeline; it is designed to operate at the system fill rate (approxi-
mately 1 billion fragments per second).

Programmable shading is a recent innovation and the current
hardware has many limitations:

• Vertex and fragment programs have simple, incomplete in-
struction sets. The fragment program instruction set is much
simpler than the vertex instruction set.

• Fragment program data types are mostly fixed-point. The in-
put textures and output framebuffer colors are typically 8-bits
per color component. Intermediate values in registers have
only slightly more precision.

• There are many resource limitations. Programs have a limited
number of instructions and a small number of registers. Each
stage has a limited number of inputs and outputs (e.g. the
number of outputs from the vertex stage is constrained by the
number of vertex interpolants).

• The number of active textures and the number of dependent
textures is limited. Current hardware permits certain instruc-
tions for computing texture addresses only at certain points
within the program. For example, a DirectX 8 PS 1.4 pixel

shader has two stages: a first texture addressing stage consist-
ing of four texture fetch instructions followed by eight color
blending instructions, and then a color computation stage con-
sisting of additional texture fetches followed by color com-
bining arithmetic. This programming model permits a single
level of dependent texturing.

• Only a single color value may be written to the framebuffer in
each pass.

• Programs cannot loop and there are no conditional branching
instructions.

2.2 Proposed Near-term Programmable Graphics

Pipeline

The limitations of current hardware make it difficult to implement
ray tracing in a fragment program. Fortunately, due to the inter-
est in programmable shading for mainstream game applications,
programmable pipelines are rapidly evolving and many hardware
and software vendors are circulating proposals for future hardware.
In fact, many of the current limitations are merely a result of the
fact that they represent the very first generation of programmable
hardware. In this paper, we show how to implement a ray tracer
on an extended hardware model that we think approximates hard-
ware available in the next year or two. Our model is based loosely
on proposals by Microsoft for DirectX 9.0 [Marshall 2001] and by
3DLabs for OpenGL 2.0 [3DLabs 2001].

Our target baseline architecture has the following features:

• A programmable fragment stage with floating point instruc-
tions and registers. We also assume floating point texture and
framebuffer formats.

• Enhanced fragment program assembly instructions. We in-
clude instructions which are now only available at the vertex
level. Furthermore, we allow longer programs; long enough
so that our basic ray tracing components may be downloaded
as a single program (our longest program is on the order of 50
instructions).

• Texture lookups are allowed anywhere within a fragment pro-
gram. There are no limits on the number of texture fetches or
levels of texture dependencies within a program.

• Multiple outputs. We allow 1 or 2 floating point RGBA (4-
vectors) to be written to the framebuffer by a fragment pro-
gram. We also assume the fragment program can render di-
rectly to a texture or the stencil buffer.

We consider these enhancements a natural evolution of current
graphics hardware. As already mentioned, all these features are
actively under consideration by various vendors.

At the heart of any efficient ray tracing implementation is the
ability to traverse an acceleration structure and test for an intersec-
tion of a ray against a list of triangles. Both these abilities require
a looping construct. Note that the above architecture does not in-
clude data-dependent conditional branching in its instruction set.
Despite this limitation, programs with loops and conditionals can
be mapped to this baseline architecture using the multipass render-
ing technique presented by Peercy et al. [2000]. To implement a
conditional using their technique, the conditional predicate is first
evaluated using a sequence of rendering passes, and then a sten-
cil bit is set to true or false depending on the result. The body of
the conditional is then evaluated using additional rendering passes,
but values are only written to the framebuffer if the corresponding
fragment’s stencil bit is true.

Although their algorithm was developed for a fixed-function
graphics pipeline, it can be extended and used with a programmable
pipeline. We assume the addition of two hardware features to make
the Peercy et al. algorithm more efficient: direct setting of stencil
bits and an early fragment kill similar to Z occlusion culling [Kirk
2001]. In the standard OpenGL pipeline, stencil bits may be set by
testing the alpha value. The alpha value is computed by the frag-
ment program and then written to the framebuffer. Setting the sten-
cil bit from the computed alpha value requires an additional pass.
Since fragment programs in our baseline architecture can modify
the stencil values directly, we can eliminate this extra pass. Another
important rendering optimization is an early fragment kill. With an
early fragment kill, the depth or stencil test is executed before the
fragment program stage and the fragment program is executed only
if the fragment passes the stencil test. If the stencil bit is false, no in-
structions are executed and no texture or framebuffer bandwidth is
used (except to read the 8-bit stencil value). Using the combination
of these two techniques, multipass rendering using large fragment
programs under the control of the stencil buffer is quite efficient.

As we will see, ray tracing involves significant looping. Al-
though each rendering pass is efficient, extra passes still have a cost;
each pass consumes extra bandwidth by reading and writing inter-
mediate values to texture (each pass also requires bandwidth to read
stencil values). Thus, fewer resources would be used if these inner
loops over voxels and triangles were coalesced into a single pass.
The obvious way to do this would be to add branching to the frag-
ment processing hardware. However, adding support for branch-
ing increases the complexity of the GPU hardware. Non-branching
GPUs may use a single instruction stream to feed several fragment
pipelines simultaneously (SIMD computation). GPUs that support
branching require a separate instruction stream for each processing
unit (MIMD computation). Therefore, graphics architects would
like to avoid branching if possible. As a concrete example of this
trade off, we evaluate the efficiency of ray casting on two architec-
tures, one with and one without branching:

• Multipass Architecture. Supports arbitrary texture reads,
floating-point texture and framebuffer formats, general float-
ing point instructions, and two floating point 4-vector outputs.
Branching is implemented via multipass rendering.

• Branching Architecture. Multipass architecture enhanced
to include support for conditional branching instructions for
loops and control flow.

2.3 The Streaming Graphics Processor Abstraction

As the graphics processor evolves to include a complete instruc-
tion set and larger data types, it appears more and more like a
general-purpose processor. However, the challenge is to intro-
duce programmability without compromising performance, for oth-
erwise the GPU would become more like the CPU and lose its cost-
performance advantages. In order to guide the mapping of new ap-
plications to graphics architectures, we propose that we view next-
generation graphics hardware as a streaming processor. Stream
processing is not a new idea. Media processors transform streams
of digital information as in MPEG video decode. The IMAGINE
processor is an example of a general-purpose streaming processor
[Khailany et al. 2000].

Streaming computing differs from traditional computing in that
the system reads the data required for a computation as a sequential
stream of elements. Each element of a stream is a record of data
requiring a similar computation. The system executes a program
or kernel on each element of the input stream placing the result on
an output stream. In this sense, a programmable graphics processor
executes a vertex program on a stream of vertices, and a fragment
program on a stream of fragments. Since, for the most part we

are ignoring vertex programs and rasterization, we are treating the
graphics chip as basically a streaming fragment processor.

The streaming model of computation leads to efficient imple-
mentations for three reasons. First, since each stream element’s
computation is independent from any other, designers can add ad-
ditional pipelines that process elements of the stream in parallel.
Second, kernels achieve high arithmetic intensity. That is, they per-
form a lot of computation per small fixed-size record. As a result
the computation to memory bandwidth ratio is high. Third, stream-
ing hardware can hide the memory latency of texture fetches by
using prefetching [Torborg and Kajiya 1996; Anderson et al. 1997;
Igehy et al. 1998]. When the hardware fetches a texture for a frag-
ment, the fragment registers are placed in a FIFO and the fragment
processor starts processing another fragment. Only after the texture
is fetched does the processor return to that fragment. This method
of hiding latency is similar to multithreading [Alverson et al. 1990]
and works because of the abundant parallelism in streams. In sum-
mary, the streaming model allows graphics hardware to exploit par-
allelism, to utilize bandwidth efficiently, and to hide memory la-
tency. As a result, graphics hardware makes efficient use of VLSI
resources.

The challenge is then to map ray tracing onto a streaming model
of computation. This is done by breaking the ray tracer into kernels.
These kernels are chained together by streams of data, originating
from data stored in textures and the framebuffer.

3 Streaming Ray Tracing

In this section, we show how to reformulate ray tracing as a stream-
ing computation. A flow diagram for a streaming ray tracer is found
in figure 2.

Generate
Eye Rays

Traverse
Acceleration
Structure

Intersect
Triangles

Grid of
Triangle List
Offsets

Camera

Triangles
Triangle List

Shade Hit
and Generate
Shading RaysMaterials

Normals

Figure 2: A streaming ray tracer.

In this paper, we assume that all scene geometry is represented
as triangles stored in an acceleration data structure before rendering
begins. In a typical scenario, an application would specify the scene
geometry using a display list, and the graphics library would place
the display list geometry into the acceleration data structure. We
will not consider the cost of building this data structure. Since this
may be an expensive operation, this assumption implies that the
algorithm described in this paper may not be efficient for dynamic
scenes.

The second design decision was to use a uniform grid to accel-
erate ray tracing. There are many possible acceleration data struc-
tures to choose from: bounding volume hierarchies, bsp trees, k-
d trees, octrees, uniform grids, adaptive grids, hierarchical grids,
etc. We chose uniform grids for two reasons. First, many experi-
ments have been performed using different acceleration data struc-

tures on different scenes (for an excellent recent study see Havran
et al. [2000]). From these studies no single acceleration data struc-
ture appears to be most efficient; all appear to be within a factor
of two of each other. Second, uniform grids are particularly sim-
ple for hardware implementations. Accesses to grid data structures
require constant time; hierarchical data structures, in contrast, re-
quire variable time per access and involve pointer chasing. Code
for grid traversal is also very simple and can be highly optimized in
hardware. In our system, a grid is represented as a 3D texture map,
a memory organization currently supported by graphics hardware.
We will discuss further the pros and cons of the grid in section 5.

We have split the streaming ray tracer into four kernels: eye
ray generation, grid traversal, ray-triangle intersection, and shad-
ing. The eye ray generator kernel produces a stream of viewing
rays. Each viewing ray is a single ray corresponding to a pixel in
the image. The traversal kernel reads the stream of rays produced
by the eye ray generator. The traversal kernel steps rays through the
grid until the ray encounters a voxel containing triangles. The ray
and voxel address are output and passed to the intersection kernel.
The intersection kernel is responsible for testing ray intersections
with all the triangles contained in the voxel. The intersector has
two types of output. If ray-triangle intersection (hit) occurs in that
voxel, the ray and the triangle that is hit is output for shading. If
no hit occurs, the ray is passed back to the traversal kernel and the
search for voxels containing triangles continues. The shading ker-
nel computes a color. If a ray terminates at this hit, then the color
is written to the accumulated image. Additionally, the shading ker-
nel may generate shadow or secondary rays; in this case, these new
rays are passed back to the traversal stage.

We implement ray tracing kernels as fragment programs. We ex-
ecute these programs by rendering a screen-sized rectangle. Con-
stant inputs are placed within the kernel code. Stream inputs are
fetched from screen-aligned textures. The results of a kernel are
then written back into textures. The stencil buffer controls which
fragments in the screen-sized rectangle and screen-aligned textures
are active. The 8-bit stencil value associated with each ray contains
the ray’s state. A ray’s state can be traversing, intersecting, shad-
ing, or done. Specifying the correct stencil test with a rendering
pass, we can allow the kernel to be run on only those rays which
are in a particular state.

The following sections detail the implementation of each ray
tracing kernel and the memory layout for the scene. We then de-
scribe several variations including ray casting, Whitted ray tracing
[Whitted 1980], path tracing, and shadow casting.

3.1 Ray Tracing Kernels

3.1.1 Eye Ray Generator

The eye ray generator is the simplest kernel of the ray tracer. Given
camera parameters, including viewpoint and a view direction, it
computes an eye ray for each screen pixel. The fragment program is
invoked for each pixel on the screen, generating an eye ray for each.
The eye ray generator also tests the ray against the scene bounding
box. Rays that intersect the scene bounding box are processed fur-
ther, while those that miss are terminated.

3.1.2 Traverser

The traversal stage searches for voxels containing triangles. The
first part of the traversal stage sets up the traversal calculation. The
second part steps along the ray enumerating those voxels pierced by
the ray. Traversal is equivalent to 3D line drawing and has a per-ray
setup cost and a per-voxel rasterization cost.

We use a 3D-DDA algorithm [Fujimoto et al. 1986] for this
traversal. After each step, the kernel queries the grid data struc-
ture which is stored as a 3D texture. If the grid contains a null

pointer, then that voxel is empty. If the pointer is not null, the voxel
contains triangles. In this case, a ray-voxel pair is output and the
ray is marked so that it is tested for intersection with the triangles
in that voxel.

Implementing the traverser loop on the multipass architecture re-
quires multiple passes. The once per ray setup is done as two passes
and each step through a voxel requires an additional pass. At the
end of each pass, the fragment program must store all the stepping
parameters used within the loop to textures, which then must be
read for the next pass. We will discuss the multipass implementa-
tion further after we discuss the intersection stage.

Triangle

Textures
Vertex

Triangle List
Texture

Texture
Grid

vox0 vox1

0 3 1 3 4521 . . .

vox0 vox1 vox2 vox3 vox4 vox5

170 78627 694

voxm
. . .

y zx y zx

y zx y zx

y zx y zx y zx y zx y zx

v0

v1

v2 y zxy zx

y zx y zx

y zx

y zx
tri0 tri1 tri2 tri3 trin

. . .

. . .

. . .

Figure 4: The grid and triangle data structures stored in texture
memory. Each grid cell contains a pointer to a list of triangles. If
this pointer is null, then no triangles are stored in that voxel. Grids
are stored as 3D textures. Triangle lists are stored in another tex-
ture. Voxels containing triangles point to the beginning of a triangle
list in the triangle list texture. The triangle list consists of a set of
pointers to vertex data. The end of the triangle list is indicated by a
null pointer. Finally, vertex positions are stored in textures.

3.1.3 Intersector

The triangle intersection stage takes a stream of ray-voxel pairs and
outputs ray-triangle hits. It does this by performing ray-triangle in-
tersection tests with all the triangles within a voxel. If a hit occurs,
a ray-triangle pair is passed to the shading stage. The code for com-
puting a single ray-triangle intersection is shown in figure 5. The
code is similar to that used by Carr et al. [2002] for their DirectX
8 PS 1.4 ray-triangle intersector. We discuss their system further in
section 5.

Because triangles can overlap multiple grid cells, it is possible
for an intersection point to lie outside the current voxel. The in-
tersection kernel checks for this case and treats it as a miss. Note
that rejecting intersections in this way may cause a ray to be tested
against the same triangle multiple times (in different voxels). It is
possible to use a mailbox algorithm to prevent these extra intersec-
tion calculations [Amanatides and Woo 1987], but mailboxing is
difficult to implement when multiple rays are traced in parallel.

The layout of the grid and triangles in texture memory is shown
in figure 4. As mentioned above, each voxel contains an offset into
a triangle-list texture. The triangle-list texture contains a delimited
list of offsets into triangle-vertex textures. Note that the triangle-
list texture and the triangle-vertex textures are 1D textures. In fact,
these textures are being used as a random-access read-only memory.
We represent integer offsets as 1-component floating point textures
and vertex positions in three floating point RGB textures. Thus,
theoretically, four billion triangles could be addressed in texture
memory with 32-bit integer addressing. However, much less texture
memory is actually available on current graphics cards. Limitations
on the size of 1D textures can be overcome by using 2D textures

Generate

Find
Intersection

Shade Hit

Shadow Rays
Generate

Shade Hit

Find Nearest
Intersection

Eye Rays
Generate

Shade Hit

Find Nearest
Intersection

Eye Rays

L+2

Generate

Shade Hit

Find Nearest
Intersection

Eye Rays

1

Shadow Caster Ray Caster Whitted Ray Tracer Path Tracer
(a) (b) (c) (d)

Figure 3: Data flow diagrams for the ray tracing algorithms we implement. The algorithms depicted are (a) shadow casting, (b) ray casting,
(c) Whitted ray tracing, and (d) path tracing. For ray tracing, each ray-surface intersection generates L + 2 rays, where L is the number of
lights in a scene, corresponding to the number of shadow rays to be tested, and the other two are reflection and refraction rays. Path tracing
randomly chooses one ray bounce to follow and the feedback path is only one ray wide.

float4 IntersectTriangle(float3 ro, float3 rd, int list pos, float4 h){

float tri id = texture(list pos, trilist);

float3 v0 = texture(tri id, v0);

float3 v1 = texture(tri id, v1);

float3 v2 = texture(tri id, v2);

float3 edge1 = v1 - v0;

float3 edge2 = v2 - v0;

float3 pvec = Cross(rd, edge2);

float det = Dot(edge1, pvec);

float inv det = 1/det;

float3 tvec = ro - v0;

float u = Dot(tvec, pvec) * inv det;

float3 qvec = Cross(tvec, edge1);

float v = Dot(rd, qvec) * inv det;

float t = Dot(edge2, qvec) * inv det;

bool validhit = select(u >= 0.0f, true, false);

validhit = select(v >= 0, validhit, false);

validhit = select(u+v <= 1, validhit, false);

validhit = select(t < h[0], validhit, false);

validhit = select(t >= 0, validhit, false);

t = select(validhit, t, h[0]);

u = select(validhit, u, h[1]);

v = select(validhit, v, h[2]);

float id = select(validhit, tri id, h[3]);

return float4({t, u, v, id});

}

Figure 5: Code for ray-triangle intersection.

with the proper address translation, as well as segmenting the data
across multiple textures.

As with the traversal stage, the inner loop over all the triangles
in a voxel involves multiple passes. Each ray requires a single pass
per ray-triangle intersection.

3.1.4 Shader

The shading kernel evaluates the color contribution of a given ray
at the hit point. The shading calculations are exactly like those in
the standard graphics pipeline. Shading data is stored in memory
much like triangle data. A set of three RGB textures, with 32-bits
per channel, contains the vertex normals and vertex colors for each
triangle. The hit information that is passed to the shader includes
the triangle number. We access the shading information by a simple

dependent texture lookup for the particular triangle specified.
By choosing different shading rays, we can implement several

flavors of ray tracing using our streaming algorithm. We will look
at ray casting, Whitted-style ray tracing, path tracing, and shadow
casting. Figure 3 shows a simplified flow diagram for each of the
methods discussed, along with an example image produced by our
system.

The shading kernel optionally generates shadow, reflection, re-
fraction, or randomly generated rays. These secondary rays are
placed in texture locations for future rendering passes. Each ray
is also assigned a weight, so that when it is finally terminated, its
contribution to the final image may be simply added into the im-
age [Kajiya 1986]. This technique of assigning a weight to a ray
eliminates recursion and simplifies the control flow.

Ray Caster. A ray caster generates images that are identical to
those generated by the standard graphics pipeline. For each pixel on
the screen, an eye ray is generated. This ray is fired into the scene
and returns the color of the nearest triangle it hits. No secondary
rays are generated, including no shadow rays. Most previous efforts
to implement interactive ray tracing have focused on this type of
computation, and it will serve as our basic implementation.

Whitted Ray Tracer. The classic Whitted-style ray tracer
[Whitted 1980] generates eye rays and sends them out into the
scene. Upon finding a hit, the reflection model for that surface is
evaluated, and then a pair of reflection and refraction rays, and a set
of shadow rays – one per light source – are generated and sent out
into the scene.

Path Tracer. In path tracing, rays are randomly scattered from
surfaces until they hit a light source. Our path tracer emulates the
Arnold renderer [Fajardo 2001]. One path is generated per sample
and each path contains 2 bounces.

Shadow Caster. We simulate a hybrid system that uses the stan-
dard graphics pipeline to perform hidden surface calculation in the
first pass, and then uses ray tracing algorithm to evaluate shadows.
Shadow casting is useful as a replacement for shadow maps and
shadow volumes. Shadow volumes can be extremely expensive to
compute, while for shadow maps, it tends to be difficult to set the
proper resolution. A shadow caster can be viewed as a deferred
shading pass [Molnar et al. 1992]. The shadow caster pass gener-
ates shadow rays for each light source and adds that light’s contri-
bution to the final image only if no blockers are found.

Multipass Branching
Kernel Instr. Memory Words Stencil Instr. Memory Words

Count R W M RS WS Count R W M
Generate Eye Ray 28 0 5 0 0 1 26 0 4 0
Traverse

Setup 38 11 12 0 1 0 22 7 0 0
Step 20 14 9 1 1 1 12 0 0 1

Intersect 41 14 5 10 1 1 36 0 0 10
Shade

Color 36 10 3 21 1 0 25 0 3 21
Shadow 16 11 8 0 1 1 10 0 0 0
Reflected 26 11 9 9 1 1 12 0 0 0
Path 17 14 9 9 1 1 11 3 0 0

Table 1: Ray tracing kernel summary. We show the number of instructions required to implement each of our kernels, along with the number
of 32-bit words of memory that must be read and written between rendering passes (R, W) and the number of memory words read from
random-access textures (M). Two sets of statistics are shown, one for the multipass architecture and another for the branching architecture.
For the multipass architecture, we also show the number of 8-bit stencil reads (RS) and writes (WS) for each kernel. Stencil read overhead is
charged for all rays, whether the kernel is executed or not.

3.2 Implementation

To evaluate the computation and bandwidth requirements of our
streaming ray tracer, we implemented each kernel as an assembly
language fragment program. The NVIDIA vertex program instruc-
tion set is used for fragment programs, with the addition of a few
instructions as described previously. The assembly language im-
plementation provides estimates for the number of instructions re-
quired for each kernel invocation. We also calculate the bandwidth
required by each kernel; we break down the bandwidth as stream
input bandwidth, stream output bandwidth, and memory (random-
access read) bandwidth.

Table 1 summarizes the computation and bandwidth required for
each kernel in the ray tracer, for both the multipass and the branch-
ing architectures. For the traversal and intersection kernels that in-
volve looping, the counts for the setup and the loop body are shown
separately. The branching architecture allows us to combine indi-
vidual kernels together; as a result the branching kernels are slightly
smaller since some initialization and termination instructions are
removed. The branching architecture permits all kernels to be run
together within a single rendering pass.

Using table 1, we can compute the total compute and bandwidth
costs for the scene.

C = R∗ (Cr + vCv + tCt + sCs)+R∗P∗Cstencil

Here R is the total number of rays traced. Cr is the cost to generate
a ray; Cv is the cost to walk a ray through a voxel; Ct is the cost of
performing a ray-triangle intersection; and Cs is the cost of shading.
P is the total number of rendering passes, and Cstencil is the cost of
reading the stencil buffer. The total cost associated with each stage
is determined by the number of times that kernel is invoked. This
number depends on scene statistics: v is the average number of vox-
els pierced by a ray; t is the average number of triangles intersected
by a ray; and s is the average number of shading calculations per
ray. The branching architecture has no stencil buffer checks, so
Cstencil is zero. The multipass architecture must pay the stencil read
cost for all rays over all rendering passes. The cost of our ray tracer
on various scenes will be presented in the results section.

Finally, we present an optimization to minimize the total num-
ber of passes motivated in part by Delany’s implementation of a
ray tracer for the Connection Machine [Delany 1988]. The traver-
sal and intersection kernels both involve loops. There are various
strategies for nesting these loops. The simplest algorithm would be
to step through voxels until any ray encounters a voxel containing
triangles, and then intersect that ray with those triangles. How-
ever, this strategy would be very inefficient, since during intersec-
tion only a few rays will have encountered voxels with triangles.

On a SIMD machine like the Connection Machine, this results in
very low processor utilization. For graphics hardware, this yields
an excessive number of passes resulting in large number of stencil
read operations dominating the performance. The following is a
more efficient algorithm:

generate eye ray
while (any(active(ray))) {

if (oracle(ray))
traverse(ray)

else
intersect(ray)

}
shade(ray)

After eye ray generation, the ray tracer enters a while loop which
tests whether any rays are active. Active rays require either further
traversals or intersections; inactive rays have either hit triangles or
traversed the entire grid. Before each pass, an oracle is called. The
oracle chooses whether to run a traverse or an intersect pass. Vari-
ous oracles are possible. The simple algorithm above runs an inter-
sect pass if any rays require intersection tests. A better oracle, first
proposed by Delany, is to choose the pass which will perform the
most work. This can be done by calculating the percentage of rays
requiring intersection vs. traversal. In our experiments, we found
that performing intersections once 20% of the rays require intersec-
tion tests produced the minimal number of passes, and is within a
factor of two to three of optimal for a SIMD algorithm performing
a single computation per rendering pass.

To implement this oracle, we assume graphics hardware main-
tains a small set of counters over the stencil buffer, which contains
the state of each ray. A total of eight counters (one per stencil bit)
would be more than sufficient for our needs since we only have
four states. Alternatively, we could use the OpenGL histogram op-
eration for the oracle if this operation were to be implemented with
high performance for the stencil buffer.

4 Results

4.1 Methodology

We have implemented functional simulators of our streaming ray
tracer for both the multipass and branching architectures. These
simulators are high level simulations of the architectures, written in
the C++ programming language. These simulators compute images
and gather scene statistics. Example statistics include the average
number of traversal steps taken per ray, or the average number of

Soda Hall Outside Soda Hall Inside Forest Top Down Forest Inside Bunny Ray Cast
v t s v t s v t s v t s v t s

14.41 2.52 0.44 26.11 40.46 1.00 81.29 34.07 0.96 130.7 47.90 0.97 93.93 13.88 0.82

Figure 6: Fundamental scene statistics for our test scenes. The statistics shown match the cost model formula presented in section 3.2. Recall
that v is the average number of voxels pierced by a ray; t is the average number of triangles intersected by a ray; and s is the average number
of shading calculations per ray. Soda hall has 1.5M triangles, the forest has 1.0M triangles, and the Stanford bunny has 70K triangles. All
scenes are rendered at 1024x1024 pixels.

ray-triangle intersection tests performed per ray. The multipass ar-
chitecture simulator also tracks the number and type of rendering
passes performed, as well as stencil buffer activity. These statistics
allow us to compute the cost for rendering a scene by using the cost
model described in section 3.

Both the multipass and the branching architecture simulators
generate a trace file of the memory reference stream for process-
ing by our texture cache simulator. In our cache simulations we
used a 64KB direct-mapped texture cache with a 48-byte line size.
This line size holds four floating point RGB texels, or three floating
point RGBA texels with no wasted space. The execution order of
fragment programs effects the caching behavior. We execute ker-
nels as though there were a single pixel wide graphics pipeline. It
is likely that a GPU implementation will include multiple parallel
fragment pipelines executing concurrently, and thus their accesses
will be interleaved. Our architectures are not specified at that level
of detail, and we are therefore not able to take such effects into
account in our cache simulator.

We analyze the performance of our ray tracer on five viewpoints
from three different scenes, shown in figure 6.

• Soda Hall is a relatively complex model that has been used
to evaluate other real-time ray tracing systems [Wald et al.
2001b]. It has walls made of large polygons and furnishings
made from very small polygons. This scene has high depth
complexity.

• The forest scene includes trees with millions of tiny triangles.
This scene has moderate depth complexity, and it is difficult
to perform occlusion culling. We analyze the cache behavior
of shadow and reflection rays using this scene.

• The bunny was chosen to demonstrate the extension of our ray
tracer to support shadows, reflections, and path tracing.

Figure 7 shows the computation and bandwidth requirements of
our test scenes. The computation and bandwidth utilized is broken
down by kernel. These graphs clearly show that the computation
and bandwidth for both architectures is dominated by grid traversal
and triangle intersection.

Choosing an optimal grid resolution for scenes is difficult. A
finer grid yields fewer ray-triangle intersection tests, but leads to
more traversal steps. A coarser grid reduces the number of traver-
sal steps, but increases the number of ray-triangle intersection tests.
We attempt to keep voxels near cubical shape, and specify grid res-
olution by the minimal grid dimension acceptable along any dimen-
sion of the scene bounding box. For the bunny, our minimal grid
dimension is 64, yielding a final resolution of 98 × 64 × 163. For
the larger Soda Hall and forest models, this minimal dimension is
128, yielding grid resolutions of 250 × 198 × 128 and 581 × 128 ×

581 respectively. These resolutions allow our algorithms to spend
equal amounts of time in the traversal and intersection kernels.

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

0

2

4

6

G
In

st
ru

ct
io

ns

Intersector
Traverser
Others

0

5

10

15

20

G
B

ytes

Multipass

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

0

2

4

G
In

st
ru

ct
io

ns

Intersector
Traverser
Others

0

5

10

15

G
B

ytes

Branching

Figure 7: Compute and bandwidth usage for our scenes. Each col-
umn shows the contribution from each kernel. Left bar on each plot
is compute, right is bandwidth. The horizontal line represents the
per-second bandwidth and compute performance of our hypotheti-
cal architecture. All scenes were rendered at 1024 × 1024 pixels.

4.2 Architectural Comparisons

We now compare the multipass and branching architectures. First,
we investigate the implementation of the ray caster on the multipass
architecture. Table 2 shows the total number of rendering passes
and the distribution of passes amongst the various kernels. The
total number of passes varies between 1000-3000. Although the
number of passes seems high, this is the total number needed to
render the scene. In the conventional graphics pipeline, many fewer
passes per object are used, but many more objects are drawn. In our
system, each pass only draws a single rectangle, so the speed of the
geometry processing part of the pipeline is not a factor.

We also evaluate the efficiency of the multipass algorithm. Re-
call that rays may be traversing, intersecting, shading, or done. The
efficiency of a pass depends on the percentage of rays processed in
that pass. In these scenes, the efficiency is between 6-10% for all
of the test scenes except for the outside view of Soda Hall. This

Pass Breakdown Per Ray Maximum SIMD
Total Traversal Intersection Other Traversals Intersections Efficiency

Soda Hall Outside 2443 692 1747 4 384 1123 0.009
Soda Hall Inside 1198 70 1124 4 60 1039 0.061
Forest Top Down 1999 311 1684 4 137 1435 0.062
Forest Inside 2835 1363 1468 4 898 990 0.068
Bunny Ray Cast 1085 610 471 4 221 328 0.105

Table 2: Breakdown of passes in the multipass system. Intersection and traversal make up the bulk of passes in the systems, with the rest of
the passes coming from ray generation, traversal setup, and shading. We also show the maximum number of traversal steps and intersection
tests for per ray. Finally, SIMD efficiency measures the average fraction of rays doing useful work for any given pass.

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

0

5

10

15

20

G
B

yt
es

Stencil
State Variables
Data Structures

Figure 8: Bandwidth consumption by data type. Left bars are for
multipass, right bars for branching. Overhead for reading the 8-bit
stencil value is shown on top. State variables are data written to and
read from texture between passes. Data structure bandwidth comes
from read-only data: triangles, triangle lists, grid cells, and shading
data. All scenes were rendered at 1024 × 1024 pixels.

viewpoint contains several rays that miss the scene bounding box
entirely. As expected, the resulting efficiency is much lower since
these rays never do any useful work during the rest of the compu-
tation. Although 10% efficiency may seem low, the fragment pro-
cessor utilization is much higher because we are using early frag-
ment kill to avoid consuming compute resources and non-stencil
bandwidth for the fragment. Finally, table 2 shows the maximum
number of traversal steps and intersection tests that are performed
per ray. Since the total number of passes depends on the worst case
ray, these numbers provide lower bounds on the number of passes
needed. Our multipass algorithm interleaves traversal and intersec-
tion passes and comes within a factor of two to three of the optimal
number of rendering passes. The naive algorithm, which performs
an intersection as soon as any ray hits a full voxel, requires at least
a factor of five times more passes than optimal on these scenes.

We are now ready to compare the computation and bandwidth
requirements of our test scenes on the two architectures. Figure 8
shows the same bandwidth measurements shown in figure 7 broken
down by data type instead of by kernel. The graph shows that, as ex-
pected, all of the bandwidth required by the branching architecture
is for reading voxel and triangle data structures from memory. The
multipass architecture, conversely, uses most of its bandwidth for
writing and reading intermediate values to and from texture mem-
ory between passes. Similarly, saving and restoring these interme-
diates requires extra instructions. In addition, significant bandwidth
is devoted to reading the stencil buffer. This extra computation and
bandwidth consumption is the fundamental limitation of the multi-
pass algorithm.

One way to reduce both the number of rendering passes and the
bandwidth consumed by intermediate values in the multipass archi-
tecture is to unroll the inner loops. We have presented data for a

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

Shadow Reflect
Forest

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 B
an

dw
id

th

Stencil
State Variables
Voxel Data
Triangle Data
Shading Data

Figure 9: Ratio of bandwidth with a texture cache to bandwidth
without a texture cache. Left bars are for multipass, right bars for
branching. Within each bar, the bandwidth consumed with a texture
cache is broken down by data type. All scenes were rendered at
1024 × 1024 pixels.

single traversal step or a single intersection test performed per ray
in a rendering pass. If we instead unroll our kernels to perform four
traversal steps or two intersection tests, all of our test scenes reduce
their total bandwidth usage by 50%. If we assume we can suppress
triangle and voxel memory references if a ray finishes in the mid-
dle of the pass, the total bandwidth reduction reaches 60%. At the
same time, the total instruction count required to render each scene
increases by less than 10%. With more aggressive loop unrolling
the bandwidth savings continue, but the total instruction count in-
crease varies by a factor of two or more between our scenes. These
results indicate that loop unrolling can make up for some of the
overhead inherent in the multipass architecture, but unrolling does
not achieve the compute to bandwidth ratio obtained by the branch-
ing architecture.

Finally, we compare the caching behavior of the two implemen-
tations. Figure 9 shows the bandwidth requirements when a texture
cache is used. The bandwidth consumption is normalized by di-
viding by the non-caching bandwidth reported earlier. Inspecting
this graph we see that the multipass system does not benefit very
much from texture caching. Most of the bandwidth is being used
for streaming data, in particular, for either the stencil buffer or for
intermediate results. Since this data is unique to each kernel in-
vocation, there is no reuse. In contrast, the branching architecture
utilizes the texture cache effectively. Since most of its bandwidth is
devoted to reading shared data structures, there is reuse. Studying
the caching behavior of triangle data only, we see that a 96-99%
hit rate is achieved by both the multipass and the branching system.
This high hit rate suggests that triangle data caches well, and that
we have a fairly small working set size.

In summary, the implementation of the ray caster on the multi-
pass architecture has achieved a very good balance between com-
putation and bandwidth. The ratio of instruction count to band-
width matches the capabilities of a modern GPU. For example, the

Relative
Extension Instructions Bandwidth
Shadow Caster 0.85 1.15
Whitted Ray Tracer 2.62 3.00
Path Tracer 3.24 4.06

Table 3: Number of instructions and amount of bandwidth con-
sumed by the extended algorithms to render the bunny scene using
the branching architecture, normalized by the ray casting cost.

NVIDIA GeForce3 is able to execute approximately 2G instruc-
tions/s in its fragment processor, and has roughly 8GB/s of memory
bandwidth. Expanding the traversal and intersection kernels to per-
form multiple traversal steps or intersection tests per pass reduces
the bandwidth required for the scene at the cost of increasing the
computational requirements. The amount of loop unrolling can be
changed to match the computation and bandwidth capabilities of
the underlying hardware. In comparison, the branching architec-
ture consumes fewer instructions and significantly less bandwidth.
As a result, the branching architecture is severely compute-limited
based on today’s GPU bandwidth and compute rates. However, the
branching architecture will become more attractive in the future as
the compute to bandwidth ratio on graphics chips increases with the
introduction of more parallel fragment pipelines.

4.3 Extended Algorithms

With an efficient ray caster in place, implementing extensions such
as shadow casting, full Whitted ray tracing, or path tracing is quite
simple. Each method utilizes the same ray-triangle intersection
loop we have analyzed with the ray caster, but implements a differ-
ent shading kernel which generates new rays to be fed back through
our system. Figure 3 shows images of the bunny produced by our
system for each of the ray casting extensions we simulate. The total
cost of rendering a scene depends on both the number of rays traced
and the cache performance.

Table 3 shows the number of instructions and bandwidth required
to produce each image of the bunny relative to the ray casting cost,
all using the branching architecture. The path traced bunny was
rendered at 256 × 256 pixels with 64 samples and 2 bounces per
pixel while the others were rendered at 1024 × 1024 pixels. The
ray cast bunny finds a valid hit for 82% of its pixels and hence 82%
of the primary rays generate secondary rays. If all rays were equal,
one would expect the shadow caster to consume 82% of the instruc-
tions and bandwidth of the ray caster; likewise the path tracer would
consume 3.2 times that of the ray caster. Note that the instruction
usage is very close to the expected value, but that the bandwidth
consumed is more.

Additionally, secondary rays do not cache as well as eye rays,
due to their generally incoherent nature. The last two columns of
figure 9 illustrate the cache effectiveness on secondary rays, mea-
sured separately from primary rays. For these tests, we render the
inside forest scene in two different styles. “Shadow” is rendered
with three light sources with each hit producing three shadow rays.
“Reflect” applies a two bounce reflection and single light source
shading model to each primitive in the scene. For the multipass
rendering system, the texture cache is unable to reduce the total
bandwidth consumed by the system. Once again the streaming
data destroys any locality present in the triangle and voxel data.
The branching architecture results demonstrate that scenes with
secondary rays can benefit from caching. The system achieves a
35% bandwidth reduction for the shadow computation. However
caching for the reflective forest does not reduce the required band-
width. We are currently investigating ways to improve the perfor-
mance of our system for secondary rays.

5 Discussion

In this section, we discuss limitations of the current system and
future work.

5.1 Acceleration Data Structures

A major limitation of our system is that we rely on a preprocess-
ing step to build the grid. Many applications contain dynamic ge-
ometry, and to support these applications we need fast incremental
updates to the grid. Building acceleration data structures for dy-
namic scenes is an active area of research [Reinhard et al. 2000]. An
interesting possibility would be to use graphics hardware to build
the acceleration data structure. The graphics hardware could “scan
convert” the geometry into a grid. However, the architectures we
have studied in this paper cannot do this efficiently; to do opera-
tions like rasterization within the fragment processor they would
need the ability to write to arbitrary memory locations. This is a
classic scatter operation and would move the hardware even closer
to a general stream processor.

In this research we assumed a uniform grid. Uniform grids, how-
ever, may fail for scenes containing geometry and empty space at
many levels of detail. Since we view texture memory as random-
access memory, hierarchical grids could be added to our system.

Currently graphics boards contain relatively small amounts of
memory (in 2001 a typical board contains 64MB). Some of the
scenes we have looked at require 200MB - 300MB of texture mem-
ory to store the scene. An interesting direction for future work
would be to study hierarchical caching of the geometry as is com-
monly done for textures. The trend towards unified system and
graphics memory may ultimately eliminate this problem.

5.2 CPU vs. GPU

Wald et al. have developed an optimized ray tracer for a PC with
SIMD floating point extensions [Wald et al. 2001b]. On an 800
MHz Pentium III, they report a ray-triangle intersection rate of 20M
intersections/s. Carr et al. [2002] achieve 114M ray-triangle inter-
sections/s on an ATI Radeon 8500 using limited fixed point preci-
sion. Assuming our proposed hardware ran at the same speed as a
GeForce3 (2G instructions/s), we could compute 56M ray-triangle
intersections/s. Our branching architecture is compute limited; if
we increase the instruction issue rate by a factor of four (8G in-
structions/s) then we would still not use all the bandwidth available
on a GeForce3 (8GB/s). This would allow us to compute 222M ray-
triangle intersections per second. We believe because of the inher-
ently parallel nature of fragment programs, the number of GPU in-
structions that can be executed per second will increase much faster
than the number of CPU SIMD instructions.

Once the basic feasibility of ray tracing on a GPU has been
demonstrated, it is interesting to consider modifications to the GPU
that support ray tracing more efficiently. Many possibilities imme-
diately suggest themselves. Since rays are streamed through the
system, it would be more efficient to store them in a stream buffer
than a texture map. This would eliminate the need for a stencil
buffer to control conditional execution. Stream buffers are quite
similar to F-buffers which have other uses in multipass rendering
[Mark and Proudfoot 2001]. Our current implementation of the grid
traversal code does not map well to the vertex program instruction
set, and is thus quite inefficient. Since grid traversal is so similar to
rasterization, it might be possible to modify the rasterizer to walk
through the grid. Finally, the vertex program instruction set could
be optimized so that ray-triangle intersection could be performed in
fewer instructions.

Carr et al. [2002] have independently developed a method of
using the GPU to accelerate ray tracing. In their system the GPU

is only used to accelerate ray-triangle intersection tests. As in our
system, GPU memory is used to hold the state for many active rays.
In their system each triangle in turn is fed into the GPU and tested
for intersection with all the active rays. Our system differs from
theirs in that we store all the scene triangles in a 3D grid on the
GPU; theirs stores the acceleration structure on the CPU. We also
run the entire ray tracer on the GPU. Our system is much more effi-
cient than theirs since we eliminate the GPU-CPU communication
bottleneck.

5.3 Tiled Rendering

In the multipass architecture, the majority of the memory band-
width was consumed by saving and restoring temporary variables.
Since these streaming temporaries are only used once, there is no
bandwidth savings due to the cache. Unfortunately, when these
streaming variables are accessed as texture, they displace cacheable
data structures. The size of the cache we used is not large enough
to store the working set if it includes both temporary variables and
data structures. The best way to deal with this problem is to sepa-
rate streaming variables from cacheable variables.

Another solution to this problem is to break the image into small
tiles. Each tile is rendered to completion before proceeding to the
next tile. Tiling reduces the working set size, and if the tile size is
chosen so that the working set fits into the cache, then the streaming
variables will not displace the cacheable data structures. We have
performed some preliminary experiments along these lines and the
results are encouraging.

6 Conclusions

We have shown how viewing a programmable graphics processor
as a general parallel computation device can help us leverage the
graphics processor performance curve and apply it to more general
parallel computations, specifically ray tracing. We have shown that
ray casting can be done efficiently in graphics hardware. We hope
to encourage graphics hardware to evolve toward a more general
programmable stream architecture.

While many believe a fundamentally different architecture
would be required for real-time ray tracing in hardware, this work
demonstrates that a gradual convergence between ray tracing and
the feed-forward hardware pipeline is possible.

7 Acknowledgments

We would like to thank everyone in the Stanford Graphics Lab for
contributing ideas to this work. We thank Matt Papakipos from
NVIDIA for his thoughts on next generation graphics hardware,
and Kurt Akeley and our reviewers for their comments. Katie
Tillman stayed late and helped with editing. We would like to
thank Hanspeter Pfister and MERL for additional support. This
work was sponsored by DARPA (contracts DABT63-95-C-0085
and MDA904-98-C-A933), ATI, NVIDIA, Sony, and Sun.

References

3DLABS, 2001. OpenGL 2.0 whitepapers web site.
http://www.3dlabs.com/support/developer/ogl2/index.htm.

ALVERSON, R., CALLAHAN, D., CUMMINGS, D., KOBLENZ, B., PORTERFIELD,
A., AND SMITH, B. 1990. The Tera computer system. In Proceedings of the 1990
International Conference on Supercomputing, 1–6.

AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal algorithm for ray
tracing. In Eurographics ’87, 3–10.

ANDERSON, B., STEWART, A., MACAULAY, R., AND WHITTED, T. 1997.
Accommodating memory latency in a low-cost rasterizer. In 1997 SIGGRAPH /
Eurographics Workshop on Graphics hardware, 97–102.

ATI, 2001. RADEON 8500 product web site.
http://www.ati.com/products/pc/radeon8500128/index.html.

CARR, N. A., HALL, J. D., AND HART, J. C. 2002. The ray engine. Tech. Rep.
UIUCDCS-R-2002-2269, Department of Computer Science, University of Illinois.

DELANY, H. C. 1988. Ray tracing on a connection machine. In Proceedings of the
1988 International Conference on Supercomputing, 659–667.

FAJARDO, M. 2001. Monte carlo ray tracing in action. In State of the Art in Monte
Carlo Ray Tracing for Realistic Image Synthesis - SIGGRAPH 2001 Course 29.
151–162.

FUJIMOTO, A., TANAKA, T., AND IWATA, K. 1986. ARTS: Accelerated ray tracing
system. IEEE Computer Graphics and Applications 6, 4, 16–26.

HALL, D., 2001. The AR350: Today’s ray trace rendering processor. 2001
SIGGRAPH / Eurographics Workshop On Graphics Hardware - Hot 3D Session 1.
http://graphicshardware.org/previous/www 2001/presentations/
Hot3D Daniel Hall.pdf.

HAVRAN, V., PRIKRYL, J., AND PURGATHOFER, W. 2000. Statistical comparison
of ray-shooting efficiency schemes. Tech. Rep. TR-186-2-00-14, Institute of
Computer Graphics, Vienna University of Technology.

IGEHY, H., ELDRIDGE, M., AND PROUDFOOT, K. 1998. Prefetching in a texture
cache architecture. In 1998 SIGGRAPH / Eurographics Workshop on Graphics
hardware, 133–ff.

KAJIYA, J. T. 1986. The rendering equation. In Computer Graphics (Proceedings of
ACM SIGGRAPH 86), 143–150.

KHAILANY, B., DALLY, W. J., RIXNER, S., KAPASI, U. J., MATTSON, P.,
NAMKOONG, J., OWENS, J. D., AND TOWLES, B. 2000. IMAGINE: Signal and
image processing using streams. In Hot Chips 12. IEEE Computer Society Press.

KIRK, D., 2001. GeForce3 architecture overview.
http://developer.nvidia.com/docs/IO/1271/ATT/GF3ArchitectureOverview.ppt.

LINDHOLM, E., KILGARD, M. J., AND MORETON, H. 2001. A user-programmable
vertex engine. In Proceedings of ACM SIGGRAPH 2001, 149–158.

MARK, W. R., AND PROUDFOOT, K. 2001. The F-buffer: A rasterization-order
FIFO buffer for multi-pass rendering. In 2001 SIGGRAPH / Eurographics
Workshop on Graphics Hardware.

MARSHALL, B., 2001. DirectX graphics future. Meltdown 2001 Conference.
http://www.microsoft.com/mscorp/corpevents/meltdown2001/ppt/DXG9.ppt.

MICROSOFT, 2001. DirectX product web site. http://www.microsoft.com/directx/.

MOLNAR, S., EYLES, J., AND POULTON, J. 1992. PixelFlow: High-speed rendering
using image composition. In Computer Graphics (Proceedings of ACM
SIGGRAPH 92), 231–240.

NVIDIA, 2001. GeForce3 Ti Family: Product overview. 10.01v1.
http://www.nvidia.com/docs/lo/1050/SUPP/gf3ti overview.pdf.

PARKER, S., SHIRLEY, P., LIVNAT, Y., HANSEN, C., AND SLOAN, P.-P. 1998.
Interactive ray tracing for isosurface rendering. In IEEE Visualization ’98,
233–238.

PARKER, S., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS, B., AND

HANSEN, C. 1999. Interactive ray tracing. In 1999 ACM Symposium on
Interactive 3D Graphics, 119–126.

PEERCY, M. S., OLANO, M., AIREY, J., AND UNGAR, P. J. 2000. Interactive
multi-pass programmable shading. In Proceedings of ACM SIGGRAPH 2000,
425–432.

REINHARD, E., SMITS, B., AND HANSEN, C. 2000. Dynamic acceleration
structures for interactive ray tracing. In Rendering Techniques 2000: 11th
Eurographics Workshop on Rendering, 299–306.

SPITZER, J., 2001. Texture compositing with register combiners.
http://developer.nvidia.com/docs/IO/1382/ATT/RegisterCombiners.pdf.

TORBORG, J., AND KAJIYA, J. T. 1996. Talisman: Commodity realtime 3D graphics
for the PC. In Proceedings of ACM SIGGRAPH 96, 353–363.

WALD, I., SLUSALLEK, P., AND BENTHIN, C. 2001. Interactive distributed ray
tracing of highly complex models. In Rendering Techniques 2001: 12th
Eurographics Workshop on Rendering, 277–288.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. Interactive
rendering with coherent ray tracing. Computer Graphics Forum 20, 3, 153–164.

WHITTED, T. 1980. An improved illumination model for shaded display.
Communications of the ACM 23, 6, 343–349.

