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Figure 1: A plant rendered using our interactive layered attenuation-map approach (left), rayshade (middle), and our efficient high-quality coherence-based
raytracing approach (right). Note the soft shadows on the leaves. To emphasize the soft shadows, this image is rendered without cosine falloff of light intensity.
Model courtesy of O. Deussen, P. Hanrahan, B. Lintermann, R. Mech, M. Pharr, and P. Prusinkiewicz.
Abstract

We present two efficient image-based approaches for computation
and display of high-quality soft shadows from area light sources.
Our methods are related to shadow maps and provide the associ-
ated benefits. The computation time and memory requirements for
adding soft shadows to an image depend on image size and the
number of lights, not geometric scene complexity. We also show
that because area light sources are localized in space, soft shadow
computations are particularly well suited to image-based render-
ing techniques. Our first approach—layered attenuation maps—
achieves interactive rendering rates, but limits sampling flexibility,
while our second method—coherence-based raytracing of depth
images—is not interactive, but removes the limitations on sampling
and yields high quality images at a fraction of the cost of conven-
tional raytracers. Combining the two algorithms allows for rapid
previewing followed by efficient high-quality rendering.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shadowing, Raytracing

Keywords: Shadows, Raytracing, Image-Based Rendering

1 Introduction

Soft shadows from area light sources can greatly enhance the vi-
sual realism of computer-generated images. However, accurately
computing penumbrae can be very expensive because it requires
determining visibility between every surface point and every light.
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The cost of many soft shadow algorithms grows with the geomet-
ric complexity of the scene. Algorithms such as ray tracing [5],
and shadow volumes [6], perform visibility calculations in object-
space, against a complete representation of scene geometry. More-
over, some interactive techniques [12, 27] precompute and display
soft shadow textures for each object in the scene. Such approaches
do not scale very well as scene complexity increases.

Williams [30] has shown that for computing hard shadows from
point light sources, a complete scene representation is not nec-
essary. He performs the visibility calculations in image space,
against shadow maps—image-based representations of scene ge-
ometry. Although the shadows may suffer undersampling, bias,
and aliasing artifacts, the cost of the algorithm is relatively inde-
pendent of scene complexity. Further, it is possible to implement
this method as a post-shading pass that modulates a shadowless
rendering from the base renderer to include shadows. This makes
it simple to add the method to any existing renderer, without mod-
ifying the base renderer, and does not limit the approach to partic-
ular geometric primitives. In this paper, we describe two efficient
image-based techniques for rendering soft shadows that can be seen
as logical extensions of Williams’ approach.

In both methods, shadows are computed in image space. There-
fore the time and memory requirements for adding soft shadows to
an image are dependent only on image complexity and the number
of lights, not geometric scene complexity. Neither algorithm com-
putes per object textures, so texture mapping is not a bottleneck
for us. This independence from geometric scene complexity allows
us to efficiently compute soft shadows for large scenes, including
those which have complex patterns of self-shadowing.

We will also show that soft shadows are a particularly good ap-
plication for image-based rendering approaches. Since area light
sources are localized in space, visibility changes relatively little
across them. The depth complexity of the visible or partially visi-
ble scene as seen from a light (and stored in our shadow maps) is
generally very low. Further, shadow maps rendered from the light
source sparsely sample surfaces that are oblique to the light source.
However, these surfaces are less important to sample well, because
they are precisely the surfaces that are dimly lit.

The contributions of this paper are the two algorithms summa-
rized below, which represent two ends of a spectrum.



Layered Attenuation Maps: Our first approach achieves inter-
active rendering rates but limits sampling flexibility, and can there-
fore generate undersampling and banding artifacts. We precom-
pute a modified layered depth image (LDI) [25] by warping and
combining depth maps rendered from a set of locations on the light
source. The LDI stores both depth information and layer-based at-
tenuation maps which can be thought of as projective soft shadow
textures. During display, the proper attenuation is selected from
the LDI in real time in software, and is used to modulate normal
rendering without shadows. The precomputation is performed in a
few seconds, and soft shadows are then displayed at several frames
a second. Since the light source sample positions are chosen a pri-
ori, they are correlated for each surface location and this correlation
can appear as banding in the final image.

Coherence-Based Raytracing: Our second approach removes
limitations on sampling and yields high quality images, suitable
for high resolution prerendered animations, but is not interactive.
We precompute shadow maps from a few points on the light, often
the boundary vertices. To shade a surface point, we trace shadow
rays through the shadow maps rather than the scene geometry. The
shadows rays are decorrelated since they are chosen independently
for each surface point, and therefore banding is replaced by noise.
While the general approach to ray tracing depth images is well-
known1 [15, 16, 18, 20], we develop several novel acceleration
techniques for accelerating shadow ray computations.

The visible portion of a light source tends to change very little
for surface points close to one another. We describe a new image-
based technique for exploiting this coherence when sampling vis-
ibility along shadow rays. Our image-based raytracing approach
with coherence-based sampling produces soft shadows at a fraction
of the cost of conventional raytracers. While we combine both the
image-based ray-tracing and sampling algorithms in a single ren-
derer, they can be used independently (i.e. a standard geometric ray
tracer might incorporate our coherence-based sampling method).

Our algorithms can be combined in an interactive lighting sys-
tem; our fast layered attenuation map method can be used to in-
teractively set the viewing transformation, and position the light
source and geometry. Our coherence-based raytracing method can
then be used to quickly generate final high-quality images. This is
the approach we took to produce the results in this paper, and we
believe this approach has many applications to lighting design.

The rest of this paper is organized as follows. Section 2 reviews
previous work on soft shadows. Section 3 presents preliminaries,
while Section 4 describes our interactive layered attenuation map
algorithm. In section 5, we describe coherence-based raytracing of
depth images. The results are presented in Section 6, and Section 7
discusses future work and conclusions.

2 Previous Work

There is a vast literature on shadow algorithms, which we touch on
only briefly. Although a decade old, the survey by Woo et al. [32]
is still an excellent reference.

2.1 Object-Based Methods

Soft shadows can be computed using object-space methods such as
distributed ray tracing [5] and radiosity with discontinuity mesh-
ing [11, 17] or backprojection [7, 29]. Stark et al.[28] describe an-
alytic methods for computing soft shadows. These approaches are
computationally intensive and are not suitable for fast soft shadow
generation for complex scenes.

Herf and Heckbert [12] combine a number of shadow images
for each receiver using an accumulation buffer [9]. The method is

1McMillan [20] calls this inverse warping.

object-based, and the precomputation time can grow quadratically
with the number of objects being shadowed, making it impractical
for large scenes. Furthermore, a separate (generally large) texture is
created for each shadowed object. Our layered attenuation map ap-
proach is analogous in that we combine a similar number of depth
images rendered from different points on the light. However, we
improve on Herf and Heckbert’s method by precomputing image-
based textures simultaneously for the entire scene.

Soler and Sillion [27] use convolution on blocker images to
compute fast approximate soft shadows. A primary advantage
of their technique is that sampling artifacts that sometimes occur
when averaging hard shadows are avoided. A disadvantage of their
method is that they cluster geometry in object-space and the clus-
ters cannot shadow themselves; to correct this for complex objects
like plants or trees would require a very large number of clusters for
the leaves. This increased number of clusters can greatly increase
the computation time, obviating the benefits of the method. Sep-
arate textures are needed for each cluster being shadowed, which
can strain the texture mapping hardware for complex objects. Fur-
thermore, robust error control and automated clustering algorithms
can be complicated to implement [26].

Hart et al. [10] develop a view dependent method to accelerate
soft shadow computations for a standard ray tracer. They precom-
pute a blocker list of geometry, stored in object space, for each im-
age pixel by tracing a small number (often only one) of shadow rays
to the light. When a blocker is found, they check if adjacent im-
age pixels also “see” the same blocker using a recursive 4-connect
flood-fill algorithm. The main stage of their algorithm first projects
and clips each blocker to the light source and then computes the ir-
radiance from the remaining portion of the light. While this method
can greatly accelerate shadow computation, it is not well-suited for
handling large amounts of tiny blocker geometry. As the size of ge-
ometric elements decreases, the probability that a blocker is missed
in the blocker list precomputation phase increases, which can re-
sult in light leaks. Moreover, the storage of the blocker list and
the projection and clipping of each blocker against the light source
can become very expensive. While our coherence-based sampling
bears some similarities to this approach, we remove two limita-
tions. First, our approach is view independent. From a given set
of precomputed shadows maps we can generate shadows for any
view of the scene. Second, since our algorithm is image-based, its
cost is independent of scene complexity. Small triangles are not a
bottleneck for our coherence-based raytracing approach.

2.2 Image-Based Methods

Williams’ shadow map algorithm [30] is an image-based alterna-
tive to object-space methods. Visibility along a shadow ray is de-
termined by precomputing a shadow map from the light and then
comparing the depth of each pixel in the final image to the cor-
responding depth in the shadow map. Percentage-closer filtering
can be used for antialiasing [23] and projective textures [24] can be
used for hardware implementation. Forward shadow mapping [33]
is an alternative implementation when texture-mapping represents
a bottleneck for normal rendering of the scene. All of these meth-
ods render hard shadows from point light sources.

Chen and Williams [2] describe a simple extension to shadow
mapping for rendering soft shadows. They render a few key shadow
maps at the vertices of the light source and then use view interpo-
lation to compute shadow maps for each sample location on the
interior. To render soft shadows, they simply perform the stan-
dard shadow map test on each interpolated map to compute av-
erage visibility. The view interpolation method suffers from two
drawbacks. First, the final image must be projected into each inter-
polated shadow map independently. These projections can become
expensive since they are required for each view in an interactive
session. Second, like our layered attenuation map algorithm, band-
ing artifacts can appear in the shadows, since the light source sam-



ple positions are chosen a priori.
Lischinski and Rappoport [16] use hierarchical raytracing of

depth images as one of several image-based techniques for comput-
ing secondary rays in synthetic scenes. Keating and Max [14] point
out that light leaks are a problem with this approach because each
depth sample is treated independently as a 2D surface unconnected
with adjacent samples. They extend Lischinski and Rappoport’s
method by aggregating adjacent depth samples into discrete depth
buckets, forming relatively large flat surfaces. While this approach
reduces light leaks, as the authors point out, it can also completely
change the scene geometry. It is unclear how such changes affect
the final image. While our raytracing algorithm is also based on
that of Lischinski and Rappoport, we reduce the light leak problem
by reconstructing more accurate surfaces from the depth samples.
We also introduce several new acceleration techniques that improve
the efficiency of the hierarchical algorithm, especially when using
multiple reference shadow maps.

Guo [8] accelerates raytracing by using image-space coher-
ence to reduce the number of primary rays traced without af-
fecting the number of shadow rays traced per primary ray. Our
coherence-based raytracing method exploits visibility coherence
among shadow rays to reduce the number of shadow rays traced
per primary ray. It may be possible to combine our approach with
Guo’s to exploit coherence for both shadow rays and primary rays.

3 Preliminaries

Irradiance from an area light source on a surface is given by

E =

∫
Alight

[
L cos θi cos θl

πr2

]
V dA (1)

where L is the radiance output from the light source, θi is the inci-
dent angle, and θl is the angle made with the light normal [3]. We
are primarily concerned with the change in binary visibility V . In
a post-shading approach, the lighting term is computed separately
from visibility and is often approximated by treating the area light
as a point light source. We can then independently compute an
average visibility that attenuates the shadowless rendering.

ATT =
1

A

∫
A

V dA (2)

It is also possible to implement both of our methods within
the normal shading pass of the base renderer and compute equa-
tion 1 directly. For simplicity and efficiency, our layered attenua-
tion map algorithm takes the former approach, separating visibil-
ity from lighting. For high quality results, our coherence-based
raytracing algorithm takes the latter approach, directly computing
equation 1. As in most soft shadow approaches, multiple lights are
handled independently.

The integral in equation 2 is evaluated using quadrature by sam-
pling a number of points on the light source. We assume there is a
mapping from the unit square to the light source such that a uniform
sampling of the square will uniformly sample the light. To choose
N2 sample locations on the light source, we stratify the unit square
into NxN cells and choose some jittered sample location within
each cell. In our layered attenuation map approach, the same sam-
ple points on the light are used for shadowing each surface point. In
contrast, our ray tracing algorithm chooses which points to sample
on the light separately for each surface point, and thereby removes
the banding artifacts that can appear in the former approach.

4 Layered Attenuation Maps

In this section, we describe our algorithm for precomputing and
displaying layered attenuation maps. The reader will want to refer
to the illustrations in figures 2 thru 6.

Light

Geometry
Scene

Figure 2: Left: A schematic of the scene used to illustrate the layered
attenuation map algorithm. Right: The scene without shadows,

Figure 3: Images taken from the light source center (leftmost) and the four
corners (line 3 of the precomputation pseudocode).

Figure 4: Images in figure 3 are warped to the light center (line 5 precom-
putation pseudocode). On top, we show the first layer after warping, and
below, the second layer. Yellow indicates absence of a second layer i.e. only
one layer present. Regions not visible from a given light position show up
as holes (black) when warped.

Figure 5: Images in figure 4 are combined to form layered attenuation
maps (lines 6 and 7 of the pseudocode). From left to right, layer 1, the
texture on layer 1 (white indicates fully visible), layer 2 (yellow indicates
absence of a second layer), and the texture on layer 2. Note that the com-
pletely occluded green square is not present at all.

Figure 6: Left: A visualization; white denotes the light, yellow: regions
with only one layer, red: the first of two layers, blue: the second of two
layers, black: umbral regions behind the last layer in the LDI, and magenta:
when a point is between two layers (which happens for a very small region
of the green square—at its edges—since it is culled from the LDI). Middle:
Attenuation map. This modulates the basic image. Right: The final image.

Precomputation: During the precomputation phase, we build
the layered attenuation maps. This data structure consists of a sep-
arate list of layers for each pixel. Each layer stores depth, and the
attenuation or fraction of the light that is visible from that point.

procedure Precompute
1 foreach light sample li
2 V iewpoint← li
3 Render(SCENE)
4 foreach pixel (x , y)
5 (x ′, y ′)←WarpCenter(x , y , z(x , y))
6 Insert((x ′, y ′),z,ε)
7 Process Attenuation Maps

For each of a number of samples (typically 64) on the light, we
render an image looking into the scene along the normal to the light
at the sample location. In line 5 of the pseudocode, we transform
the pixel into a central reference frame—the view from the light’s
center. For planar light sources, this warp is especially simple, be-



ing given by

dp = −dv

z
(3)

where dp is the vector disparity (change) in pixels, dv is the
(known) vector difference in viewing positions. z is measured from
the viewpoint into the scene, and is the same for both views. In gen-
eral, a projective transformation is required.

In line 6, we insert the transformed pixel into the layered-depth
image (LDI). In our algorithm, each layer contains a depth value
and an integer count. If the transformed depth value is already
in the LDI (to tolerance ε), we simply increment the count of the
appropriate layer by one. The count corresponds to the number of
light samples visible to a point in a given layer at a given pixel. If
the depth does not exist in the layer list, we add a new layer to the
list, setting its count to one.

Holes, or gaps, can occur when warping image-based represen-
tations of large objects in line 5. Splatting is often used to com-
bat this problem. Since our viewpoints on the light are all close
to each other (assuming the light is a relatively small finite object),
we adopt a simple strategy. For each transformed (fractional) point,
the four neighboring (integer) pixels are considered in line 6 of the
pseudocode. To avoid double-counting, we increment the count for
a given layer at a given pixel at most once for each viewpoint. Note
that this splatting can slightly overestimate object size, making the
shadows appear somewhat lighter.

Finally, line 7 computes an attenuation map by dividing the
count in a layer by the total number of samples used in the outer
loop. This corresponds to the fraction of the light that is visible.

Display: As shown in the pseudocode below, in the display phase
of the algorithm, the scene is first rendered normally with lighting.
Note that we do not interfere with the texture path, so the normal
rendering can include textures.

procedure Display
1 RenderWithLightingAndTextures(SCENE)
2 foreach pixel (x , y)
3 (x ′, y ′, z ′)←WarpLDI((x , y , z(x , y)))
4 layer← Layer((x ′, y ′),z′,ε)
5 color← color * AttMap((x ′, y ′),layer)

In line 3, each pixel is then projected back to the viewpoint at
the center of the light source, and is associated with the nearest
pixel in the precomputed LDI. The appropriate projection matrix is
continuously updated during an interactive session.

In line 4, the list of layers at the corresponding pixel in the LDI
is traversed and depths are compared with the transformed depth
from the input pixel using a tolerance (shadow bias) ε. If no depth
matches, the rendered point is not visible from anywhere on the
light, and the attenuation applied in the next step is 0. In line 5, the
base color of the image pixel is modulated by the attenuation map
corresponding to the layered attenuation map for layer computed
in the previous step.

Discussion: The time for precomputation is proportional to the
number of light source samples used, while the time for display is
proportional to the average depth complexity of the LDI. The pre-
computation can be performed quickly because we use only fast
image warping operations instead of slower raytracing or backpro-
jection. The display phase can be carried out at interactive rates be-
cause the depth complexity of the LDI is very low. Since the light
samples are close together, and the LDI only stores points visible
from somewhere on the light, the average number of layers in our
representation is significantly less than for an LDI that represents
the entire scene. As we will see in section 6.1, LDI depth complex-
ity increases slowly after the first few light samples i.e. very few
new layers are created in line 6 of the precomputation pseudocode.

We need to render the scene from many light sample locations
to precompute accurate attenuation maps. If rendering the scene
separately for each sample is expensive, we may instead warp depth
images from key locations such as the corners of the light. In our
implementation, this is not an issue because we use standard graph-
ics hardware as the base renderer—for line 3 precomputation, and
line 1 display. However, all other parts of our precomputation and
display routines are implemented entirely in software.

To implement the precomputation and display routines in hard-
ware would require hardware support for LDI creation and lookup.
This is somewhat complicated because the depth complexity of
LDIs is not fixed a priori. For soft shadows, however, the final
depth complexity of the LDIs tends to be very low. Therefore,
it may be possible to limit the number of layers and implement
the display phase in hardware by combining shadows separately
computed for each layer—either using the accumulation buffer and
the SGI shadow map extensions, or using a programmable image-
compositing framework [13].

5 Coherence-Based Raytracing

The layered attenuation map method is suitable for rapid preview-
ing because of its fast precomputation phase and its interactive dis-
play phase—whose time complexity is independent of the number
of light source samples. However, final images for applications
such as prerendered animation, require high quality antialiased
artifact-free shadows. To render such images efficiently, we have
developed a coherence-based raytracing algorithm.

The algorithm combines two independent image-based meth-
ods: a hierarchical raytracing technique and a coherence-based
sampling technique. We begin by precomputing shadow maps from
several locations in the scene. Our raytracing algorithm places no
restrictions on the position and orientation of the reference views;
we typically use views from the exterior vertices of the light. To
shade a surface point, we compute visibility along each shadow ray
by tracing it through each shadow map, until either an intersection
is found or we pass through all the shadow maps. Our coherence-
based sampling algorithm reduces the number of shadow rays cast
to a light source by sampling light source visibility only where
changes in visibility are most likely.

For the layered attenuation map approach, the light source sam-
pling is done during precomputation. On the other hand, it is done
during display in the coherence-based ray tracing method, mak-
ing the precomputation phase independent of the number of light
source samples, and the display time proportional to the number of
shadow rays traced.

5.1 Raytracing Depth Images

Raytracing depth images is a well known technique [15, 20] . After
a quick summary of the algorithm, we describe several new modi-
fications to it, which improve both its accuracy and efficiency.

To trace a shadow ray against a single reference image (shadow
map), we can first project it onto the reference image plane, and
then step along this epipolar ray from pixel to pixel, checking for
intersections with the scene geometry—represented as depths in
the shadow map. The intersection calculation is performed in two
phases. The first phase is a quick overlap test to determine if in-
tersection is possible. As we step along the ray, we maintain the
epipolar depth interval [Zenter , Zexit] of the shadow ray that spans
the current reference pixel. If the corresponding reference image
depth Zref is inside the epipolar depth interval, the second phase
of the intersection test is performed to determine the exact point of
intersection.

Recently, several papers [1, 16, 18] have described a hierar-
chical version of this raytracing algorithm that is similar to ear-
lier work on raytracing height fields [22]. As a pre-process, two
quadtrees are constructed from the reference image, one storing



maximum depth values and one storing minimum depth values.
The hierarchical algorithm performs the overlap test in a coarse-
to-fine manner using these quadtrees. Thus, the raytracer can effi-
ciently skip over large sections of the ray that cannot contain inter-
sections. At the leaf-node level the exact intersection test is applied
as before. Our pseudocode is adapted from [16]:

procedure Trace(QTreesNode,Ray,Zenter ,Zexit)
1 if(Leaf(QTreesNode))
2 check for exact intersection
3 else
4 RefIntrvl← [QTreesNode(MIN),QTreesNode(MAX)]
5 EpiIntrvl← [Zenter ,Zexit]
6 if(OverLap(EpiIntrvl,RefIntrvl))
7 foreach non-empty Child of QTreesNode
8 Update(Zenter ,Zexit)
9 Trace(Child,Ray,Zenter ,Zexit)

The exact intersection test requires reconstructing a surface
from the depth values stored in the reference image. Two com-
mon reconstruction techniques are triangulation[19] and bilinear
interpolation[18, 21]. However, both methods impose costly exact
intersection checks. A much simpler approach is to assume each
reference image depth pixel represents a plane, which we call a
floor, that runs parallel to the reference image plane. The floors are
connected at their edges with vertical planes we call walls2. Al-
though the floors-and-walls approach may yield a blocky surface
reconstruction compared to triangulation or bilinear interpolation,
in practice we have found that such artifacts are easy to control by
generating higher resolution reference images.

Assuming every pair of adjacent reference pixels is connected
with a wall yields incorrect intersections at silhouette edges of un-
connected objects. We mitigate the problem by assuming adjacent
reference image pixels are connected only if they differ in depth by
less than a user specified gap bias. We check for intersections with
walls only when adjacent reference pixels are connected.

In the next two subsections, we describe new methods for ac-
celerating the hierarchical traversal and for efficiently combining
information from multiple reference images.

5.1.1 Accelerating the Hierarchical Traversal

Hierarchical Connectedness: By traversing the epipolar ray
in a coarse-to-fine manner, the hierarchical algorithm can quickly
eliminate sections of the epipolar ray that cannot possibly intersect
scene geometry. However, the only way to find an intersection is
to recurse through the min/max quadtrees all the way to the finest
level and then perform the exact intersection test. If it is not nec-
essary to determine the exact point of intersection, we can modify
the algorithm to determine whether or not the ray is blocked before
descending to the finest level.

When building the min/max quadtrees, we also build a connect-
edness quadtree. At the leaf level, each pixel is connected to itself.
At the next level, we determine whether each group of four adjacent
pixels form a single surface by checking if their depths fall within
the gap bias. We continue computing connectedness in this manner
all the way to the root of the tree. At any stage in the hierarchical
traversal, if the epipolar depth interval contains the corresponding
reference image min/max interval and the connectedness quadtree
reports that all four children of the current node are connected, then
the ray must intersect some geometry within the node. Thus, it is
possible to report that the ray is blocked without recursing to the
finest level of the quadtree.

2To compute the exact intersection, we first check if reference image depth Zref ,
lies within the epipolar depth interval for the leaf node pixel. If so, the ray intersects
the floor. At the exiting edge of the pixel we look up the reference depth for the
adjacent pixel Zref2 and if Zexit lies within [Zref , Zref2], the ray intersects a
wall. Linear interpolation can be used to find the exact point of intersection along the
ray if necessary.
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Figure 7: Handling multiple reference images. In (a) reference image R1’s
image plane is more perpendicular to the ray than R2’s image plane and
therefore yields a shorter epipolar ray. We rank R1 higher than R2 since
it is faster to traverse and more likely to yield an intersection. In (b) the
shadow ray starting at p1 is a clear miss in R1 since it never passes behind
geometry. Since the ray is entirely visible inR1 we do not need to trace it in
any other reference image and can immediately declare the ray unblocked.
For the shadow ray starting at p2 only the green occlusion interval found
in R1 is traced in R2.

Min/Max Clipping: The epipolar ray is initially clipped to the
viewing frustum of the reference image. We can aggressively
reduce the length of the epipolar ray by clipping it against the
min/max bounds of the current node in the min/max quadtrees. By
clipping the epipolar ray upon entering the Trace procedure, at ev-
ery level of the recursion we ensure that the overlap test is always
performed against the smallest possible piece of the epipolar ray3.

5.1.2 Efficiently Combining Multiple Reference Images

Using a single reference image, it is possible to miss intersections.
If the desired ray intersects geometry that is not visible in the ref-
erence view due to occlusion, the intersection can not be found.
Using multiple reference images that capture different portions of
the scene geometry can mitigate this problem. However, multiple
views generally contain redundant information about the scene as
well4. Our layered attenuation map algorithm handles this redun-
dancy by creating an LDI that only retains a single sample at each
depth. A drawback of the LDI approach is that it requires resam-
pling the reference images which can reduce numerical accuracy.
We take a two pronged solution that avoids this resampling. First
we rank the reference images so the that images most likely to gen-
erate an intersection are traversed first. We adapt Chang’s[1] ap-
proach of ranking the reference images by the length of the clipped
epipolar ray in each image (see figure 7(a)). As soon as an inter-
section is found we move on to the next shadow ray. Second, for
each reference image after the first, we only trace portions of the
ray that were not visible in the previous images.

Clear Miss: Shadow ray computation requires traversing the
epipolar ray in every reference image, until some intersection is
found. For blocked shadow rays, the loop over reference images
can be exited early, as soon as the intersection is found. This type
of early exit is sometimes possible for unblocked rays as well. If
we traverse an epipolar ray in one reference image and find no in-
tervals in which it passes behind occluding geometry, the entire ray
was visible in the reference view. We can safely report that the
shadow ray is not blocked. This type of clear miss allows us to exit
the function early, without traversing the epipolar ray in any other
reference image.

Occlusion Intervals: As we traverse the epipolar ray in some
reference image, the overlap test forces the recursion all the way

3Marcato[18] performs this clipping only once at the coarsest level of the recursion.
4Choosing the optimal set of reference views to cover the space of a given scene

while minimizing redundant information is a difficult problem which we do not ad-
dress in this paper.



down to the leaf level each time the ray enters and exits a region be-
hind occluding geometry, We determine that an intersection did not
occur at such silhouette boundaries only after we perform the exact
intersection test which includes a check for connectedness. As we
traverse the ray, we store a list of these occlusion intervals in which
the ray passes behind occluding geometry. These are the only in-
tervals that need to be checked in the other reference images5 as
shown in figure 7(b).

5.2 Sampling the Light Source

Stochastic raytracers typically distribute shadow rays indepen-
dently over the entire light source for each surface point in the
scene. Yet, visibility as a function of the position of the surface
point tends to change slowly. Moreover, object-space rendering al-
gorithms such as z-buffered scan conversion or REYES [4] shade a
single surface at a time, moving from surface point to surface point
in some continuous order. Thus, the surface points are generally
processed in groups that lie close to one another. In this section
we develop a technique for exploiting this coherence to reduce the
region of the light source for which we cast shadow rays.

As described in section 3, sampling the light source requires a
mapping from the unit square to the surface of the light source. We
consider the set of cells stratifying the unit square as a 2D image
array covering the light source. The visibility image is a binary im-
age storing whether or not each light source cell is blocked. The key
idea of our algorithm is to predict the visibility image for surface
point pi based on the light source visibility for the previous surface
points. The algorithm is described in the following pseudocode:

procedure SoftShad
1 BlockerPtsList← ∅
2 foreach surface point pi
3 Predict(pi,BlockerPtsList,VisImg,cellsTodo,cellsUsePrev)
4 cellsDone← ∅
5 while not empty(cellsTodo)
6 lj ← cellsTodo.dequeue
7 blockPt = Trace(ray(pi,lj))
8 Update(BlockerPtsList,blockPt,lj)
9 if(isBlocked(blockPt) != VisImg[lj])
10 VisImg[lj]← isBlocked(blockPt)
11 foreach cell lk adjacent to lj
12 if(lk in cellsUsePrev)
13 cellsTodo.enqueue(lk )
14 cellsDone.enqueue(lj )
15 colori← Shade(VisImg)

The BlockerPtsList stores the intersection point for each oc-
cluded shadow ray we have traced. Initially it is the empty set (line
1) and we insert new blocker points every time we trace a shadow
ray (line 7). Blocker points that are no longer relevant are removed
in the Predict procedure (line 3) as described in section 5.2.2.

Figure 8: Predicted Visibility Image. Gray
boxes represent occluded cells, and white boxes
represent unoccluded cells. Each cell marked
with an X is initially placed in the cellsTodo list
by the Predict procedure. Blues X’s represent
cells at edges between occluded and
unoccluded regions, while red X’s represent
cells at the exterior edges of the light source.
Cells that do not contain an X are initially
placed in the cellsUsePrev list.

We generate a predicted visibility image by projecting each
point in the current BlockerPtsList onto the light source. Assuming
a planar light source, the appropriate projection matrix is formed
using pi as the center of projection and the light source as the im-
age. In the predict procedure, we also build two lists of light source

5Chang[1] also computes occlusion intervals, but uses them to invalidate intersec-
tions along the epipolar ray, rather than as an acceleration technique.
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Figure 9: Prediction errors. In (a) the blocker point b is not seen from
surface point pi−1. We predict the light is completely unblocked at pi and
never trace the ray through b. By increasing the surface sampling density
so that pi falls on pe, the edge of the shadow volume due to b (shown in(b)),
the blocker is found. In (c), a ray starting at pi passes through the aligned
holes in the blockers. To ensure that this ray is traced, we must increase the
light source sampling density.

cells based on our confidence of the predicted visibility. We assume
that changes in visibility are most likely to occur in two places—at
the boundaries between blocked and unblocked regions on the inte-
rior of the light source and at the exterior edges of the light source.
If the predicted visibility for each interior cell is the same as the
predicted visibility value of all of its neighboring cells, we are con-
fident of the prediction and we add the cell to the cellsUsePrev list.
Otherwise, the cell is at an edge between blocked and unblocked
regions, confidence is low, so we add the cell to the cellsTodo list.
Since we cannot examine a complete neighborhood for the cells on
the exterior edges of the light source, we add all of these cells to the
cellsTodo list. This is illustrated in figure 8. If the BlockerPtsList
is empty, we put all of the light source cells in the cellsTodo list.

The main loop of the algorithm (lines 5 – 14) traces shadow
rays for each light source cell in the cellsTodo list. When the value
of a traced ray differs from the prediction held in the corresponding
visibility image cell (line 9) we move any adjacent cell (considering
all 8 neighbors) in the cellsUsePrev list to the cellsTodo list. As we
find prediction errors, we spread out the lower confidence values to
the neighboring cells using an 8-connect flood-fill algorithm. The
main loop ends when we have processed all cells in the cellsTodo
list, and we then shade the surface point using the current version
of the visibility image.

5.2.1 Prediction Errors

As shown in figure 9(a),(c) there are two types of errors that may
occur with our prediction technique; 1) missed blocker: a ray inside
a region of the frustum predicted as unblocked is actually blocked
and 2) missed hole: a ray inside a region of the frustum predicted
as blocked is unblocked. Both types of prediction errors can lead
to visible artifacts if the ray containing the blocker or the hole is
predicted with high confidence and is not traced.

There is a fundamental difference between these two errors.
The missed blocker error can be diminished by increasing sur-
face sampling density. Reducing the missed hole error requires
increased light sampling. To better understand this difference, we
simplify the situation. Assume the light source is entirely visible
from pi−1 and there is some small object b blocking a ray between
pi and some point on the interior of the light. The missed blocker
error occurs because b is completely inside the frustum of pi but
outside the frustum of pi−1, as shown in figure 9(a). Thus, our
prediction for pi requires that we only trace rays to the edges of
the light source and since each of these traced rays agrees with our
predicted visibility (unblocked), we never trace the ray through b.

Consider however, the shadow volume due to b and its inter-
section with the surface P . There must be some point pe on the
edge of the intersection that lies between pi and pi−1. Since pe is
on the surface of the shadow volume, the ray with origin at pe and
passing though b must intersect the edge of the light source (figure
9(b)). Since we always trace rays for points on the edge of the light



source we correctly find the blocker b. As long as the surface points
are sufficiently close to one another, this property holds regardless
of the direction (on the surface) in which we approach pi. There-
fore, if we increase the surface sampling density, we reduce the
missed blocker errors. A similar argument applies when regions of
the light source are empty rather than the entire light source. Note
that, if the distance between the current surface point and the previ-
ous surface point is larger than a given tolerance, we disregard the
predicted visibility and trace all the shadow rays.

While it may seem a similar argument would apply to missed
holes, there is a special case when multiple holes align to allow
shadow rays to reach the interior of the light unoccluded. Suppose
as in figure 9(c), at surface point pi the holes in the two blockers
align so that a single shadow ray to the interior of the light source
is unblocked. For every surface point in any neighborhood of pi,
every shadow ray to the light is blocked. There is no surface point
for which a shadow ray to an exterior edge of the light “sees” the
hole. To ensure this ray is traced, we must increase light source
sampling density. This in turn increases the precision of our pre-
dicted visibility since our blocker points list samples the surfaces
more finely and we project them onto the light more accurately.

5.2.2 Updating the Blocker Points List

A drawback of our coherence-based sampling approach is that we
must store and projectively warp each point in the blocker points
list. Storing the list requires that the raytracer explicitly compute
intersection points. Therefore, we cannot use the hierarchical con-
nectedness optimization described in section 5.1.1. While warping
a single point is relatively fast, if the blocker points list is large, the
time to warp every point in the list can be significant.

We have designed several optimizations that limit the size of
the blocker points list. We remove any blocker point that projects
to a point outside the light source. This maintains some locality
within the list and ensures that it stays relatively small. Often, mul-
tiple blocker points will warp to the same cell of the light. This is
especially true for cells at edges between blocked and unblocked
regions, since these are exactly the cells that we trace for every sur-
face point. Such blocker points essentially provide redundant infor-
mation and generally lie very close to each other in object space.
One option is to keep only one of the blocker points that warp to
the same light source cell. We generalize this approach. In each
cell, we maintain a higher resolution grid (typically 3x3) and within
each high resolution cell we keep only a single blocker point. With
these optimizations, the size of the blocker points list is at most
the light sampling resolution times the high resolution grid reso-
lution. In contrast, Hart et al. [10] precompute and store blocker
lists of geometry for each pixel in the final image. Their lists can
contain redundancies and the size of each list is limited only by im-
age resolution and the total number of shadow rays traced in their
precomputation phase.

As a side benefit, we can use our high resolution grid to directly
insert cells into the cellsDone list. Before prediction, we compute
a jittered sample location for each cell of the light source. During
the prediction phase, if a blocker point warps to a high-resolution
cell containing a sample location, we place the corresponding light
source cell in the cellsDone list. In this case, the blocker point lies
close enough to the ray we would trace that we can assume the ray
is blocked.

6 Results

Our results are presented in figures 1, 12, 13, and 14. Each image
was originally rendered at 512x512 pixels and uses the equivalent
of 256 light source samples. Some images have been cropped to
preserve space, but the timings in figure 10 are for the entire un-
cropped image. The light is rectangular for each of these scenes. It
lies directly above the center of the geometry for the plant and the

flower, and is displaced toward the head of the dragon. We have
deliberately shown extremely complex examples. The light posi-
tion is chosen so that almost all the geometry either casts shadows
or is itself shadowed. Also, our viewpoints have been picked so
that almost the entire geometry and shadow region is visible. Soft
shadows for these scenes would be expensive to generate by object-
space methods, including the interactive approaches of Herf and
Heckbert [12] or Soler and Sillion [27], since the scenes contain
a large number of triangles, and complex self-shadowing interac-
tions. Further, the triangles are typically very small, especially for
the dragon and the flower, making these scenes difficult to handle
by an approach that stores geometric information per pixel such as
that of Hart et al. [10]. For quality comparisons, we have included
images generated by rayshade.

Performance: Layered Attenuation Maps Our layered at-
tenuation map approach is implemented using standard graphics
hardware under OpenGL as the base renderer. No special features,
such as antialiasing, or shadow mapping extensions, are used. The
hardware is used only for rendering shadowless images; the other
parts of our precomputation and display phases work entirely in
software. The running times for the precomputation phase on an
SGI Onyx 2 Infinite Reality, and with an LDI size of 512x512, are
shown in the left of figure 10. The main operations are software
warping of rendered images and insertion into the LDI (lines 5 and
6 of the precomputation pseudocode), so the running time is largely
independent of scene complexity. We see that coarse shadows (64
light samples), that may be suitable for most previewing work, can
be precomputed in between 5 and 10 seconds, while higher-quality
versions (256 samples) can be precomputed in about half a minute.
Regardless of light sampling density, images with soft shadows can
be displayed interactively at 5-10 frames per second, with the ap-
propriate attenuation being chosen in real time in software.

Performance: Coherence-Based Raytracing Our coherence
based sampling technique is designed to work with object-space
rendering algorithms that shade and render the scene surface by
surface. We have implemented our algorithm within the shading
pass of Pixar’s PhotoRealistic Renderman which is based on the
REYES [4] object-space rendering algorithm. In the REYES al-
gorithm, geometric primitives are split into micropolygons that are
shaded and then scan converted to create the final image. Microp-
olygons are shaded in a coherent manner, in groups that lie close
to one another both in screen space and on the geometric primi-
tive. Thus, lighting tends to change slowly from micropolygon to
micropolygon. Since the micropolygons are shaded before com-
puting their visibility, we compute soft shadows for every surface
in the viewing frustum regardless of whether it is visible or not6.
In contrast, standard raytracing renderers and the post-shading ap-
proach used with layered attenuation maps only perform the soft
shadow computation on visible points. Therefore, direct compar-
isons between the running times of our coherence-based approach
and other methods is difficult.

Running times and speedups for our coherence-based raytrac-
ing algorithm are presented in figure 10. The precomputation con-
sists of rendering shadow maps at a resolution of 1024x1024 from
the four corners of the light and constitutes a small fraction of the
total running time. Note that the no-acceleration column refers to
standard hierarchical image-based raytracing without any of our
new acceleration techniques. Adding our raytracing acceleration
techniques alone, without coherence-based sampling, provides a
fairly consistent speedup of around 2.20x across the three scenes,
regardless of light source sampling density. Much of this perfor-
mance increase is due to the clear miss optimization which allows

6Rendering the plant, flower and dragon in Renderman at 512x512 image resolu-
tion requires shading 765134, 1344886 and 772930 surface samples respectively.



Layered Attenuation Maps
Scene Triangles # Light Precom.

Samp. Time (s)

Plant 5247 64 6.0
256 22.4

Flower 35109 64 7.4
256 28.1

Dragon 77890 64 7.7
256 29.4

Coherence-Based Raytracing
Scene Precom.. # Light No Accel RT accel Accel + Coherence

Time (s) Samp. t(1000 s) speedup speedup rays

64 8.36 2.14x 7.74x 28.80
Plant 236 256 33.30 2.16x 8.52x 88.74

1024 131.96 2.16x 10.12x 287.59

64 4.59 2.15x 3.64x 34.86
Flower 332 256 18.20 2.18x 3.82x 120.29

1024 71.42 2.14x 3.95x 424.24

64 3.92 2.28x 10.59x 27.57
Dragon 140 256 15.42 2.27x 12.96x 79.86

1024 61.93 2.27x 15.18x 249.45
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Figure 10: Left: Precomputation times (in seconds) for our layered attenuation map approach on an SGI Onyx2 Infinite Reality. The major operations are
image-based—warping rendered images and inserting into the LDI—so running time grows slowly with increased geometric scene complexity. The scenes can
be displayed at 5-10 frames per second after precomputation is completed. Middle: Performance of Coherence-Based Raytracing on a 300 Mhz processor.
The no acceleration column refers to hierarchical raytracing without any of our acceleration techniques and provides a baseline set of running times. The next
two columns show the speedups achieved by including our raytracing accelerations and then both the accelerations and the coherence-based sampling. The
final column shows the average number of rays actually traced with coherence-based sampling. Right: Increase in average depth complexity over non-empty
LDI pixels in our layered attenuation map as a function of number of light samples. After the first few samples, the complexity increases very slowly. The
flower has a lot more very small geometry, and so the final average visible depth complexity is higher, though even in this case, it is fairly low. This graph is a
more meaningful measure of scene complexity than simple polygon count; the size of the LDI is proportional to this complexity.

the algorithm to efficiently process many of the unoccluded shadow
rays without visiting all four shadow maps.

As we increase the number of light samples, sizes of the fully
blocked and unblocked areas on the light source grow faster than
the lengths of the edges between them. We exploit this perimeter
versus area growth ratio with our coherence-based sampling algo-
rithm since we initially trace shadow rays only at the edges between
blocked and unblocked regions. For all three scenes, we see that the
speedups increase as we increase the light source sampling rate.
Similarly, the ratio of average rays traced to the total number of
light source samples decreases. If we increase the light source sam-
pling rate by 4x, the running time of the original hierarchical ray-
tracer and even that of the version with accelerations, but without
coherence-based sampling, increase by roughly 4x. When we add
coherence-based sampling however, the increase in running time is
significantly smaller (i.e. the speedup increases as we increase the
light source sampling density, especially for the plant and dragon).
We have observed that adding coherence-based sampling causes
no noticeable difference in image quality compared to hierarchical
raytracing without coherence-based sampling (figure 13).

The speedup due to coherence-based sampling is relatively low
for the flower scene. We believe this is largely due to the thin
(typically much smaller than a pixel) geometry of the branches in
the head of the flower. For points in the penumbra region on the
ground plane, there are few large regions of the light source that
are either fully occluded or unoccluded. Since most of the light
source is at an edge between occluded and unoccluded regions, the
coherence-based sampling approach provides little benefit. In con-
trast, the coherence-based approach achieves the largest speedups
for the dragon scene. Although the triangles are still very small,
this scene tends to contain larger blocked and unblocked regions
on the light source.

Asymptotically, coherence-based sampling will make the num-
ber of rays traced proportional to the square-root of the number
of light samples, rather than the number of samples (because, in
the limit, the number of rays traced depends on the length of the
perimeter between blocked and unblocked regions, not area). In the
limit, we therefore expect a 4x increase in light source sampling to
cause the number of rays actually traced to increase by only 2x, not
4x. At the light source sampling densities we’ve tested, we see an
increase of a little more than 3x.

6.1 Discussion

In some respects, soft shadow representation is a model application
for the use of image-based representations.

Depth Complexity: Since the light is localized in space, sam-
ples on it are close together, and visibility does not change signif-
icantly between the samples. This means the depth complexity of
the completely and partially visible portions of the scene, as seen
from the light, is very low, as seen in the graph in figure 10. Note
that geometry that is occluded from everywhere on the light is com-
pletely excluded from our image-based representations. Therefore,
as compared to an LDI that represents the entire scene, the LDIs in
our layered attenuation map approach require significantly fewer
layers. Furthermore, the complexity of the representation increases
very slightly after the first few samples on the light. In the context
of coherence-based raytracing, this low complexity means a sparse
set of shadow maps suffices to produce high-quality results.

Sampling: Since our shadow maps are rendered from points on
the light, surfaces whose normals make large angles to that of the
light are sampled poorly. Since only a single LDI is used, this is
more of an issue for layered attenuation maps than for coherence-
based raytracing. However, these surfaces will also usually be very
dimly lit—because of cosine falloff in light intensity—diminishing
the visibility of sampling artifacts, as seen in the left of figure 11.

Artifacts: The images produced by both of our algorithms look
very plausible when seen by themselves, and are also very close to
those produced by rayshade. However, our layered attenuation map
method produces some artifacts:

• Insufficient Depth Sampling: If the LDI samples depths
of some surfaces insufficiently, we will not be able to tell
whether a point in the final image occurs on, above, or below
the surface, as seen in the left of figure 11. This is less of
a problem with coherence-based raytracing since we do not
resample into a single LDI. Therefore, those shadow maps
that better sample the surfaces in question are used to gen-
erate the shadows. Note that since both of our algorithms
require the use of error tolerances, we cannot use mid-point
shadows [31]. Therefore, both methods require the user to
specify a value for shadow bias.

• Insufficient Attenuation Map Sampling: Even if a surface
has constant depth, insufficient sampling can cause blocki-
ness when the attenuation map is magnified and reprojected.
As shown in the right of figure 11, simple bilinear filtering
of four neighboring attenuation map values—analogous to
percentage-closer filtering [23]—for each image pixel can
diminish the visibility of the artifacts. However, the results
may still be inaccurate because a limited number of samples



Figure 11: Artifacts. Left: Insufficient depth sampling. Leftmost is the precomputed texture for layer 1 using layered attenuation maps. The sides of the large
box are very poorly sampled. Next is the attenuation map, which has artifacts on the poorly sampled side. Similar artifacts are produced by the SGI (hard)
shadow map hardware. However, coherence-based raytracing (third image) is able to do a much better job. Including cosine-falloff of light intensity, the final
image produced by our layered attenuation map algorithm is shown rightmost, and the artifacts are considerably diminished. Right: Insufficient attenuation
map sampling. Left is a thumbnail of the scene. The middle shows an extreme closeup of the ground which indicates blocky textures from magnification and
reprojection. In the rightmost image, simple bilinear filtering reduces the perceptibility of the artifacts. Models courtesy of Peter Shirley.

are available for reconstruction. Since coherence-based ray-
tracing does not precompute textures, and thereby predeter-
mine their resolution and sampling pattern, this is not an is-
sue for that method.

• Banding: Since the same light samples are used for all sur-
faces, banding may occur as seen in figure 15. Note that
banding is present in the attenuation map, and can therefore
not be removed simply by post-filtering on the attenuation
map, similar to that discussed above. In the coherence-based
raytracing method, banding is replaced by noise since light
samples are decorrelated for all surface points.

These artifacts are somewhat more apparent in high resolution
images than at the size of the images in the printed version of this
paper. To clearly show the artifacts here, we have zoomed very
close. Similarly, to show banding, we have reduced the number of
light source samples in figure 15 only.

As can be seen from the results, sampling artifacts are generally
not a problem with coherence-based raytracing, so this technique is
suitable for producing final high-quality images.

7 Conclusions and Future Work

We have described two efficient image-based methods for comput-
ing soft shadows. These methods can be seen as extensions of an
extremely popular technique for hard shadows—shadow maps—
and produce results significantly faster than traditional approaches.
The algorithms can be combined for rapid previewing followed by
efficient high-quality rendering. We have also demonstrated how
soft shadows are an ideal application for image-based approaches.
As future work, we would like to investigate better sampling strate-
gies, the use of adaptive biases, and hardware implementation of
the display phase for layered attenuation maps.
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rayshade coherence−based raytracinglayered attenuation maps
Figure 12: Soft shadows for a dragon model shaded using a Lambertian model. The rayshade and layered attenuation map images were rendered with 256 light source samples.
The coherence−based raytracing image used an average of only 79.86 light source samples. Splatting in the layered attenuation map method slightly increases the brightness of the
shadow at the front of the dragon and the artifacts around the rear foot of the dragon are due to undersampling and shadow bias errors. Also, the color of the white floor and wall
in the layered attenuation map method is slightly darker since the base hardware renderer does not do per−pixel lighting. Model courtesy of Stanford Scanning Repository.

(c) rt  no accel. − same quality
33300 seconds, 256 rays

(a) rayshade (b) layered attenuation maps (d) rt with acceleration + sampling
3908 seconds, 88.74 rays on avg.

Figure 13: Closeups for the plant in Figure 1. The coherence−based raytracing image (d) is almost indistinguishable from that without acceleration (c), and both are very close to
the image produced by rayshade (a). Our coherence−based method is 8.52 times faster than the unaccelerated hierarchical raytracer (c). An equal time comparison is provided in
(e). Note that the times listed are for the entire image, not just the closeups. At the scale of the closeup, there are some artifacts for our layered attenuation map approach (b), as
indicated by the red arrows. However, at normal scales as in Figure 1 these artifacts are less prominent, and are usually tolerable for interactive applications.

(e) rt  no accel. − same time
3980, seconds, 20 rays

Figure 15: Banding Artifacts. Left: Banding artifacts at the front of the dragon are due to the fixed light source sampling of our layered attenuation map approach. Filtering cannot
eliminate the banding artifacts. The banding is replaced by noise when the light source samples are chosen independently for each surface point as with our coherence−based
raytracing approach.

Figure 14: The flower is an extreme test case for our algorithms since there are a large number of long thin
triangles significantly smaller than a pixel. This causes the base hardware renderer for our layered attenuation
map approach to exhibit serious aliasing artifacts in the "head" of the flower. Nevertheless, both methods capture
the complex self shadowing effects that cause the bottom of the "head" to be darker than the top. Our ground
shadows closely match the shadow produced by rayshade. Many other soft shadow methods would have significant
difficulty in rendering this shadow efficiently and correctly. Note that as for the plant we render these images
without the cosine falloff of light intensity in order to emphasize the shadows. Model courtesy of Deussen et al.layered atten. maps coherence−based rt

layered attenuation maps rayshade coherence−based raytracing

rt − 64 correlated light  samples rt − 64 uncorrelated light  sampleslayered atten. maps
16 light samples − unfiltered

layered atten. maps
16 light samples − filtered

coherence−based rt
16 light samples − noise


