
Submitted to SIGGRAPH 2001

A Real-Time Procedural Shading System for
Programmable Graphics Hardware

Kekoa Proudfoot William R. Mark Svetoslav Tzvetkov Pat Hanrahan

Stanford University

Abstract

Real-time graphics hardware is becoming programmable, but this
programmable hardware is complex and difficult to use given
current APIs. Higher-level abstractions would both increase pro-
grammer productivity and make programs more portable. However,
it is challenging to raise the abstraction level while still providing
high performance. We have developed a real-time procedural
shading language system designed to achieve this goal.

Our system is organized around multiple computation frequen-
cies. For example, computations may be associated with vertices
or with fragments/pixels. Our system’s shading language provides
a unified interface that allows a single procedure to include opera-
tions from more than one computation frequency.

Internally, our system virtualizes limited hardware resources to
allow for arbitrarily-complex computations. We map operations
to graphics hardware if possible, or to the host CPU as a last
resort. This mapping is performed by compiler back-end modules
associated with each computation frequency. Our system can
map vertex operations to either programmable vertex hardware
or to the host CPU, and can map fragment operations to either
programmable fragment hardware or to multi-pass OpenGL. By
carefully designing all the components of the system, we are able
to generate highly-optimized code. We demonstrate our system
running in real-time on a variety of hardware.

Keywords: Graphics Hardware, Graphics Systems, Languages,
Rendering

1 Introduction

Mainstream graphics hardware is rapidly moving toward pro-
grammability. An important first step was the addition of new
features such as multitexturing, configurable texture blending units,
and per-fragment dot products. The latest generation of hardware,
as described in [10, 12, 13], directly supports programmable vertex
and fragment computations. This hardware has already been
demonstrated to enable a large number of interesting new special
effects for games and other interactive entertainment applications.

While the latest hardware features are very flexible, the same
hardware features are difficult to use. This is true for two reasons.
First, current hardware interfaces are low-level. Programmabil-
ity is exposed through the graphics library, either through an
assembly-language-like interface to functional units or through an

explicit pipeline-configuration model. Second, since hardware and
extensions vary across vendors and product generations, writing
efficient portable software can be challenging, and often requires
customizing applications to each supported platform. These two
problems decrease programmer productivity and make it harder for
vendors to convince users to adopt new features.

To fix the ease-of-use problem, new programming models
and higher-level hardware abstractions are needed. Higher-level
abstractions can provide standard programmable interfaces that
both simplify underlying complexities and hide differences across
implementations. Shading languages have evolved to solve the
abstraction problem for software rendering systems, and we believe
that shading languages are appropriate for abstracting graphics
hardware.

In this paper, we describe our procedural shading system. We
make three contributions. First, we develop and describe a new
programmable pipeline abstraction that combines and extends el-
ements from previous work. Second, we describe a new shading
language with features appropriate to our abstraction and to current
and future hardware. Third, we describe a retargetable compiler
back end that maps our abstraction to a variety of different graphics
accelerators, including those with vertex and fragment programma-
bility, using a set of interchangeable compiler modules.

The resulting system makes hardware much easier to program
by efficiently mapping a shading language to the wide variety of
hardware available today. We show vertex and fragment back
ends that target programmable graphics hardware efficiently, and
we demonstrate several complex scenes with programmed shaders
running in real-time on PC graphics hardware.

2 Background

Shading languages developed from the work of Cook, who de-
scribed how shade trees could provide a flexible, programmable
framework for shading computations [2], and the work of Perlin,
who described a how a language could be used for processing pixel
streams [17]. The most common shading language in use today
is the RenderMan Shading Language [4, 19], which provides for
movie production-quality procedural shading effects for software,
batch rendering systems.

More recently, several systems have demonstrated shading lan-
guages targeted to real-time rendering and graphics hardware.

Olano and Lastra [15] describe pfman, a RenderMan-like
language for the PixelFlow system [11] that was compiled to
PixelFlow’s SIMD processing arrays. While PixelFlow provided
a platform well-suited to programmable shading, for many reasons,
today’s mainstream hardware bears little resemblance to PixelFlow.

id Software’s Quake III Arena includes a pass-based scripting
language that allows multiple layers of textures and colors to be
animated and composited using basic hardware blending [6]. The
graphics engine maps passes in the language to actual hardware
passes, using multitexture to compress passes when possible. The
language also contains mechanisms for generating and manipulat-
ing texture coordinates.

Peercy et al. describe an approach to implementing shading
languages using multipass rendering [16]. They showed that the



Submitted to SIGGRAPH 2001

RenderMan Shading Language could be compiled using multipass
rendering given two hardware extensions: support for extended
range and precision (e.g. their 16-bit floating point representation)
and dependent texturing. For hardware without these extensions,
they developed a simpler language, called ISL, that exposes func-
tionality available in OpenGL 1.2 and provides a convenient way
to describe basic computations involving colors, textures, and the
output of the configurable OpenGL vertex-based lighting model.

The key insight behind the Peercy et al. approach is to describe
the graphics pipeline as a SIMD processor. Each configuration of
the OpenGL graphics pipeline corresponds to a different SIMD
instruction. One pass then represents the execution of one such
instruction. The SIMD nature of the processor arises because each
rendering pass performs the same operation across many fragments.
The SIMD processor model provides a framework for abstracting
multipass rendering, which in turn allows the model to express
arbitrarily-complex fragment color computations.

The SIMD model of graphics hardware is very different from
the programmable vertex/fragment-processing model exposed by
DirectX 8 [10] and two of NVIDIA’s recent OpenGL extensions
(NV vertex program and NV register combiner [12, 13]). These
models replace portions of the traditional non-programmable ren-
dering pipeline with programmable register-machine-based pro-
cessing units. For vertex processing, DirectX 8 and NVIDIA both
provide a set of floating-point operations sufficient for implement-
ing standard transform and lighting calculations. For fragment
processing, DirectX 8 supports a set of standard texture combining
operations as instructions, with a limit of 8 instructions per pass,
while NVIDIA’s register combiners expose similar functionality,
except the combining operations are more powerful and more
complex.

A hardware model that includes programmable vertex process-
ing provides two practical advantages over the fragment-oriented
SIMD hardware model:

� Current fragment-processing hardware is missing many use-
ful operations, such as division and square root. These
operations are already supported in vertex hardware, because
they are required for transform and lighting computations.

� Current fragment-processing hardware uses 8- or 9-bit signed
arithmetic for most operations. This limited precision is
insufficient for many computations, and motivated the pro-
posal for extended-precision support [16]. In contrast, current
vertex-processing hardware uses floating-point arithmetic.

Although it is reasonable to expect fragment processors to even-
tually have more precision and more operations, this practical
constraint limits the usefulness of a pure fragment-based multipass
approach on near-term hardware. As a result, until fragment proces-
sors catch up to vertex processors, vertex programmability provides
a way to perform many computations not otherwise possible using
just fragment hardware.

More fundamentally,
� Vertex programmability provides a natural and efficient way

to perform position, texture coordinate, and lighting compu-
tations because these quantities often vary slowly across a
surface. Furthermore, the ability to perform computations for
each vertex maps well to programmers’ conceptual model of
the graphics pipeline.

� In high-performance graphics systems, bandwidth between
the graphics chip and framebuffer is scarce, as is bandwidth
between the graphics chip and host. Each rendering pass
consumes these resources, so it is important to minimize
the number of rendering passes. In the future, because
of processor and memory technology trends, the ratio of a
graphics chip’s compute performance to its external memory
bandwidth will continue to increase. This trend favors designs

where more operations are done per pass. Recent graphics
hardware is following this design strategy.

However, even on programmable hardware, the multipass meth-
ods developed in the SIMD model are valuable for virtualizing
hardware resources. Furthermore, on graphics systems that have
programmable vertex hardware but lack programmable fragment
hardware, the complete SIMD model can be used for the fragment
part of the pipeline.

For the reasons given above, we base our system on the pro-
grammable processing model. However, we extend the model in
two important ways:

� We generalize vertex/fragment processing using the concept
of multiple computation frequencies and provide a single
unified framework, called the programmable pipeline, that
simplifies programming shading computations that involve
both vertex and fragment functions.

� We virtualize the existing hardware-centric pipelines to re-
move resource constraints. Thus, the programmer need not
be aware of the number of internal registers, the number of
instructions, etc. One method for virtualization is to use
multiple passes.

McCool [9] recently proposed the SMASH API. SMASH ad-
vocates programming hardware using a stack-machine-based API
for specifying operations, and shows examples of several different
metaprogramming techniques for exposing this functionality to
application developers. In contrast, we focus on the shading
language as the primary interface, and use existing hardware
interfaces. However, although SMASH was developed indepen-
dently, the SMASH API is similar to our compiler’s intermediate
representation. Another difference between SMASH processing
model and ours is that SMASH assumes vertex programmability
is post-transform (to alleviate the need for common-case transform
code) and post-backface-cull (to eliminate vertex computations for
culled vertices), whereas we allow these operations to be pro-
grammed. Finally, our research examines specific language features
and associated compiler analysis and optimization techniques, and
not the details of the hardware interface. We also develop a variety
of retargetable compiler back ends that target a number of different
platforms.

Olano [14] describes a programmable pipeline for graphics
hardware that contains programmable stages corresponding to
transformation, rasterization, interpolation, shading, lighting, etc.
Programmability is implemented using PixelFlow’s SIMD pro-
cessing arrays operating on fragment values. His stages are not
organized around computation frequencies, and is thus different
from ours.

3 System Overview

A block diagram of our system is shown in Figure 1. The principal
components of our system are:

� Shading language and compiler front end. Shaders in our
shading language are used to describe shading computations.
A compiler front end maps the shading language to an
intermediate pipeline program representation.

� Programmable pipeline abstraction. An intermediate ab-
straction layer provides a generic interface to hardware pro-
grammability to hide hardware details and to simplify com-
piler front ends. It consists of a computational model (the
programmable pipeline) and a means for specifying computa-
tions (pipeline programs). Pipeline programs are divided into
pieces by computation frequency.

� Retargetable compiler back end. A modular, retargetable
compiler back end maps pipeline programs to shader object

2



Submitted to SIGGRAPH 2001

compile-time

render-time

primitive
groups

vertices fragments

hardware
CPU + GPU

modular retargetable
compiler back end

compiler front end

cc-pg
x86-pg

cc-v
x86-v
vprog

lburg
regcomb

surface lights

APP
geometry
w/ shader
params

hardware-specific
shader object code

programmable
pipeline
abstraction:
pipeline programs

shading language
abstraction:
shaders

colors to
frame buffer

Figure 1: System block diagram. In our system, surface and light shaders are
compiled into three-part pipeline programs split by computation frequency. For each
computation frequency, we apply a back-end module to generate shader object code
that is executed during rendering. We implement seven modules; most notably, we
implement a pair of modules to target vertex programs and register combiners.

code. There are back-end modules for different stages and for
different hardware.

� Shader object code. Compiled shaders are used to configure
hardware during rendering. Shader object code separates the
compile-time and render-time halves of our system.

� Shader execution engine. A shader execution engine con-
trols the rendering of geometric primitives using the shader
object code. The application may attach shader parameters
to groups of primitives and to vertices. These parameters are
processed to compute surface positions and surface colors.

� Graphics hardware. Shader execution modules rely on
graphics hardware for most shading computations, although
the host CPU may be used for some computations.

Our system runs on top of OpenGL. Our prototype provides
both immediate-mode and vertex array interfaces. These interfaces
automatically handle multiple rendering passes. While geometry
specified using vertex array data is inherently buffered, for other
methods for specifying geometry, we buffer data into vertex arrays
on the fly. These vertex arrays are then passed the shader execution
engine.

4 Programmable Pipeline Abstraction

The programmable pipeline abstraction is the central element of our
shading system. It provides an abstraction that simplifies mapping
our shading language to hardware. It provides a computation model
that describes what and how different values are computed. It also
defines how computations are expressed and which operators may
be used to perform computations. In this section, we describe the
key elements of the programmable pipeline abstraction.

4.1 Pipeline operation

Our programmable pipeline abstraction is illustrated in Figure 2.
The programmable pipeline renders objects by computing positions

primitive
group

processing

APP

geometry
w/ shader
params

vertex
processing

fragment
processing

primitive
assembly and
rasterization

colors
to frame

buffer

pipeline
program

Figure 2: Programmable pipeline abstraction. The programmable pipeline is an
abstraction layer consisting of three programmable stages, one for each of three
computation frequencies. Stages execute a pipeline program to process geometric
primitives with associated shader parameters. The results are passed onto subsequent
stages. Between programmable stages are fixed-function stages that convert values
between computation frequencies.

and colors. Computed positions are used to control rasterization
and depth buffering, while computed colors are blended into
the framebuffer. The abstraction contains two kinds of stages:
programmable stages and fixed-function stages.

Programmable stages are associated with different computation
frequencies. We support four computation frequencies: constant,
per-primitive-group, per-vertex, and per-fragment. We illustrate
these computation frequencies in Figure 3. Constants are evaluated
once at compile time and not supported by the run-time system.
Primitive groups are defined as the geometry within an OpenGL
Begin/End pair; vertices are defined by the OpenGL vertex com-
mand; and fragments are defined by the screen-space sampling grid.
(In this context, a primitive is a single point, line, or polygon; in
general, a Begin/End pair can specify a group of such primitives.)
On today’s hardware, multiple computation frequencies enable a
tradeoff between complex high-precision floating point computa-
tions at a coarse level of detail and many simple low-precision
fixed-point computations at a fine level of detail.

constant primitive group vertex fragment
Figure 3: Computation frequencies. Our system supports four computation frequen-
cies. In the illustrations above, individual elements at each computation frequency are
depicted by color.

Programmable stages are ordered by frequency, least-frequent
first. Each stage processes a stream of independent objects (e.g.
individual vertices or fragments). Stages compute an output
stream given an input stream composed of application-specified
parameters and outputs from previous pipeline stages.

Between consecutive programmable stages are fixed-function
stages that implement the parts of the graphics pipeline that cannot
be programmed. In particular, between the programmable vertex
and fragment stages are stages that assemble vertices into primitives
and rasterize primitives to fragments. The rasterization stage also
interpolates vertex values such as texture coordinates and color to
obtain fragment values.

Programmable stages are driven by a pipeline program consist-
ing of operators arranged into directed acyclic graphs (DAGs). The
DAGs are partitioned by pipeline program stage, and specify how
to compute stage outputs from stage inputs.

Pipeline programs virtualize the hardware. There are no program
size limits and no limits to the number of inputs, outputs, and
parameters allowed. Conceptually the programmable pipeline per-
forms all computations in a single pass. In practice, however, large

3



Submitted to SIGGRAPH 2001

computations may be split into multiple passes. Our abstraction
hides this splitting process.

4.2 Data types

Stages in our system operate on ten data types. There are scalars,
3-vectors and 4-vectors, each of which may be composed of either
floats or [0,1]-clamped floats. The remaining four types are 3�3
floating-point matrices, 4�4 floating-point matrices, booleans, and
a special texture reference type that allows access to textures
through the OpenGL texture naming mechanism.

All of our data types are abstract types, by which we mean
that each type has a well-defined semantics but not necessarily a
well-defined storage representation. For example, the floating point
type need not be represented as IEEE floating point numbers. This
allows us to easily map types to a wide variety of hardware, and
follows principles established in the OpenGL specification [18].

The [0,1]-clamped float type is included to represent fixed point
numbers, particularly fragment color values, as well as clamped
floating point values at vertices (normally vertex colors). Recent
fragment-processing hardware supports larger fixed-point ranges
(especially [–1,1]), but for reasons discussed in Section 6.5, we do
not provide a [–1,1]-clamped data type.

Although current fragment hardware does not support floating
point computations, we provide a fragment floating-point type.
This allows users to easily write surface shaders that can be
used with either vertex or fragment lights. We implement the
fragment-float type using the best-available fragment data type.
Since current fragment-processing hardware is implemented using
fixed-point and therefore has limited range, overflows and clamping
are possible. We expect this problem to go away in the future once
fragment hardware supports a true floating-point type.

Our use of a clamped float type differs slightly from the works
of Olano and McCool. Olano’s language allows for well-defined
fixed-point types specified with a given size and exponent (e.g.
fixed<16,16>) [14]. This capability matches PixelFlow hardware,
but not the graphics hardware we target. McCool provides a hinting
mechanism for storage representations [9].

4.3 Operators

The operators we implement were chosen to support standard
transform, lighting, and texturing operations. We purposely omit
operations that cannot be implemented today.

We include support for: basic arithmetic; scalar, vector, and
matrix manipulation; type casting; exponentiation, square roots, dot
and cross products, trigonometric functions, and vector normaliza-
tion; transformation matrix generation; comparisons; selection of
one of two values based on third boolean value; min, max, and
clamp operators; access to parameters and constants.

Several operations support texture lookups, including support for
2D textures, 3D textures, and cubical environment maps. All of the
texture operations use textures specified outside our shading system
through the OpenGL texture binding mechanism.

We also support a number of canned functions. These are
operators that correspond to special hardware operations that are
either difficult or impossible to express efficiently in terms of the
other operators that are available. In particular, we include two
canned functions (bumpspec and bumpdiff) to make bump mapping
more efficient for one of our fragment back ends. These functions
implement bump mapping as described by Kilgard [7].

Non-orthogonal operators. Ideally, hardware would support
all operations at all computation frequencies. Many complex
operators, such as divide and square root, are not fully-supported
per-fragment. Others, e.g. Trigonometric functions, are too
expensive to implement more frequently than per-primitive-group.

Texturing is fragment-only, and dependent texturing (where com-
puted per-fragment values are used as texture coordinates) is not
fully-supported in current hardware. Thus, operations are not
orthogonal across computation frequencies.

To handle this problem, we specify which operations may be
performed at each computation frequency. For example, the built-in
texture function is allowed to return a fragment value, but not a
vertex value. We also associate a range of computation frequencies
with the inputs to each operator. This allows us to handle systems
without dependent texturing, by requiring that texture coordinates
be vertex values. All range limits are defined in a table associated
with each hardware type, and are easy to change as operators
become more flexible in the future.

Optional operators. Not all hardware supports all operators.
For example, only the most-recent fragment-processing hardware
has support for cubemaps, bumpmaps, and per-fragment dot-
products. In order to support these capabilities, and to provide ex-
tensibility, we allow operators to be optional. Our shading language
compiler can determine at run-time which operators are available,
and it uses this information to provide conditional-compilation
directives to allow shader to be written accordingly.

Unsupported operations. We do not support meta-operations
representing control structures, such as labels and branches. Al-
though these kinds of operations are useful, they are not supported
by current hardware pipelines. Also, aside from read-only texturing
operations, we do not support generic random-access memory
operations, such as pointer dereferencing. There is good reason
for these restrictions. Allowing branches and random memory
accesses would significantly slow down highly pipelined, data
parallel graphics hardware.

The lack of label, branch, and random-access memory operations
helps to simplify the analysis of pipeline programs. From a
compilation standpoint, a pipeline program has one basic block and
no pointer aliasing.

5 Shading Language

5.1 Language overview

The language we implemented is based to a loose degree on
RenderMan. Several differences are noteworthy.

First, for simplicity, we eliminated features from our language
that seemed unlikely to appear in graphics hardware within the next
few years or that were not essential to exploring the compilation
and architectural issues we wanted to research. Features in this
second category include: atmosphere, imaging, and transformation
shaders; support for displacement maps; more compute-intensive
built-in functions; and support for the derivative operator. Over
time, we expect to continually enhance the language based on user
feedback and the expected rapid evolution of graphics hardware.

Second, we deviated from RenderMan’s syntax to reflect terms
and techniques used in real-time graphics systems such as OpenGL
(and to some extent Direct3D). Examples of syntactical changes
that made it easier to develop shaders in the OpenGL environment
include:

� Types that reflect OpenGL vertex types, including RGBA
colors and positions encoded in 4-vectors. RenderMan has
only a single number representation, a float, but we introduced
clamped floats to allow for numbers to be represented using
fixed-point.

� Predefined vertex parameters that correspond to positions,
normals, and other standard OpenGL parameters, plus support
for tangent and binormal vectors. We also include a number of
primitive group parameters for the modelview and projection
matrices and the light position and orientation.

4



Submitted to SIGGRAPH 2001

#include “lightmodels.h”
surface shader float4 bowling pin (texref base, texref bruns, texref circle,

texref coated, texref marks, float4 uv)
f

// Compute per-vertex texture coordinates
float4 uv wrap = fuv[0], 10 * Pobj[1], 0, 1 g;
float4 uv label = f10 * Pobj[0], 10 * Pobj[1], 0, 1g;
// Compute constant texture transformation matrices
matrix4 m base = invert(translate(0, -7.5, 0) * scale(0.667, 15, 1));
matrix4 m bruns = invert(translate(-2.6, -2.8, 0) * scale(5.2, 5.2, 1));
matrix4 m circle = invert(translate(-0.8, -1.15, 0) * scale(1.4, 1.4, 1));
matrix4 m coated = invert(translate(2.6, -2.8, 0) * scale(-5.2, 5.2, 1));
matrix4 m marks = invert(translate(2.0, 7.5, 0) * scale (4, -15, 1));
// Compute per-vertex mask value to isolate front half of pin
float front = select(Pobj[2] >= 0, 1, 0);
// Transform texture coordinates, perform texture lookups, and apply mask
float4 Base = texture(base, m base * uv wrap);
float4 Bruns = front * texture(bruns, m bruns * uv label);
float4 Circle = front * texture(circle, m circle * uv label);
float4 Coated = (1 - front) * texture(coated, m coated * uv label);
float4 Marks = texture(marks, m marks * uv wrap);
// Invoke lighting models from lightmodels.h
float4 Cd = lightmodel diffuse(f0.4, 0.4, 0.4, 1g, f0.5, 0.5, 0.5, 1g);
float4 Cs = lightmodel specular(f0.35, 0.35, 0.35, 1g, f0, 0, 0, 0g, 20);
// Composite textures, apply lighting, and return final color
return (Circle over (Bruns over (Coated over Base))) * Marks * Cd + Cs;

g

Figure 4: Example surface shader. This shader is adapted from the RenderMan
bowling pin shader [19]. Our version relies on texture maps in many places where
the original version used procedural texturing. The bowling pin shader computes
texture coordinates given uv, the 2D surface parameterization, and the builtin variable
Pobj, the object-space position. After being transformed by a set of transformation
matrices, the texture coordinates are used to index texture maps specified by texrefs,
which correspond to numeric OpenGL texture names. An alpha mask is computed at
the vertices is used to isolate some of the textures to either the front or back half of
the bowling pin. Lighting is computed by two functions defined in an include file,
one of which is described further in Section 5.3. Finally, we compute the final color
by compositing the textures and applying the lighting. We rely on a feature in our
language (described in Section 5.4) which automatically determines the computation
frequency of every computation, thereby allowing us to avoid specifying computation
frequencies explicitly.

Note that this shader is different from the version used in the results
section and video tape.

� Textures are denoted by texture references, or texrefs, rather
than by strings. Texture formats reflect formats available in
OpenGL, and these differ from the RenderMan formats.

To illustrate our shading language, we show an example surface
shader in Figure 4.

Three more differences are important. First, we paid particular
attention to the semantics of the language in order to support a high
degree of optimization. Second, light shaders, light variables, and
the combining of surfaces and lights are all handled differently from
RenderMan. Finally, we split the varying type into two separate
types: vertex and fragment. We discuss these differences in the
following sections.

5.2 Language analysis

An important property of our language that distinguishes it from
the previous work is that our language is easily analyzed and
optimized by a compiler. Analysis is important because it allows
us to infer several kinds of information that users would otherwise
have to specify explicitly. Optimization is particularly important in
a real-time context for making shaders run as fast as possible.

Four aspects of the language help make it easy to analyze and
optimize:

� Function inlining. We explicitly inline all functions and
delay the analysis and optimization of each inlined function

(a) (b) (c) (d) (e) (f) (g)
Figure 5: Constructing the bowling pin. We show the seven compositing steps use to
compute the final color of the bowling pin shader in Figure 4. The images depict (a)
Base texture; (b) after applying Coated (back half of pin shown), (c) Bruns, (d) Circle,
and (e) Marks; (f) after multiplying by Cd; (g) after adding Cs. The images do not
correspond to rendering passes, since more than one of these steps may be performed
in a single pass.

until after the function has been inlined. This allows the
compiler to specialize the each function depending on its
calling context.

� Combined compilation of surfaces and lights. We compile
surfaces and lights together, and we delay analysis and opti-
mization until after surfaces and lights have been combined.
This allows us to perform analysis and optimization across
surface and light shaders.

� No data-dependent loops and branches. The lack of support
for data-dependent loops and branches in hardware means
we do not support these features in our language. This
considerably simplifies the analyses we must perform.

� No random access to memory. The lack of hardware support
for random read/write access to memory likewise allows to
eliminate that feature from our language. In particular, this
removes the possibility of pointer aliasing, and also simplifies
the analyses we must perform.

Together, these properties of the language allow us to reduce
shading calculations to a single DAG representing a complete
pipeline program. Once in this format, analysis and optimization
are very straightforward.

5.3 Surface and light shaders

We support two shader types: surfaces and lights. Surface shaders
return a 4-component RGBA color, while light shaders return a 4-
component RGBA light color.

Compared to RenderMan, we use a slightly different syntax
to combine lights with surfaces. We introduce a special linear
integrate operator, which evaluates a “per-light” expression once
for each light and sums the results. A simple integrate example:

// A lighting model for combined ambient and diffuse illumination
surface float4 lightmodel diffuse (float4 ka, float4 kd) f

perlight float NdotL = max(0, dot(N,L));
return ka * Ca + integrate(kd * NdotL * Cl);

g

Note the per-light variable NdotL in the example. Our system
defines three per-light values: the light color (Cl), the light vector
(L), and the half-angle vector (H). If a surface shader uses one of
these values, then dependent values must be computed once per-
light. Our compiler infers which expressions in a surface shader
are per-light by performing type analysis on expressions; however,
to make code more readable, we require variables that hold per-light
values to be declared with the perlight type modifier.

The integrate operator is converted into a sum at compile-time.
The compiler expands integrated expressions by replicating them
for all the active lights, then summing the results. In the example
above, the special per-light global Cl is replaced by the corre-
sponding light shader’s return value. When we build the integrate
expression, we sort it by computation frequency, grouping lights

5



Submitted to SIGGRAPH 2001

that return vertex values together. This allows multiple per-vertex
light values to be added together in the vertex stage so that only a
single per-vertex value is interpolated and added to the remaining
light values in the fragment stage.

The integrate operator is linear in the sense that integrate(ka * a
+ kb * b) is equivalent to ka * integrate(a) + kb * integrate(b) if
neither ka nor kb is per-light. The linearity of the integrate operator
guarantees that certain optimizations can be made.

5.4 Support for computation frequencies

In Section 4, we introduced the concept of multiple computation
frequencies. In our language, we represent multiple computa-
tion frequencies using four type modifiers: constant, primitive
group, vertex, and fragment. We originally considered using
RenderMan’s uniform and varying type system, but could not find a
proper correspondence between varying values, vertex values, and
fragment values. Ultimately, we realized that uniform and varying
represented two computation frequencies, while we identified four
such frequencies. We introduce the new type modifier terminology
to generalize the concept inspired by uniform and varying.

One goal of a compiler is to reduce computation; in our system,
this implies performing computations at the least-frequent compu-
tation frequency possible. For example, if a computation may be
performed per-vertex or per-fragment, our compiler will elect to do
it per-vertex, unless the user specifies otherwise.

Consider a surface shader that is designed to be used with either
vertex or fragment lights. The surface shader should not specify
the computation frequencies of its intermediate values, since the
appropriate frequencies depend the active lights. Optimizing
surface shader code in a way that accounts for the computation
frequencies of the active lights allows for significant computational
savings. Thus, we provide compiler support for inferring computa-
tion frequencies.

Of course, the programmer is still allowed to explicitly specify
computation frequencies for all computations. In many cases this is
necessary in order to capture rapidly varying lighting and texturing
changes across a surface.

Two rules are used to infer computation frequencies. The first
deals with the default computation frequencies of shader parame-
ters, while the second deals with the propagation of computation
frequencies across operators. By applying these rules, a compiler
can always infer the computation frequency of a given operation.

All shader parameters and built-in variables have a default
computation frequency. In the case of shader parameters, the
frequency depends on the parameter’s type and class of shader
(surface or light). For example, floating-point scalars and vectors
default to vertex for surface shaders and to primitive group for
light shaders; matrices default to primitive group for both kinds of
shaders:

surface shader float4 surf1 (float1 f) f ... g // f is vertex
light shader float4 light1 (float1 f) f ... g // f is primitive group

Default computation frequencies may be overridden if the user
specifies the computation frequency of a parameter explicitly:

light shader float4 light2 (vertex float1 f) f ... g // f is vertex

The computation frequencies of computed values are determined
by applying a second rule that propagates computation frequencies
across operators. When combining values of different frequencies,
the result varies as often as the most-frequent input operand.
For example, adding a vertex and a fragment values results in a
fragment value. The second rule also obeys a number of additional
computation frequency constraints for special operations (such as
texturing) to satisfy the limitations of those operations.

While the computation frequencies of computed values are
inferred using the rules just described, they may be controlled

by type-casting values to specific computation frequencies. For
example, if two vertex values N and L are to be used to compute
dot(N,L), the result of the dot product will normally be per-vertex.
However, a per-fragment dot product can be achieved by first
casting N or L (or both) to a fragment value, e.g.:

dot((fragment float3)N, (fragment float3)L) // dot is fragment

It is important to note that both values and operations have
computation frequencies. Ultimately we are interested in the
computation frequencies of the operations, since we must assign
these operations to particular stages of the programmable pipeline.

6 Retargetable Compiler Back End

In this section we describe our retargetable compiler back end,
which implements the programmable pipeline abstraction by map-
ping pipeline programs to shader object code. We designed our
back end with two goals in mind: to support a wide variety of
hardware and to support arbitrarily-complex computations.

To support a wide variety of hardware, we implement a modular
compiler. New hardware can be targeted simply by adding new
modules. We provide for separate modules for each computation
frequency to allow modules to be interchanged and to allow for
sharing of certain common modules.

Each module implements a single stage of the programmable
pipeline and has two parts: a compile-time part and a render-time
part. The compile-time part is necessary to target compilations
to specific hardware, while the render-time part is necessary to
configure and utilize that hardware during rendering.

In all, we implement seven back-end modules. We imple-
ment two primitive group back ends (cc-pg and x86-pg), both of
which target host processors. We also implement three vertex
back ends, two for the host processor (cc-v and x86-v) and one
for programmable vertex-processing hardware (vprog). We also
implement two fragment back ends, one for the standard OpenGL
pipeline plus a number of optional extensions (lburg), and one for
programmable fragment-processing hardware (regcomb).

We use two techniques to support arbitrarily-complex compu-
tations. First, we use multipass methods if a single hardware
pass cannot execute the entire program. Second, we augment
the capabilities of vertex-processing hardware with compiled host-
programs; we also sometimes fall back to host processing because
of resource limitations of the hardware.

6.1 Module interactions

In the following sections, we describe individual modules in detail.
However, one of the major complexities in the system is that
modules are not completely independent. We now discuss three
important kinds of interactions and some of our implementation
strategies for these dealing with the resulting interactions:

Data flow interactions. Data values must flow from the user
application into the shading system and through the stages of the
programmable pipeline. For modules to interact properly, we must
define the format of the data that is passed between stages. All
values computed or specified on the host are stored in a fixed format
that is the same for all back ends. Values that are computed on a
vertex or fragment processor use a format specific to that processor,
since they must be communicated to the following stage.

As an example, consider passing vertex values from the host
CPU to the graphics processor. With non-programmable vertex-
processing hardware, we use the host to perform the necessary
vertex computations, and we pass computed vertex values to the
hardware. With programmable vertex-processing hardware, we
pass user-specified vertex parameters directly to hardware. To

6



Submitted to SIGGRAPH 2001

facilitate the efficient passing of both kinds of vertex values, we
format all vertex data using vertex arrays.

Pass-related interactions. The fragment back ends may rely
on multiple passes to implement arbitrarily-complex fragment
computations. A complication occurs when using multiple passes
with programmable vertex-processing hardware: we must partition
vertex computations according to which values are needed by each
pass. To handle this case, fragment back ends compile their code
first, then provide lists of values to vertex back ends to indicate
which values are needed for each rendering pass.

Resource constraint interactions. When using the pro-
grammable vertex-processing hardware back end, it is possible
for a fragment back end to request a set of values for particular
pass that cannot be computed given the available vertex-processing
resources, such as registers and instructions. To allow our system
to handle this case, we rely on the modularity of our system and fall
back to one of the host-side vertex back ends. More sophisticated
solutions are possible, such as negotiating simpler passes with the
fragment back end, but we do not attempt any of them.

6.2 Host-side back ends

We implement four host-side back ends, two of which support
primitive group computations and two of which support vertex
computations. We initially implemented these back ends because
they offered us a convenient way to explore primitive group and
vertex programmability. However, we continue to use all four back
ends and consider them to be an important part of the system. The
primitive group back ends are useful because current hardware does
not support the primitive group functionality we require. The vertex
back ends are useful because they allow for vertex programmability
when programmable vertex hardware is unavailable.

All four host-side back ends generate code by traversing the
internal representation and emitting code templates. Two of the
back ends use a common set of routines to emit C code, generate a
dynamically-linked library using an external C compiler, and load
the compiled shader code. Likewise, the other two back ends use
a common set of routines to emit x86 assembly and generate x86
object code internally. We found the C compiler approach to be
very portable, and we note this approach generates better code than
the internal x86 code-generation approach; however, we prefer the
internal x86 code-generation approach because it generates code
quickly and without the hassle of a properly-configured external
compiler.

6.3 Vertex program back end

NVIDIA and Microsoft have recently proposed a vertex program
architecture, shown in Figure 6. The architecture defines a register
machine that conceptually operates on one vertex at a time. A
processing unit with a capacity for 128 instructions computes up
to 15 output vertex attributes given 16 read-only input attributes, 96
read-only constants (shared across all vertices), and 12 read-write
variables (i.e. temporary registers). The machine is optimized to
process 4-vectors, and therefore most data paths are 4 wide. The
instruction set contains 15 instructions including a number of basic
but flexible instructions plus two specialized instructions, LIT and
DST, which are used to accelerate lighting and attenuation compu-
tations. The architecture contains swizzle-on-read, negate-on-read,
and write-masking features to facilitate the efficient processing of
scalar and vector values. The architecture also has limited support
for primitive group computations, but we do not make use of this
functionality because it is not flexible enough for our needs. Further
information about the architecture can be found in [13].

The vertex program back end maps computations to the pro-
grammable vertex-processing architecture just described. As with

input
attributes

(16)

processing
unit

output
attributes

(15)

constants
(96)

variables
(12)

128
instructions

// Output homogeneous surface position
DP4 o[HPOS].x, v[OPOS], c[0];
DP4 o[HPOS].y, v[OPOS], c[1];
DP4 o[HPOS].z, v[OPOS], c[2];
DP4 o[HPOS].w, v[OPOS], c[3];
// Transform normal to eye-space
DP3 R0.x, v[NRML], c[4];
DP3 R0.y, v[NRML], c[5];
DP3 R0.z, v[NRML], c[6];
// Normalize eye-space normal
DP3 R0.w, R0, R0;
RSQ R0.w, R0.w;
MUL R0, R0, R0.w;
// Compute N � L and clamp using LIT
DP3 R1.x, R0, c[7];
LIT R0, R0;
// Multiply by diffuse color and output
MUL o[COL0].xyz, R0.y, c[8];

Figure 6: Vertex program architecture. The vertex program architecture processes a
single vertex at a time and computes a set of output attributes given a number of input
attributes, constants, and variables (i.e. temporary registers). A sample program that
computes a diffuse lighting term given an infinite light is shown, to give an impression
of the architecture’s programming model. In the example shown, c[0..3] are the rows
of the composite matrix, c[4..6] are the rows of the inverse modelview matrix, c[7] is
the light direction, and c[8] is the light’s diffuse color.

the host-side back ends, we generate instructions by traversing
the internal representation and emitting code templates; however,
unlike the host-side back ends, we perform this operation once
per pass. For each pass, we generate code to compute the
vertex values needed by the pass. (Note that some computations,
position especially, are needed by multiple passes and are therefore
repeated across passes as necessary.) Instructions in code templates
reference an infinitely-sized set of scalar and vector registers.
After all instructions for a pass have been emitted, we perform
register allocation to map this infinite register set to actual hardware
registers.

We apply two general kinds of techniques to optimize instruc-
tion usage: code transformations, which occur before instruction
selection, and peephole optimizations, which occur after instruction
selection. Both help to reduce the number of instructions to help us
stay within the 128 instruction limit. Some of the optimizations we
implement include:

� collapse MUL and ADD to MAD (multiply-and-add)
� perform copy propagation of various sorts
� replace simple negations with negated source operands
� group parallel scalar operations into a single vector operation

with output write-masking if necessary
� transform certain patterns of conditionals, clamps, and power

operations to use the LIT instruction
� transform certain patterns which compute attenuation factors

to use the DST instruction

Intermediate values are stored in variable registers. To opti-
mize variable register usage, we order instructions according to a
depth-first traversal, then apply a standard greedy graph-coloring
register-allocation algorithm. While the depth-first traversal is
not optimal, it helps to reduce the number of registers needed to
store intermediate results. When graph coloring, we treat scalars
as if they occupy a full vector register. We found that because
we almost always have an adequate number of variable registers,
this approximation works reasonably well. Note also that graph
coloring is simplified because we cannot spill variable registers if
we run out of them.

Constant and primitive-group values used by the vertex stage
are stored in constant registers. Each primitive-group value is
assigned its own constant register. Constant values, which are

7



Submitted to SIGGRAPH 2001

known at compile-time, are packed together, using the architec-
ture’s swizzle-on-read and negate-on-read functionality to extract
actual constant values. For example, the scalars 0, 1, and -0.5,
plus the vectors f.707, 0, .707, .5g and f0, –.707, –.707, -1g
can all be packed into a single 4-component constant register as
f.707, 0, .5, 1g. The constant packing algorithm first sorts constants
in descending rank order, where the rank of a constant is the
number of unique components it has. (For example, the rank of
the vector f.707, 0, .707, .5g is three.) The algorithm then assigns
each constant to a register, trying to minimize the impact of each
constant by searching for matches with registers that have already
been filled. Constant packing is important because a single program
can access a large number of constants that share common values
(this is especially true for matrices) and because it allows constants
from consecutive passes to be packed together (although we do not
perform this second optimization).

6.4 Generic lburg-based fragment back end

Our first of two fragment back ends compiles fragment computa-
tions to the OpenGL pipeline using multipass rendering techniques
described by Peercy et al. We treat the OpenGL pipeline as
implementing two basic kinds of passes: a render pass which
computes a value into the framebuffer and a save pass which copies
framebuffer memory to texture memory. Two equations summarize
the two kinds of passes:

FB = fC; T; C � Tg[� T ][� FB ] (render)
T = FB (save)

C is a constant or interpolated color, T is the result of a texture
lookup, FB is the framebuffer, and each � is one of add, subtract,
multiply, or blend. We use f...g to indicate “one of ...” and [...]
to indicate that “...” is optional, so valid render passes include C,
T � FB and C � T � T � FB . Render passes may also contain
canned functions (described in Section 4.3), but for simplicity we
omit these variations from the equations above.

We map DAGs of fragment computations to render and save
passes using a bottom-up tree-matching technique similar to that
used by Peercy et al. Specifically, we decompose the input DAG
into trees, then we use a tree-matcher generated by lburg [3] to
select a minimal-cost set of passes. Tree-matching is based on a set
of rules derived directly from the render and save equations above.

We assign a cost of one to each render pass and a cost of
five to each save pass. The difference in costs tends to eliminate
unnecessary save passes, which are almost always more expensive
than render passes. Also, because each render pass has the same
cost, more operations tend to get packed into fewer passes.

Peercy et al. proposed the use of tree-matching algorithms to
target OpenGL extensions such as multitexture. We include support
for multitexture, including a few of the simpler texture combining
extensions. We handle extensions by using the lburg cost mech-
anism to dynamically enable and disable rules that depend on the
availability of certain extensions. A very large cost, set at run time
when an extension is found to be missing, effectively disables a
rule.

We found the tree-matching technique to be effective when
passes are simple; however, when we attempted to extend the
tree-matching technique to more-complex, programmable fragment
hardware, we encountered a number of difficulties:

� Resource management. An important aspect for targeting
programmable hardware is allocating and managing resources
such as instructions, registers, constants, interpolants, and
textures, all of which are available in limited amounts within a
single pass. The tree-matching technique has no way to track
these resources. In addition, recent combiner architectures

support independent RGB and ALPHA operations, and tree-
matching has difficulty managing operations separated in this
manner.

� Handling of DAGs. The tree-matching algorithm matches
trees, not DAGs. In our implementation, values that are
referenced more than once are handled either by splitting
them off into a separate tree or by duplicating them and
recomputing them once for every use. Values that are split
off are saved to texture memory. Since this operation is
expensive, we prefer to duplicate rather than to split; however,
we only duplicate values that match a set of patterns we know
fit into a single pass.
Decomposing DAGs into trees for tree-matching adds render-
ing overhead. If a single rendering pass is simple enough that
it can only evaluate a tree of operations, then the overhead is
minimal, since the pass-selection process will ultimately gen-
erate a similar decomposition. However, if a single rendering
pass can evaluate a DAG of operations, as is typically the case
with programmable fragment hardware, then decomposition
may not be necessary and overhead costs may be realized.

� Tree permutations. Our tree-matching algorithm uses a
hierarchical set of rules to define tree patterns to be matched.
Through the use of registers, programmable hardware is able
to express a very large number of tree patterns. Assuming
instructions with two inputs, the number of rules needed
to express all possible patterns grows as the square of the
number of instructions available, which quickly becomes
unmanageable. The situation is much worse if instructions
have more than two inputs.

These difficulties convinced us to abandon our attempts to use tree-
matching techniques to target programmable fragment hardware.

6.5 Programmable fragment hardware back end

To address the problems of the tree-matching technique, we
developed a second fragment back end specifically designed to
target programmable fragment hardware. The run-time part of
this back end currently targets the NV register combiners OpenGL
extension, but could be easily modified to target the DirectX
8 pixel-shader instruction set, which exposes similar hardware
functionality.

The register combiner architecture, like the vertex program
architecture, is register-based. Conceptually, it operates on one
fragment at a time. A processing unit called a register combiner
operates on a set of registers and constants to compute new values,
which are then written back into registers. Registers are initially
loaded with interpolated vertex colors and the results of texture
lookups. The architecture allows the number of registers and
textures to vary with degree of multitexture supported. The number
of register combiner units is also allowed to vary.

A register combiner consists of two parts: an RGB portion and
an ALPHA portion. The RGB portion of a register combiner is
depicted in Figure 7. It consists of four 3-component inputs and
three 3-component outputs. Each input comes from either the RGB
portion of a register or the ALPHA portion of a register replicated
across all three components. One of eight mappings may be applied
to each input to expand, negate, and/or bias the input. Three
values are then computed from the four mapped inputs. Two of
the values are computed as either the product or the dot product
of an associated pair of inputs. The third value is either the sum
or a mux of the first two values, with the restriction that if either
of the first two operations was a dot product, the third value must
be discarded. Before being written to registers, all three values are
scaled and biased by a single shared scale/bias factor. The ALPHA
combiner is similar to the RGB combiner except that the ALPHA
combiner has scalar inputs and outputs, where each input comes

8



Submitted to SIGGRAPH 2001

mul
or
dot

mul
or
dot

add
or

mux

scale
and
bias

input
map

input
map

input
map

input
map

RGB
to

regs

RGB
or

AAA
from
regs
and

consts

Figure 7: RGB register combiner architecture. An RGB register combiner processes
four inputs to compute three outputs. The combiner computes two product terms and
a sum/mux term. It can apply an input mapping to each input, and can scale and bias
its outputs given a single shared scale/bias factor.

from either the ALPHA or the BLUE portion of a register. Because
the ALPHA combiner operates on scalar values, it does not perform
dot products.

The register combiner architecture also specifies a final combiner
designed to perform a fog computation but capable of performing
other computations also. Details can be found in [12].

We target the register combiner architecture using a multi-phase
compilation algorithm that treats the architecture as if it were a
VLIW processor, with register combiners corresponding to VLIW
instructions. The complete details of our compilation algorithm are
beyond the scope of this paper and will be described a separate
publication. We outline our basic approach here.

The core of our algorithm maps a DAG of operations to a single
rendering pass in five steps:

1. Rewrite input DAG. We first preprocess the input DAG to
split RGB and ALPHA computations, to expand certain index
operations using dot products, and to expand select operations
to use the architecture’s less-than-half muxing scheme.

2. Determine input and output scale/bias mapping opera-
tions. We scan the input DAG for sequences of operations that
correspond to mapping operations and replace each sequence
with a single mapping operation. We perform range analysis
to find situations where mappings intended for [0,1] numbers
can be applied to numbers that are [–1,1] by type but [0,1]
after analysis.

3. Select instructions. We perform a greedy, top-down DAG
traversal to map the input DAG to register combiners. We
assign operations to half combiners (product only) and whole
combiners (sum of products) and we select RGB and AL-
PHA combiners as appropriate to the computations being
performed. We currently do not assign operations to the
final combiner. The output of this step is a DAG of register
combiner instructions.

4. Allocate pass inputs. We use a greedy algorithm to map pass
inputs to their initial registers. We are especially careful to
allow as many paths as possible for values of various types
(constant/interpolated scalar/vector color values plus textures)
to be allocated to registers, so that we can support a diverse
mix of input value types.

5. Schedule instructions and allocate registers. We do a
depth-first post-order traversal of the instruction DAG, greed-
ily scheduling instructions to the first appropriate slot avail-
able. As we schedule instructions, we also reserve register
space for results; we free register space on the last use of
a result. We make a special effort to properly manage the
alpha component of the SPARE0 register, which has exclusive
control over the MUX operation.

Our implementation does not yet decompose DAGs larger than
a single pass into pass-sized pieces for scheduling by our core
single-pass algorithm. While it is clear to us that it would be
straightforward to generate a correct decomposition of any input
DAG, it remains to be seen how efficient we can make these
decompositions.

The most difficult aspect of compiling to register combiners
is dealing with idiosyncrasies in the architecture. In particular,
many aspects of the architecture are not orthogonal. For example,
the sharing of a single output scale/bias factor by all three com-
biner outputs complicates both instruction selection and instruction
scheduling, and the requirement that the MUX operation’s control
input come from the alpha component of the SPARE0 register
complicates both instruction scheduling and register allocation.

A more fundamental problem with the register-combiner ar-
chitecture is the wide variety of fixed-point data types it uses.
Values stored in registers have a range of [–1,1], but intermediate
results within a single combiner can have other ranges, such as
[–2,2] and [0,4]. Ideally, a shading language has well-defined
range semantics for its data types, but because register combiner
operations and data types are not orthogonal, register combiners do
not cleanly support this ideal. A [–1,1] type with proper semantics
can be implemented, but only by disabling many useful parts of
the architecture, which results in a performance penalty. We forgo
the ideal, implicitly exposing the hardware’s range semantics in the
language. When needed, the user may explicitly request [–1,1]
clamping. Ultimately, we hope this problem will be fixed in
hardware with the addition of consistent and orthogonal support for
a small set of well-defined data types.

We anticipate that future hardware will support more registers,
more textures, and more combiners than current hardware. To
accommodate such changes, we designed our programmable frag-
ment back end to compile to a parameterized model of hardware.
We also designed our system to facilitate the addition of support for
DirectX 8-style texture-addressing operations.

7 Results

Several of our results from the following sections are shown in our
accompanying video.

7.1 Shading language

In this section, we demonstrate three aspects of our shading
language.

Vertex vs. fragment tradeoff. Our language allows us to
easily express many computations using either vertex or fragment
computations. To demonstrate this, we coded up two versions of
the Banks anisotropic reflection model [1], one version based on
Heidrich’s algorithm [5] with the lighting model stored in a texture
indexed by per-vertex dot products of lighting vectors, and a second
version where the entire lighting model is computed at each vertex.
We render the shader onto a sphere with longitudinal tangents and
apply a surface texture to modulate the reflection.

The tradeoffs are evident as the surface dicing and number of
lights are changed. With a single light, the vertex method requires
a higher degree of dicing for the same visual quality as the textured
version. The textured version looks fine up close when the sphere
is tessellated to 40x20; the vertex version requires a dicing factor
around 3 to 4 times higher in each dimension for equivalent quality.
However, as more lights are added, the textured version requires an
additional texture lookup per light while the vertex version requires
only a few extra per-vertex instructions. Using our lburg back
end, this translates to one additional pass per light for the textured
version. No additional passes are required for the vertex version.

9



Submitted to SIGGRAPH 2001

Delayed optimization of light shaders. In our language, we
compile surface and light shaders together and delay the optimiza-
tion of the surface shader until after the shaders have been com-
bined. This allows us to determine the computation frequencies of
computations dependent on the light color in a manner appropriate
to the lights being used.

To illustrate this, we use as an example a simple surface that
computes integrate(fr * Cl), where fr is a per-vertex reflection
factor and Cl is the light color. If all the lights are vertex lights,
our delayed analysis tells us that all of the dependent computations
are per-vertex, and therefore the example requires no fragment
computation. Using our lburg back end, the example runs in one
pass regardless of the number of lights. However, without our
delayed analysis, we must assume up front that all of the lights are
per-fragment, and therefore all of the dependent computations must
be per-fragment. This means one fragment multiply for the first
light, plus one fragment multiply and one fragment add for each
additional light. Using our lburg back end, this translates to two
render passes for the first light, plus two render passes and one save
pass for each additional light.

When both vertex and fragment lights are present, delayed
analysis also lets us sort lights by computation frequency so we can
group vertex lights together. This allows us to minimize the portion
of the light sum that must be performed per-fragment. Given
the previous example surface, two simple vertex lights, and one
simple fragment light, this sorting optimization allows our lburg
back end to compile the shaders to three render passes. Without the
optimization, the lburg back end can generate as many as six render
passes and two save passes.

These examples demonstrate that the inlining and delayed analy-
sis of light shaders can significantly enhance a compiler’s ability to
optimize computations. This is particularly important in real-time
systems, where minimizing computation can have a significant
impact on performance.

7.2 Vertex back end

To assess the effectiveness of our compiler’s vertex-program back
end, we compared the output of our compiler with a hand-written
vertex-program that performs the same computation. For the
comparison, we used a surface/light shader pair that computes a
per-vertex color using a variant of the OpenGL shading model
for one light. The light shader represents a local light with a
quadratic distance attenuation factor. The surface shader modulates
the attenuated light intensity by ambient, diffuse (N � L), and
specular (N �H)

s terms. We use a local eye-point.
Our compiler-generated vertex program uses 44 instructions.

We created the corresponding hand-written vertex program by
selecting and optimizing pieces from an NVIDIA template [8]. The
hand-written program uses 38 instructions. The six extra instruc-
tions generated by the compiler-generated program fall into two
categories. Four of them result from sub-optimal code generation.
The other two are required to support both local and infinite lights,
because our system doesn’t currently provide any means to specify
at compile time whether a light shader will be used with local lights
(Lw 6= 0), directional lights (Lw = 0).

Our vertex-program compiler demonstrates that the performance
of vertex computations expressed in a high-level language can be
competitive with hand-written assembly code.

7.3 Fragment back ends

To evaluate the effectiveness of our compiler’s fragment back ends,
we used the following shading model:

Ka * Td + integrate(Cl * (Td * Bd() + Ts * Bs()))

where Ka is a constant ambient color, Td is an RGB diffuse
reflection factor obtained from a texture, Ts is a scalar specular
reflection factor obtained from a texture, and Cl is a per-vertex
light color. Bd() and Bs() are functions implementing Kilgard’s
hardware-friendly bump-mapping algorithm [7].

This shading model requires 14 three-vector operations and 12
scalar operations, including the operations required by the bump-
mapping algorithm. Broken down by operation type, the shading
model uses 14 multiplies, 6 adds, 3 clamps, 2 dot products, and 1
select.

We had to implement this lighting model slightly differently for
our two back ends. For the register-combiner back end, we were
able to explicitly express the entire computation. For the lburg
back end, we replaced the code for the bump-mapping algorithm
with calls to a pair of canned functions that invoke hand-written
register-combiner code for Bd() and Bs(). We relied on these
canned functions because the lburg back end is based primarily on
OpenGL 1.2, and thus does not support several features required by
the bump-mapping algorithm, such as [–1,1] fragment values.

Even with the aid of canned functions, the lburg back end
requires six rendering passes, plus a framebuffer-to-texture copy.
In contrast, the register-combiner back end compiled the entire
shading computation into a single pass, using four texture units
and nine register combiners. Minimal tuning of the source code
reduced the number of required combiners to seven. With more
extensive source-code tuning (using generated code for feedback),
we were able to reduce the combiner count to five. We were unable
to do any better by hand coding the shader, although hand coding
did allow the “final” register combiner to be used in place of one
of the “standard” combiners, which might improve performance on
some hardware.

As fragment pipelines become longer and more programmable,
it becomes especially important to include the appropriate balance
of different resource types in the hardware. These resource types
include texture units, vertex-to-fragment interpolators, temporary
result storage (e.g. registers), constant registers, and instructions
(e.g. register combiners). Resource limitations can be auto-
matically circumvented by compiling to multipass rendering, but
additional passes are expensive, since each pass consumes memory
bandwidth and requires re-transformation of geometry.

The following is a summary of our initial experiences with our
register-combiner compiler:

� We have yet to find a shader which runs out of fragment
registers before other resources, even though our compiler’s
instruction-scheduling algorithm is actually biased towards
heavy register usage.

� When compiling to current-generation hardware, we found
that we usually run out of either textures or instructions first,
depending on the type of shader.

� When compiling to configurations matching next-generation
hardware, we usually run out of textures or interpolators
before we run out of instructions, although some shaders run
out of instructions first.

Because our register-combiner compiler targets a parameterized
hardware configuration, we plan to use it to conduct a more-detailed
study of hardware configurations for a future paper. We also plan to
do joint studies with our vertex program compiler, to take a closer
look at how fragment hardware configurations interact with vertex
hardware configurations.

7.4 System Demonstration

To demonstrate the full capabilities of our system, we implemented
two example scenes. We ran both scenes at a resolution of 640x512
on an 866 MHz Pentium III system with an implementation of

10



Submitted to SIGGRAPH 2001

the NV vertex program and 8-combiner NV register combiners
extensions.

Textbook strike. We implemented a version of the textbook
strike scene from the cover of [19] using data from the PixelFlow
project kindly provided to us by UNC. Our version has ten bump-
mapped bowling pins and their bump-mapped reflections, plus a
bowling ball and textured floor. The scene contains a total of four
surface shaders and one light shader. We optimized the bowling-pin
shader to compile to one pass with our register-combiner back end
by pre-compositing the three projective decal textures into a single
projective decal texture. We are able to run this animation at 55
frames/sec. A single frame of our animation is shown in Figure 8.

Figure 8: Textbook strike. This scene contains ten bump-mapped bowling pins and
their bump-mapped reflections, plus a bowling ball and a textured floor. It run at 55
frames/sec.

Fish. We also implemented a swimming fish scene that contains
a bump-mapped fish with transparent bump-mapped fins, a textured
ground plane, a fragment light casting a caustic texture on all
objects, and a ground-plane shadow for the fish. In total, there are
five surface shaders and one light shader. For this scene, we use our
lburg back end to compile all of the shaders, and we also use our
immediate-mode interface to specify all geometry. We are able to
run this animation interactively at 22 frames/sec. A single frame of
animation is shown in Figure 9.

All these examples (except those using hardware bump mapping)
run on a wide range of hardware from different vendors, from
basic OpenGL hardware from SGI to OpenGL with multitextur-
ing extensions from 3dfx and ATI to implementations supporting
vertex programs and register combiner pipelines. In addition, our
examples run on different generations of hardware from the same
vendor, taking advantage of features in each chipset.

8 Discussion and Future Work

In this paper, we described the implementation of a real-time
procedural shading system designed for programmable graphics
hardware. We introduced a programmable pipeline abstraction
to unify the notion of multiple computation frequencies and to
support pipeline virtualization. We described a shading language
tailored to graphics hardware and introduced new schemes for
optimization, combining surfaces and lights, and automatically
determining computation frequencies. We also described our
retargetable implementation of the programmable pipeline using
modules that target current graphics hardware, including support
for programmable vertex and fragment hardware. Finally, we

Figure 9: Fish. This scene contains a bump-mapped fish with transparent, bump-
mapped fins plus a fragment light that casts a caustic texture on all objects. It runs at
22 frames/sec.

demonstrated our system running in real-time on today’s graphics
hardware.

It is much easier to program in our language than it is to write
custom multipass OpenGL programs. Furthermore, shaders written
in our language are portable, since the compiler handles the details
of mapping shaders to graphics architectures with different features.
The language itself is simpler and less ambitious than RenderMan.
Although we could wait until the graphics hardware is fast enough
to completely implement the RenderMan shading language, we
think—given the current capabilities and rapid advances in graphics
hardware—that a better strategy is to demonstrate its feasibility
now, then allow our system to evolve over time. It should be noted
that in order for developers of real-time rendering applications such
as games to adopt shading languages, it is most important that they
be compiled to the hardware near optimally. Having lots of features
is less critical.

A number of hardware improvements would help with the
implementation of our programmable pipeline abstraction. The
first is support for orthogonality of operations and data types
across computation frequencies, including vertex textures as well
as fragment floating-point and full support for dependent texturing
as described by Peercy. Second, support for rendering transparent
geometry currently requires us to separately render each trans-
parent object that could possibly overlap. This remains a big
limitation of multipass rendering and could be fixed with changes
to hardware. Third, our register combiner back end could have
been simplified significantly if hardware functionality, such as the
mux control value and output scale/bias factors, were orthogonally
across individual hardware elements. We would also like to see
hardware vendors take inspiration from McCool SMASH API
[9] and increase the generality and orthogonality of the shading
computations.

Currently, our programmable pipeline abstraction is just an in-
ternal interface for communicating shading computations between
our system’s front and back ends. We have demonstrated that
the intermediate format may be mapped to a variety of different
hardware architectures by our compiler. In a similar way, we
would like to follow Peercy et al.’s suggestion and develop several
domain-specific languages [16] and implement them as different
front ends.

So far, our experiences with real-time procedural shading on
today’s graphics hardware have been very encouraging. In the mi-
croprocessor world, the instruction sets of microprocessors changed
radically as appropriate compiler technology was developed. This

11



Submitted to SIGGRAPH 2001

in turn allowed innovative hardware designs that might not have
been possible otherwise. In a similar way, we think it is possible to
develop future graphics hardware optimized to run a programmable
graphics pipeline.

9 Acknowledgements

We would like to thank Anselmo Lastra, Lawrence Kesteloot, and
Fredrik Fatemi for providing us with position and orientation data
for the textbook strike scene. We would also like to acknowledge
our project’s sponsors: DARPA, 3dfx, ATI, NVIDIA, SGI, and
SUN. We particularly thank Matt Papakipos and Mark Kilgard of
NVIDIA for their assistance. Additional acknowledgements will be
provided in the final version.

References

[1] D. Banks. Illumination in diverse codimensions. In Proceed-
ings of SIGGRAPH 94, pages 327–334, July 1994.

[2] R. L. Cook. Shade trees. In Proceedings of SIGGRAPH 84,
pages 223–231, July 1984.

[3] C. Fraser and D. Hanson. A Retargetable C Compiler: Design
and Implementation. Addison-Wesley, 1995.

[4] P. Hanrahan and J. Lawson. A language for shading and
lighting calculations. In Proceedings of SIGGRAPH 90, pages
289–298, Aug. 1990.

[5] W. Heidrich and H.-P. Seidel. Realistic, hardware-accelerated
shading and lighting. In Proceedings of SIGGRAPH 99, pages
171–178, Aug. 1999.

[6] P. Jaquays and B. Hook. Quake 3: Arena Shader Manual,
Revision 10, Sept. 1999.

[7] M. J. Kilgard. A practical and robust bump-mapping tech-
nique for today’s GPU’s. Technical report, NVIDIA Corpora-
tion, July 2000. Available at http://www.nvidia.com/.

[8] E. Lindholm. Vertex programs for fixed function pipeline.
NVIDIA technical presentation (from www.nvidia.com), Nov.
2000.

[9] M. D. McCool. SMASH: A next-generation API for pro-
grammable graphics accelerators. Technical Report CS-2000-
14, University of Waterloo, Aug. 2000.

[10] Microsoft. DirectX 8.0 Programmer’s Reference, Oct. 2000.
[11] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: high-speed

rendering using image composition. In Proceedings of SIG-
GRAPH 92, pages 231–240, July 1992.

[12] NVIDIA Corporation. NVIDIA OpenGL Register Combiners
Extension Specification, Dec. 1999.

[13] NVIDIA Corporation. NVIDIA OpenGL Vertex Program
Extension Specification, Dec. 2000.

[14] M. Olano. A Programmable Pipeline for Graphics Hardware.
PhD thesis, University of North Carolina at Chapel Hill, 1998.

[15] M. Olano and A. Lastra. A shading language on graphics
hardware: The PixelFlow shading system. In Proceedings of
SIGGRAPH 98, pages 159–168, July 1998.

[16] M. S. Peercy, M. Olano, J. Airey, and P. J. Ungar. Interactive
multi-pass programmable shading. In Proceedings of SIG-
GRAPH 00, pages 425–432, July 2000.

[17] K. Perlin. An image synthesizer. In Proceedings of SIG-
GRAPH 85, pages 287–296, July 1985.

[18] M. Segal, K. Akeley, C. Frazier, and J. Leech. The OpenGL
Graphics System: A Specification (Version 1.2), Mar. 1998.

[19] S. Upstill. The RenderMan Companion: A Programmer’s
Guide to Realistic Computer Graphics. Addison-Wesley,
1990.

12


