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Abstract

Recently a breakthrough has occurred in graphics hardware: fixed
function pipelines have been replaced with programmable vertex
and fragment processors. In the near future, the graphics pipeline
is likely to evolve into a general programmable stream processor
capable of more than simply feed-forward triangle rendering.

In this paper, we evaluate these trends in programmability of
the graphics pipeline and present how ray tracing can be mapped
to graphics hardware. Using our simulator, we analyze the per-
formance of a ray casting implementation on next generation pro-
grammable graphics hardware. In addition, we compare the per-
formance difference between non-branching programmable hard-
ware using a multipass implementation and architectures that sup-
port branching. We also show how this approach is applicable to
other ray tracing algorithms such as Whitted ray tracing, path trac-
ing, and hybrid rendering algorithms. Finally, we demonstrate that
ray tracing on graphics hardware could prove to be faster than CPU
based implementations as well as competitive with traditional hard-
ware accelerated feed-forward triangle rendering.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing

Keywords: Programmable Graphics Hardware, Ray Tracing

1 Introduction

Real-time ray tracing has been a goal of the computer-graphics
community for many years. Recently VLSI technology has reached
the point where the raw computational capability of a single chip is
sufficient for real-time ray tracing. Real-time ray tracing has been
demonstrated on small scenes on a single general-purpose CPU
with SIMD floating point extensions [27], and for larger scenes on
a shared memory multiprocessor [20, 19] and a cluster [27, 26].
Various efforts are under way to develop chips specialized for ray
tracing, and ray tracing chips that accelerate off-line rendering are
commercially available [24]. Given that real-time ray tracing is pos-
sible in the near future, it is worthwhile to study implementations
on different architectures with the goal of providing maximum per-
formance at the lowest cost.
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In this paper, we describe an alternative approach to real-time ray
tracing that has the potential to out perform CPU-based algorithms
without requiring fundamentally new hardware: using commodity
programmable graphics hardware to implement ray tracing. Graph-
ics hardware has recently evolved from a fixed-function graph-
ics pipeline optimized for rendering texture-mapped triangles to a
graphics pipeline with programmable vertex and fragment stages.
In the near-term (next year or two) the graphics processor (GPU)
fragment program stage will likely be generalized to include float-
ing point computation and a complete, orthogonal instruction set.
These capabilities are being demanded by programmers using the
current hardware. As we will show, these capabilities are also suf-
ficient for us to write a ray tracer for this hardware. As the pro-
grammable stages become more general, the hardware can be con-
sidered a general-purpose stream processor. The stream process-
ing model supports a variety of highly-parallelizable algorithms,
including ray tracing.

In recent years, the performance of graphics hardware has in-
creased more rapidly than that of CPUs. CPU designs are opti-
mized for high performance on sequential code, and it is becoming
increasingly difficult to use additional transistors to improve perfor-
mance on this code. In contrast, programmable graphics hardware
is optimized for highly-parallel vertex and fragment shading code
[13]. As a result, GPUs can use additional transistors much more ef-
fectively than CPUs, and thus sustain a greater rate of performance
improvement as semiconductor fabrication technology advances.

The convergence of these three separate trends – sufficient raw
performance for single-chip real-time ray tracing; increasing GPU
programmability; and faster performance improvements on GPUs
than CPUs – make GPUs an attractive platform for real-time ray
tracing. GPU-based ray tracing also allows for hybrid rendering
algorithms; e.g. an algorithm that starts with a Z-buffered rendering
pass for visibility, and then uses ray tracing for secondary shadow
rays. Blurring the line between traditional triangle rendering and
ray tracing allows for a natural evolution toward increased realism.

In this paper, we show how to efficiently implement ray tracing
on GPUs. The paper contains three main contributions:

• We show how ray tracing can be mapped to a stream pro-
cessing model of parallel computation. As part of this map-
ping, we describe an efficient algorithm for mapping the in-
nermost ray-triangle intersection loop to multiple rendering
passes. We then show how the basic ray caster can be ex-
tended to include shadows, reflections, and path tracing.

• We analyze the streaming GPU-based ray tracer’s perfor-
mance and show that it is competitive with current CPU-based
ray tracing. We conclude that in the near future, GPU-based
ray tracing will be much faster than CPU-based ray tracing.

• To guide future GPU implementations, we analyze the com-
pute and bandwidth requirements of ray tracing on GPUs.
We study two basic architectures: one architecture without
branching that requires multiple passes, and another with
branching that requires only a single pass. We show that the
single pass version requires significantly less bandwidth, and
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Figure 1: The programmable graphics pipeline.

is compute-limited. We also analyze the performance of the
texture cache when used for ray tracing and show that it is
very effective at reducing bandwidth.

2 Programmable Graphics Hardware

2.1 The Current Programmable Graphics Pipeline

A diagram of a modern graphics pipeline is shown in figure 1. To-
day’s graphics chips, such as the NVIDIA GeForce3 [18] and the
ATI Radeon 8500 [4] replace the fixed-function vertex and frag-
ment (including texture) stages with programmable stages. These
programmable vertex and fragment engines execute user-defined
programs and allow fine control over shading and texturing calcu-
lations. An NVIDIA vertex program consists of up to 128 4-way
SIMD floating point instructions [13]. This vertex program is run
on each incoming vertex and the computed results are passed onto
the rasterization stage. The fragment stage is also programmable,
either through NVIDIA register combiners [23] or DirectX 8 pixel
shaders [16]. Pixel shaders, like vertex programs, provide a 4-way
SIMD instruction set augmented with instructions for texturing, but
unlike vertex programs operate on fixed-point values. In this pa-
per, we will be primarily interested in the programmable fragment
pipeline; it is designed to operate at the system fill rate (approxi-
mately 1 billion fragments per second).

Programmable shading is a recent innovation and the current
hardware has many limitations.

• Vertex and fragment programs have simple, incomplete in-
struction sets. The fragment program instruction set is much
simpler than the vertex instruction set.

• Fragment program data types are mostly fixed-point. The in-
put textures and output framebuffer colors are typically 8-bits
per color component. Intermediate values in registers have
only slightly more precision.

• There are many resource limitations. Programs have a limited
numbers of instructions and a small number of registers. Each
stage has a limited number of inputs and outputs (e.g. the
number of outputs from the vertex stage is constrained by the
number of vertex interpolants).

• The number of active textures and the number of dependent
textures is limited. Current hardware permits certain instruc-
tions for computing texture addresses only at certain points
within the program. For example, a DirectX 8 pixel shader

has two stages: a first texture addressing stage consisting of
four texture fetch instructions followed by eight color blend-
ing instructions, and then a color computation stage consist-
ing of additional texture fetches followed by color combining
arithmetic. This permits a single level of dependent texturing.

• Only a single color value may be written to the framebuffer in
each pass.

• Programs cannot loop and there are no conditional branching
instructions.

2.2 Proposed Near-term Programmable Graphics
Pipeline

The limitations of current hardware make it difficult to implement
ray tracing in a fragment program. Fortunately, due to the interest
in programmable shading for mainstream game applications, pro-
grammable pipelines are rapidly evolving and many hardware and
software vendors are circulating proposals for future hardware. In
fact, many of the current limitations are merely a result of the fact
that they represent the very first generation of programmable hard-
ware. In this paper, we show how to implement a ray tracer on
an extended hardware model that we think approximates hardware
available in the next year or two. Our model is based loosely on
proposals by Microsoft for DirectX 9.0 [15] and by 3DLabs for
OpenGL 2.0 [1].

Our target baseline architecture has the following features:

• A programmable fragment stage with floating point instruc-
tions and registers. We also assume floating point texture and
framebuffer formats.

• Enhanced fragment program assembly instructions. We in-
clude instructions which are now only available at the vertex
level. Furthermore, we allow longer programs; long enough
so that our basic ray tracing components may be downloaded
as a single program (our longest program is on the order of 50
instructions).

• Texture lookups are allowed anywhere within a fragment pro-
gram. There are no limits on the number of texture fetches or
levels of texture dependencies within a program.

• Multiple outputs. We allow 1 or 2 floating point RGBA (4-
vectors) to be written to the framebuffer by a fragment pro-
gram. We also assume the fragment program can render di-
rectly to a texture or the stencil buffer.

We consider these enhancements a natural evolution of current
graphics hardware. As already mentioned, all these features are
actively under consideration by various vendors.

At the heart of any efficient ray tracing implementation is the
ability to traverse an acceleration structure and test for an inter-
section of a ray against a list of triangles. Both these abilities re-
quire a looping construct. Note that the above architecture does
not include data-dependent conditional branching in its instruction
set. Despite this limitation, programs with loops and conditionals
can be mapped to this baseline architecture using the multipass ren-
dering technique presented by Peercy et al. [21]. To implement a
conditional using their technique, the conditional predicate is first
evaluated using a sequence of rendering passes, and then a sten-
cil bit is set to true or false depending on the result. The body of
the conditional is then evaluated using additional rendering passes,
but values are only written to the framebuffer if the corresponding
fragment’s stencil bit is true.

Although their algorithm was developed for a fixed-function
graphics pipeline, it can be extended and used with a programmable
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pipeline. We assume the addition of two hardware features to make
the Peercy et al. algorithm more efficient: direct setting of stencil
bits and pixel–kill. In the standard OpenGL pipeline, stencil bits
may be set by testing the alpha value. The alpha value is computed
by the fragment program and then written to the framebuffer. Set-
ting the stencil bit from the computed alpha value requires an ad-
ditional pass. Since fragment programs in our baseline architecture
can modify the stencil values directly, we can eliminate this extra
pass. Another important recent rendering optimization is pixel–kill
[12]. With pixel–kill, the depth or stencil test is executed before the
fragment program stage and the fragment program is executed only
if the fragment passes the stencil test. If the stencil bit is false, no in-
structions are executed and no texture or framebuffer bandwidth is
used (except to read the 8-bit stencil value). Using the combination
of these two techniques, multipass rendering using large fragment
programs under the control of the stencil buffer is quite efficient.

As we will see, ray tracing involves significant looping. Al-
though each rendering pass is efficient, extra passes still have a
cost; each pass consumes extra bandwidth by reading and writing
intermediate values to texture (each pass also requires bandwidth
to read stencil values). Thus, fewer resources would be used if
these inner loops over voxels and triangles were coalesced into a
single pass. The obvious way to do this would be to add branching
to the fragment processing hardware. However, adding branching
has its costs. Parallel fragment pipelines without branching may be
implemented efficiently using a single instruction stream (SIMD).
The introduction of branching requires multiple instruction streams
for each parallel unit (MIMD), which can significantly increase the
complexity of the hardware. Therefore, graphics architects would
like to avoid branching if possible. As a concrete example of this
trade off, we evaluate the efficiency of ray tracing on two architec-
tures, one with with and one without branching:

• Multipass Architecture. Supports arbitrary texture reads,
floating-point texture and framebuffer formats, general float-
ing point instructions, and two floating point 4-vector outputs.
Branching is implemented via multipass rendering.

• Branching Architecture. Multipass architecture enhanced
to include support for conditional branching instructions for
loops and control flow.

2.3 The Streaming Graphics Processor Abstrac-
tion

As the graphics processor evolves to include a complete instruc-
tion set and larger data types, it appears more and more like a
general-purpose processor. However, the challenge is to intro-
duce programmability without compromising performance, for oth-
erwise the GPU would become more like the CPU and lose its cost-
performance advantages. In order to guide the mapping of new ap-
plications to graphics architectures, we propose that we view next-
generation graphics hardware as a streaming processor. Stream
processing is not a new idea. Media processors transform streams
of digital information as in MPEG video decode. The IMAGINE
processor is an example of a general-purpose streaming processor
[11].

Streaming computing differs from traditional computing in that
the system reads the data required for a computation as a sequential
stream of elements. Each element of a stream is a record of data
requiring a similar computation. The system executes a program
or kernel on each element of input stream placing the result on an
output stream. In this sense, a programmable graphics processor
executes a vertex program on a stream of vertices, and a fragment
program on the stream of fragments. Since, for the most part we
are ignoring vertex programs and rasterization, we are treating the
graphics chip as basically a streaming fragment processor.

The streaming model of computation leads to efficient imple-
mentations for three reasons. First, since each stream element’s
computation is independent from any other, designers can add ad-
ditional pipelines that process elements of the stream in parallel.
Second, kernels achieve high arithmetic intensity. That is, they per-
form a lot of computation per small fixed-size record. As a result
the computation to memory bandwidth ratio is high. Third, stream-
ing hardware can hide the memory latency of texture fetches by us-
ing prefetching [25, 3, 9]. When the hardware fetches a texture for a
fragment, the fragment registers are placed in a FIFO and the frag-
ment processor starts processing another fragment. Only after the
texture is fetched does the processor return to that fragment. This
method of hiding latency is similar to multithreading and works
because of the abundant parallelism in streams. In summary, the
streaming model allows graphics hardware to exploit parallelism,
to utilize bandwidth efficiently, and to hide memory latency. As a
result, graphics hardware maps well to silicon and has high perfor-
mance.

The challenge is then to map ray tracing onto a streaming model
of computation. This is done by breaking the ray tracer into kernels.
These kernels are chained together by streams of data, originating
from data stored in textures and the framebuffer.

3 Streaming Ray Tracing

In this section, we reformulate ray tracing as a streaming computa-
tion. A flow diagram for a streaming ray tracer is found in figure
2.
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Figure 2: A streaming ray tracer.

In this paper, we assume that all scene geometry is represented
as triangles stored in an acceleration data structure before rendering
begins. In a typical scenario, an application would specify the scene
geometry using a display list, and the graphics library would place
the display list geometry into the acceleration data structure. We
will not consider the cost of building this data structure. Since this
may be an expensive operation, this assumption implies that the
algorithm described in this paper may not be efficient for dynamic
scenes.

The second design decision was to use a uniform grid to accel-
erate ray tracing. There are many possible acceleration data struc-
tures to choose from: bounding volume hierarchies, bsp trees, k-d
trees, octrees, uniform grids, adaptive grids, hierarchical grids, etc.
We chose uniform grids for two reasons. First, many experiments
have been performed using different acceleration data structures
on different scenes (for an excellent recent study see Havran [8]).
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From these studies no single acceleration data structure appears to
be most efficient; all appear to be within a factor of two of each
other. Second, uniform grids are particularly simple for hardware
implementations. Accesses to grid data structures require constant
time; hierarchical data structures, in contrast, require variable time
per access and involve pointer chasing. Code for grid traversal is
also very simple and can be highly optimized in hardware. In our
system, a grid is represented as a 3D texture map, a memory orga-
nization currently supported by graphics hardware. We will discuss
further the pros and cons of the grid in section 5.

We have split the streaming ray tracer into four kernels: eye
ray generation, grid traversal, ray-triangle intersection, and shad-
ing. The eye ray generator kernel produces a stream of viewing
rays. Each viewing ray is a single ray corresponding to a pixel in
the image. The traversal kernel reads the stream of rays produced
by the eye ray generator. The traversal kernel steps rays through the
grid until the ray encounters a voxel containing triangles. The ray
and voxel address are output and passed to the intersection kernel.
The intersection kernel is responsible for testing ray intersections
with all the triangles contained in the voxel. The intersector has
two types of output. If ray-triangle intersection (hit) occurs in that
voxel, the ray and the triangle that is hit is output for shading. If
no hit occurs, the ray is passed back to the traversal kernel and the
search for voxels containing triangles continues. The shading ker-
nel computes a color. If a ray terminates at this hit, then the color
is written to the accumulated image. Additionally, the shading ker-
nel may generate shadow or secondary rays; in this case, these new
rays are passed back to the traversal stage.

We implement ray tracing kernels as fragment programs. We ex-
ecute these programs by rendering a screen-sized rectangle. Con-
stant inputs are placed within the kernel code. Stream inputs are
fetched from screen-aligned textures. The results of a kernel are
then written back into textures. The stencil buffer controls which
fragments in the screen-sized rectangle and screen-aligned textures
are active. The 8-bit stencil value associated with each ray contains
the ray’s state. A ray’s state can be traversing, intersecting, shad-
ing, or done. Specifying the correct stencil test with a rendering
pass, we can allow the kernel to be run on only those rays which
are in a particular state.

The following sections detail the implementation of each ray
tracing kernel and the memory layout for the scene. We then de-
scribe several variations including ray casting, Whitted ray tracing
[28], path tracing, and shadow casting.

3.1 Ray Tracing Kernels

3.1.1 Eye Ray Generator

The eye ray generator is the simplest kernel of the ray tracer. Given
camera parameters, including viewpoint and a view direction, it
computes an eye ray for each screen pixel. The fragment program is
invoked for each pixel on the screen, generating an eye ray for each.
The eye ray generator also tests the ray against the scene bounding
box. Rays that intersect scene bounding box are processed further,
while those that missed are terminated.

3.1.2 Traverser

The traversal stage searches for voxels containing triangles. The
first part of the traversal stage sets up the traversal calculation. The
second part steps along the ray enumerating those voxels pierced by
the ray. Traversal is equivalent to 3D line drawing and has a per-ray
setup cost and a per-voxel rasterization cost.

We use a 3D-DDA algorithm [7] for this traversal. After each
step, the kernel queries the grid data structure which is stored as
a 3D texture. If the grid contains a null pointer, then that voxel is
empty. If the pointer is not null, the voxel contains triangles. In this

case, a ray-voxel pair is output and the ray is marked so that it is
tested for intersection with the triangles in that voxel.

Implementing the traverser loop on the multipass architecture re-
quires multiple passes. The once per ray setup is done as two passes
and each step through a voxel requires an additional pass. At the
end of each pass, the fragment program must store all the stepping
parameters (e.g. current voxel) used within the loop to textures,
which then must be read for the next pass. We will discuss the
multipass implementation further after we discuss the intersection
stage.
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Figure 4: The grid and triangle data structures stored in texture
memory. Each grid cell contains a pointer to a list of triangles. If
this pointer is null, then no triangles are stored in that voxel. Grids
are stored as 3D textures. Triangle lists are stored in another tex-
ture. Voxels containing triangles point to the beginning of a triangle
list in the triangle list texture. The triangle list consists of a set of
pointers to vertex data. The end of the triangle list is indicated by a
null pointer. Finally, vertex positions are stored in textures.

3.1.3 Intersector

The triangle intersection stage takes a stream of ray-voxel pairs and
outputs ray-triangle hits. It does this by performing ray-triangle
intersection tests with all the triangles within a voxel. If a hit occurs,
a ray-triangle pair is passed to the shading stage. The code for
computing a single ray-triangle intersection is shown in Figure 5.

Because triangles can overlap multiple grid cells, it is possible
for an intersection point to lie outside the current voxel. The in-
tersection kernel checks for this case and treats it as a miss. Note
that rejecting intersections in this way may cause a ray to be tested
against the same triangle multiple times (in different voxels). It is
possible to use a mailbox algorithm to prevent these extra intersec-
tion calculations [2], but mailboxing is difficult to implement when
multiple rays are being traced in parallel.

The layout of the grid and triangles in texture memory is shown
in figure 4. As mentioned above, each voxel contains an offset into
a triangle-list texture. The triangle-list texture contains a delimited
list of offsets into triangle-vertex textures. Note that the triangle-
list texture and the triangle-vertex textures are 1D textures. In fact,
these textures are being used as a random-access read-only memory.
We represent integer offsets as 1-component floating point textures
and vertex positions in three floating point RGB textures. Thus, the-
oretically, four billion triangles can be addressed in texture memory.
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Figure 3: Data flow diagrams for the ray tracing algorithms we implement. The algorithms depicted are (a) shadow casting, (b) ray casting,
(c) ray tracing, and (d) path tracing. For ray tracing, each ray-surface intersection generates L + 2 rays, where L is the number of lights in a
scene, corresponding to the number of shadow rays to be tested, and the other two are reflection and refraction rays. Path tracing randomly
chooses one ray bounce to follow and the feedback path is only one ray wide.

float4 IntersectTriangle( float3 ro, float3 rd, int list pos, float4 h ){
float tri id = texture( list pos, trilist );
float3 v0 = texture( tri id, v0 );
float3 v1 = texture( tri id, v1 );
float3 v2 = texture( tri id, v2 );
float3 edge1 = v1 - v0;
float3 edge2 = v2 - v0;
float3 pvec = Cross( rd, edge2 );
float det = Dot( edge1, pvec );
float inv det = 1/det;
float3 tvec = ro - v0;
float u = Dot( tvec, pvec ) * inv det;
float3 qvec = Cross( tvec, edge1 );
float v = Dot( rd, qvec ) * inv det;
float t = Dot( edge2, qvec ) * inv det;
bool validhit = select( u >= 0.0f, true, false );
validhit = select( v >= 0, validhit, false );
validhit = select( u+v <= 1, validhit, false );
validhit = select( t < h[0], validhit, false );
validhit = select( t >= 0, validhit, false );
t = select( validhit, t, h[0] );
u = select( validhit, u, h[1] );
v = select( validhit, v, h[2] );
float id = select( validhit, tri id, h[3] );
return float4( {t, u, v, id} );

}

Figure 5: Code for ray-triangle intersection.

However, much less texture memory is actually available on current
graphics cards. Limitations on the size of 1D textures can be over-
come by using 2D textures with the address proper translation, as
well as segmenting the data across multiple textures.

As with the traversal stage, the inner loop over all the triangles
in a voxel involves multiple passes. Each ray requires a single pass
per ray-triangle intersection.

3.1.4 Shader

The shading kernel evaluates the color contribution of a given ray
at the hit point. The shading calculations are exactly like those in
the standard graphics pipeline. Shading data is stored in memory
much like triangle data. A set of three RGB textures, with 32-bits
per channel, contains the vertex normals and vertex colors for each
triangle. The hit information that is passed to the shader includes
the triangle number. We access the shading information by a simple
dependent texture lookup for the particular triangle specified.

By choosing different shading rays, we can implement several
flavors of ray tracing using our streaming algorithm. We will look
at ray casting, Whitted-style ray tracing, path tracing, and shadow
casting. Figure 3 shows a simplified flow diagram for each of the
methods discussed, along with an example image produced by our
system.

The shading kernel optionally generates shadow, reflection, re-
fraction, or randomly generated rays. These secondary rays are
placed in texture locations for future rendering passes. Each ray
is also assigned a weight, so that when it is finally terminated, its
contribution to the final image may be simply added into the im-
age [10]. This technique of assigning a weight to a ray eliminates
recursion and simplifies the control flow.

Ray Caster. A ray caster generates images that are identical to
those generated by the standard graphics pipeline. For each pixel on
the screen, an eye ray is generated. This ray is fired into the scene
and returns the color of the nearest triangle it hits. No secondary
rays are generated, including no shadow rays. Most previous efforts
to implement interactive ray tracing have focused on this type of
computation, and it will serve as our basic implementation.

Whitted Ray Tracer. The classic Whitted-style ray tracer [28]
generates eye rays and sends them out into the scene. Upon finding
a hit, the reflection model for that surface is evaluated, and then a
pair of reflection and refraction rays, and a set of shadow rays – one
per light source – are generated and sent out into the scene.

Path Tracer. In path tracing, rays are randomly scattered from
surfaces until they hit a light source. Our path tracer emulates the
Arnold renderer [6]. One path is generated per sample and each
path contains 2 bounces.

Shadow Caster. We simulate a hybrid system that uses the stan-
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Multipass Branching
Kernel Instr. Memory Words Stencil Instr. Memory Words

Count R W M RS WS Count R W M
Generate Eye Ray 28 0 5 0 0 1 26 0 4 0
Traverse

Setup 38 11 12 0 1 0 22 7 0 0
Step 20 14 9 1 1 1 12 0 0 1

Intersect 41 14 5 10 1 1 36 0 0 10
Shade

Color 36 10 3 21 1 0 25 0 3 21
Shadow 16 11 8 0 1 1 10 0 0 0
Reflected 26 11 9 9 1 1 12 0 0 0
Path 17 14 9 9 1 1 11 3 0 0

Table 1: Ray tracing kernel summary. We show the number of instructions required to implement each of our kernels, along with the number
of 32-bit words of memory that must be read and written between rendering passes (R, W) and the number of memory words read from
random-access textures (M). Two sets of statistics are shown, one for the multipass architecture and another for the branching architecture.
For the multipass architecture, we also show the number of 8-bit stencil reads (RS) and writes (WS) for each kernel. Stencil read overhead is
charged for all rays, whether the kernel is executed or not.

dard graphics pipeline to perform hidden surface calculation in the
first pass, and then uses ray tracing algorithm to evaluate shadows.
Shadow casting is useful as a replacement for shadow maps and
shadow volumes. Shadow volumes can be extremely expensive to
compute, while for shadow maps, it tends to be difficult to set the
proper resolution. A shadow caster can be viewed as a deferred
shading pass [17]. The shadow caster pass generates shadow rays
for each light source and adds that light’s contribution to the final
image only if no blockers are found.

3.2 Implementation

To evaluate the computation and bandwidth requirements of our
streaming ray tracer, we implemented each kernel as an assembly
language fragment program. The NVIDIA vertex program instruc-
tion set is used for fragment programs, with the addition of a few
instructions as described previously. The assembly language im-
plementation provides estimates for the number of instructions re-
quired for each kernel invocation. We also calculate the bandwidth
required by each kernel; we break down the bandwidth as stream
input bandwidth, stream output bandwidth, and memory (random-
access read) bandwidth.

Table 1 summarizes the computation and bandwidth required for
each kernel in the ray tracer, for both the multipass and the branch-
ing architectures. For the traversal and intersection kernels that in-
volve looping, the counts for the setup and the loop body are shown
separately. The branching architecture allows us to combine indi-
vidual kernels together; as a result the branching kernels are slightly
smaller since some initialization and termination instructions are
removed. The branching architecture permits all kernels to be run
together within a single rendering pass.

Using table 1, we can compute the total compute and bandwidth
costs for the scene.

C = R ∗ (Cr + vCv + tCt + sCs) + R ∗ P ∗ Cstencil

Here R is the total number of rays traced. Cr is the cost to gener-
ate a ray; Cv is the cost to walk a ray through a voxel; Ct is the
cost of performing a ray-triangle intersection; and Cs is the cost of
shading. P is the total number of rendering passes, and Cstencil

is the cost of reading the stencil buffer. The total cost associated
with each stage is determined by the number of times that kernel
is invoked. This number depends on scene statistics: v is the aver-
age number of voxels pierced by a ray; t is the average number of

triangles intersected by a ray; and s is the average number of shad-
ing calculations per ray. The branching architecture has no stencil
buffer checks, so Cstencil is zero. The multipass architecture must
pay the stencil read cost for all rays over all rendering passes. The
cost of our ray tracer on various scenes will be presented in the
results section.

Finally, we present an optimization to minimize the total num-
ber of passes motivated in part by Delany’s implementation of a
ray tracer for the Connection Machine [5]. The traversal and in-
tersection kernels both involve loops. There are various strategies
for nesting these loops. The simplest algorithm would be to step
through voxels until any ray encounters a voxel containing trian-
gles, and then intersect that ray with those triangles. However, this
strategy would be very inefficient, since during intersection only a
few rays will have encountered voxels with triangles. On a SIMD
machine like the Connection Machine, this results in very low pro-
cessor utilization. For graphics hardware, this yields an excessive
number of passes resulting in large number of stencil read opera-
tions dominating the performance.

The following is a more efficient algorithm:

generate eye ray
while (any(active(ray))) {

if (oracle(ray))
traverse(ray)

else
intersect(ray)

}
shade(ray)

After eye ray generation, the ray tracer enters a while loop which
tests whether any rays are active. Active rays require either further
traversals or intersections; inactive rays have either hit triangles or
traversed the entire grid. Before each pass, an oracle is called. The
oracle chooses whether to run a traverse or an intersect pass. Vari-
ous oracles are possible. The simple algorithm above runs an inter-
sect pass if any rays require intersection tests. A better oracle, first
proposed by Delany, is to choose the pass which will perform the
most work. This can be done by calculating the percentage of rays
requiring intersection vs. traversal. In our experiments, we found
that performing intersections once 20% of the rays require intersec-
tion tests produced the minimal number of passes, and is within a
factor of two of optimal for a SIMD algorithm performing a single
computation per rendering pass.

To implement this oracle, we assume graphics hardware main-
tains a small set of counters over the stencil buffer, which contains
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the state of each ray. A total of eight counters (one per stencil bit)
would be more than sufficient for our needs since we only have
four states. Alternatively, we could use the OpenGL histogram op-
eration for the oracle if this operation were to be implemented with
high performance for the stencil buffer.

4 Results

4.1 Methodology

We have implemented functional simulators of our streaming ray
tracer for both the multipass and branching architectures. These
simulators are high level simulations of the architectures, written
in the C programming language. These simulators compute images
and gather scene statistics. Example statistics include the average
number of traversal steps taken per ray, or the average number of
ray-triangle intersection tests performed per ray. The multipass ar-
chitecture simulator also tracks the number and type of rendering
passes performed, as well as stencil buffer activity. These statistics
allow us to compute the cost for rendering a scene by using the cost
model described in section 3.

Both the multipass and the branching architecture simulators
generate a trace file of the memory reference stream for process-
ing by our texture cache simulator. In our cache simulations we
used a 64KB direct-mapped texture cache with a 48-byte line size.
This line size holds 3 floating point RGB texels, or 4 floating point
RGBA texels with no wasted space. The execution order of frag-
ment programs effects the caching behavior. For the multipass ar-
chitecture, each iteration of the while loop requires all fragments
to pass through the cache. For the branching architecture, frag-
ment programs include the while loop and are executed sequen-
tially. Therefore all memory operations for a ray are completed be-
fore the next ray is processed. Note that it is likely that a GPU
implementation will include multiple parallel fragment pipelines
executing concurrently, and thus their accesses will be interleaved.
Our architectures are not specified at that level of detail, and we
are therefore not able to take such effects into account in our cache
simulator.

We analyze the performance of our ray tracer on five viewpoints
from three different scenes, shown in figure 6.

• Soda Hall is a relatively complex model that has been used to
evaluate other real-time ray tracing systems [27]. It has walls
made of large polygons and furnishings made from very small
polygons. This scene has high depth complexity.

• The forest scene includes trees with millions of tiny triangles.
This scene has moderate depth complexity, and it is difficult
to perform occlusion culling.

• The Stanford bunny was chosen to demonstrate the extension
of our ray tracer to support shadows, reflections, and path trac-
ing.

Figure 7 shows the computation and bandwidth requirements of
our test scenes. The computation and bandwidth utilized is broken
down by kernel. These graphs clearly show that the computation
and bandwidth for both architectures is dominated by grid traversal
and triangle intersection.

Choosing an optimal grid resolution for scenes is difficult. A
finer grid yields fewer ray-triangle intersection tests, but leads to
more traversal steps. A coarser grid reduces the number of traver-
sal steps, but increases the number of ray-triangle intersection tests.
We attempt to keep voxels near cubical shape, and specify grid res-
olution by the minimal grid dimension acceptable along any dimen-
sion of the scene bounding box. For the bunny, our minimal grid di-
mension is 64, yielding a final resolution of 98 × 64 × 163. For the
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Figure 7: Compute and bandwidth usage for our scenes. Each col-
umn shows the contribution from each kernel. Left bar on each plot
is compute, right is bandwidth. The horizontal line represents the
per-second bandwidth and compute performance of our hypotheti-
cal architecture. All scenes were rendered at 1024 × 1024 pixels.

larger Soda Hall and forest models, this minimal dimension is 128,
yielding grid resolutions of 98 × 64 × 163 and 581 × 128 × 581
respectively. For the large scenes, the total number of voxels rep-
resented is approaching feasible limitations of graphics hardware.
These resolutions allow our algorithms to spend equal amounts of
time in the traversal and intersection kernels.

4.2 Architectural Comparisons

We now compare the multipass and branching architectures. First,
we investigate the implementation of the ray caster on the multipass
architecture. Table 2 shows the total number of rendering passes
and the distribution of passes amongst the various kernels. The
total number of passes varies between 1000-3000. Although the
number of passes seems high, this is the total number needed to
render the scene. In the conventional graphics pipeline, many fewer
passes per object are used, but many more objects are drawn. In our
system, each pass only draws a single rectangle, so the speed of the
geometry processing part of the pipeline is not a factor.

We also evaluate the efficiency of the multipass algorithm. Re-
call that rays may be traversing, intersecting, shading, or done. The
efficiency of a pass depends on the percentage of rays processed
in that pass. In these scenes, the efficiency is roughly 10% for all
of the test scenes except for the outside view of Soda Hall. This
viewpoint contains several rays that miss the scene bounding box
entirely. As expected, the resulting efficiency is much lower since
these rays never do any useful work during the rest of the com-
putation. Although 10% efficiency may seem low, the fragment
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Soda Hall Outside Soda Hall Inside Forest Top Down Forest Inside Bunny Ray Cast
v t s v t s v t s v t s v t s

14.41 2.52 0.44 26.11 40.46 1.00 81.29 34.07 0.96 130.7 47.90 0.97 93.93 13.88 0.82

Figure 6: Fundamental scene statistics for our test scenes. The statistics shown match the cost model formula presented in section 3.2. Soda
hall has 1.5M triangles, the forest has 1.0M triangles, and the Stanford bunny has 70K triangles. All scenes are rendered at 1024x1024 pixels.

Pass Breakdown Per Ray Maximum SIMD
Total Traversal Intersection Other Traversals Intersections Efficiency

Soda Hall Outside 2443 692 1747 4 384 1123 0.009
Soda Hall Inside 1198 70 1124 4 60 1039 0.061
Forest Top Down 1999 311 1684 4 137 1435 0.062
Forest Inside 2835 1363 1468 4 898 990 0.068
Bunny Ray Cast 1085 610 471 4 221 328 0.105

Table 2: Breakdown of passes in the multipass system. Intersection and traversal make up the bulk of passes in the systems, with the rest of
the passes coming from ray generation, traversal setup, and shading. We also show the maximum number of traversal steps and intersection
tests for per ray. Finally, SIMD efficiency measures the average fraction of rays doing useful work for any given pass.

processor utilization is much higher because we are using early
pixel-kill to avoid consuming compute resources and non-stencil
bandwidth for the fragment. Finally, table 2 shows the maximum
number of traversal steps and intersection tests that are performed
per ray. Since the total number of passes depends on the worst case
ray, these numbers provide lower bounds on the number of passes
needed. Our multipass algorithm interleaves traversal and intersec-
tion passes and comes within a factor of 2-3 of the optimal number
of rendering passes. The naive algorithm, which performs an inter-
section as soon as any ray hit a full voxel, requires at least a factor
of 5 more passes on these scenes.
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Figure 8: Bandwidth consumption by data type. Left bars are for
multipass, right bars for branching. Overhead for reading the 8-bit
stencil value is shown on top. State variables shown next are data
written to and read from texture between passes. Data structure
bandwidth comes from read-only data: triangles, triangle lists, grid
cells, and shading data. All scenes were rendered at 1024 × 1024
pixels.

We are now ready to compare the computation and bandwidth
requirements of our test scenes on the two architectures. Figure 8
shows the same bandwidth measurements shown in figure 7 broken
down by data type instead of by kernel. The graph shows that, as ex-
pected, all of the bandwidth required by the branching architecture
is for reading voxel and triangle data structures from memory. The
multipass architecture, conversely, uses most of its bandwidth for
writing and reading intermediate values to and from texture mem-
ory between passes. Similarly, saving and restoring these interme-
diates requires extra instructions. In addition, significant bandwidth
is devoted to reading the stencil buffer. This extra computation and
bandwidth consumption is the fundamental limitation of the multi-
pass algorithm.

One way to reduce both the number of rendering passes and the
bandwidth consumed by intermediate values in the multipass archi-
tecture is to unroll the inner loops. We have presented data for a
single traversal step or a single intersection test performed per ray
in a rendering pass. If we instead unroll our kernels to perform four
traversal steps or two intersection tests, all of our test scenes reduce
their total bandwidth usage by 50%. If we assume we can suppress
triangle and voxel memory references if a ray finishes in the mid-
dle of the pass, the total bandwidth reduction reaches 40%. At the
same time, the instruction count for each scene increases by less
than 10%. With more aggressive loop unrolling the bandwidth sav-
ings continue, but the instruction count increase varies by a factor
of 2 or more between our scenes. These results indicate that loop
unrolling can make up for some of the overhead inherent in the
multipass architecture, but unrolling does not achieve the compute
to bandwidth ratio obtained by the branching architecture.

Finally, we compare the caching behavior of the two implemen-
tations. Figure 9 shows the bandwidth requirements when a texture
cache is used. The bandwidth consumption is normalized by di-
viding by the non-caching bandwidth reported earlier. Inspecting
this graph we see that the multipass system does not benefit very
much from texture caching. Most of the bandwidth is being used
for streaming data, in particular, for either the stencil buffer or for

8



Submitted for review to SIGGRAPH 2002

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 B
an

dw
id

th
Stencil 
State Variables
Voxel Data
Triangle Data
Shading Data

Figure 9: Ratio of bandwidth with cache to bandwidth without
cache, broken down by data type. Left bars are for multipass, right
bars for branching. All scenes were rendered at 1024 × 1024 pix-
els.

intermediate results. Since this data is unique to each kernel in-
vocation, there is no reuse. In contrast, the branching architecture
utilizes the texture cache effectively. Since most of its bandwidth is
devoted to reading shared data structures, there is reuse. Studying
the caching behavior of triangle data only, we see that a 96-99%
hit rate is achieved by both the multipass and the branching system.
This high hit rate suggests that triangle data caches well, and that
we have a fairly small working set size.

In summary, the implementation of the ray tracer on the multi-
pass architecture has achieved a very good balance between com-
putation and bandwidth. The ratio of instruction count to band-
width matches the capabilities of a modern GPU. For example, the
NVIDIA GeForce3 is able to execute approximately 2G instruc-
tions/s in its fragment processor, and has roughly 8GB/s of memory
bandwidth. Expanding the traversal and intersection kernels to per-
form multiple traversal steps or intersection tests per pass reduces
the bandwidth required for the scene at the cost of increasing the
computational requirements. The amount of loop unrolling can be
changed to match the computation and bandwidth capabilities of
the underlying hardware. In comparison, the branching architec-
ture consumes fewer instructions and significantly less bandwidth.
As a result, the branching architecture is severely compute-limited
based on today’s GPU bandwidth and compute rates. However, the
branching architecture will become more attractive in the future as
the compute to bandwidth ratio on graphics chips increases with the
introduction of more parallel fragment pipelines.

4.3 Extended Algorithms

With an efficient ray caster in place, implementing extensions such
as shadow casting, full Whitted ray tracing, or path tracing is quite
simple. Each method utilizes the same ray-triangle intersection
loop we have analyzed with the ray caster, but implements a differ-
ent shading kernel which generates new rays to be fed back through
our system.

Figure 3 shows images produced by our system for each of the
ray casting extensions we simulate. For each extension, one would
expect the performance to scale proportionally with the number of
rays fired in the scene. For example, the shadow caster fires one ray
to each light source for every visible pixel. For a single light source
in an enclosed environment, we would expect the shadow caster to
perform comparably to the ray caster. Similarly, a path tracer with
three bounces per ray should perform roughly at one third the ray

caster performance.

Relative
Extension Instructions Bandwidth
Shadow Caster 0.85 1.15
Whitted Ray Tracer 2.62 3.00
Path Tracer 3.24 4.06

We show computation and bandwidth for the branching archi-
tecture for the shadow caster, Whitted ray tracer, and path tracer
normalized against the ray caster performance in the preceding ta-
ble. The path traced bunny was rendered at 256 × 256 pixels with
64 samples and 2 bounces per pixel while the others were rendered
at 1024 × 1024 pixels. Results from the multipass system are sim-
ilar. We obtain near the expected performance for all of our scenes.
Some difference is due to rays missing the scene bounding box and
not generating any secondary rays, while further deviation is due to
the open environment of the scene. We leave aggressive optimiza-
tion of the multi-bounce algorithms as future work.

5 Discussion

In this section we discuss limitations of the current system and fu-
ture work.

5.1 Acceleration Data Structures

A major limitation of our system is that we rely on a preprocessing
step to build the grid. Many applications contain dynamic geome-
try, and to support these applications we need fast incremental up-
dates to the grid. Building acceleration data structures for dynamic
scenes is an active area of research [22]. An interesting possibility
would be to use graphics hardware to build the acceleration data
structure. The graphics hardware could “scan convert” the geome-
try into a grid. However, the architectures we have studied in this
paper cannot do this efficiently; to do operations like rasterization
within the fragment processor they would need the ability to write
to arbitrary memory locations. This is a classic scatter operation
and would move the hardware even closer to a general stream pro-
cessor.

In this research we assumed a uniform grid. Uniform grids, how-
ever, may fail for scenes containing geometry and empty space at
many levels of detail. Since we view texture memory as random-
access memory, hierarchical grids could be added to our system.

Currently graphics boards contain relatively small amounts of
memory (in 2001 a typical board contains 64MB). Some of the
scenes we have looked at require 200MB - 300MB of texture mem-
ory to store the scene. An interesting direction for future work
would be to study hierarchical caching of the geometry as is com-
monly done for textures.

5.2 CPU vs. GPU

Wald et al. have developed an optimized ray tracer for a PC with
SIMD floating point extensions [27]. On an 800 MHz Pentium III,
they report a ray-triangle intersection rate of 20M intersections/s.
Assuming our baseline architecture ran at the same speed as a
GeForce3 (2G instructions/s), we could compute 56M ray-triangle
intersections/s. With our branching architecture we are compute
limited; if we increase the instruction issue rate by a factor of 4
(8G instructions/s) then we would still not use all the bandwidth
available on a GeForce3 (8GB/s). This would allow us to compute
222M ray-triangle intersections per second. We believe because
of the inherently parallel nature of fragment programs, the number
of GPU instructions that can be executed per second will increase
much faster than the number of CPU SIMD instructions.
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Once the basic feasibility of ray tracing on a GPU has been
demonstrated, it is interesting to consider modifications to the GPU
that support ray tracing more efficiently. Many possibilities imme-
diately suggest themselves. Since rays are streamed through the
system, it would be more efficient to store them in a stream buffer
than a texture map. This would eliminate the need for a stencil
buffer to control conditional execution. Stream buffers are quite
similar to F-buffers which have other uses in multipass rendering
[14]. Our current implementation of the grid traversal code does not
map well to the vertex program instruction set, and is thus quite in-
efficient. Since grid traversal is so similar to rasterization, it might
be possible to modify the rasterizer to walk through the grid. Fi-
nally, the vertex program instruction set could be optimized so that
ray-triangle intersection could be performed in fewer instructions.

5.3 Z-buffered Rendering vs. Ray Tracing

Finally, our analysis gives insight as to when feed-forward triangle
rendering is more or less efficient than ray tracing. We can compare
our cost model to the typical cost model used for triangle rendering.
In the triangle rendering cost model, there is a per-vertex cost and a
per-fragment cost. In triangle rendering, the number of fragments is
equal to the image size times the depth complexity. In ray tracing,
the number of rays is equal to the image size, and the number of
times that a fragment program is executed is proportional to the
average number of voxels and triangles visited. Thus, the average
number of triangles visited during a ray query is roughly analogous
to depth complexity. This is a more precise way of saying that ray
tracing is better at high depth complexities. In fact, since depth
complexity equals the number of triangles pierced by a ray, the Z-
buffer algorithm is linear in depth complexity whereas we expect
ray tracing to be logarithmic in depth complexity. The other reason
ray tracing is better at high depth complexities is that all shading is
deferred. While deferred shading can be implemented using feed-
forward rending, this typically requires additional rendering costs.

6 Conclusions

We have shown how viewing a programmable graphics processor
as a general parallel computation device can help us leverage the
graphics processor performance curve and apply it to more general
parallel computations, specifically ray tracing. We have shown that
ray tracing can be done efficiently in graphics hardware. We hope
to encourage graphics hardware to evolve toward a more general
programmable stream architecture.

We also believe we have started down the path of merging ray
tracing and the feed-forward pipeline. While many believe a funda-
mentally different architecture would be required for real-time ray
tracing in hardware, this work demonstrates that a gradual conver-
gence between ray tracing and the feed-forward hardware pipeline
is possible.
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