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Abstract 

Several existing volume rendering algorithms operate by factor- 
ing the viewing transformation into a 3D shear parallel to the data 
slices, a projection to form an intermediate but distorted image, 
and a 2D warp to form an undistorted final image. We extend 
this class of algorithms in three ways. First, we describe a new 
object-order rendering algorithm based on the factorization that is 
significantly faster than published algorithms with minimal loss 
of image quality. Shear-warp factorizations have the property that 
rows of voxels in the volume are aligned with rows of pixels in the 
intermediate image. We use this fact to construct a scanline-based 
algorithm that traverses the volume and the intermediate image in 
synchrony, taking advantage of the spatial coherence present in 
both. We use spatial data structures based on run-length encoding 
for both the volume and the intermediate image. Our implemen- 
tation running on an SGI Indigo workstation renders a 2563 voxel 
medical data set in one second. Our second extension is a shear- 
warp factorization for perspective viewing transformations, and 
we show how our rendering algorithm can support this extension. 
Third, we introduce a data structure for encoding spatial coherence 
in unclassified volumes (i.e. scalar fields with no precomputed 
opacity). When combined with our shear-warp rendering algo- 
rithm this data structure allows us to classify and render a 2563 
voxel volume in three seconds. The method extends to support 
mixed volumes and geometry and is parallelizable. 

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism; 1.3.3 [Computer Graphics]: Picture/Image 
Generation--Display Algorithms. 

Additional Keywords: Volume rendering, Coherence, Scientific 
visualization, Medical imaging. 

1 Introduction 

Volume rendering is a flexible technique for visualizing scalar 
fields with widespread applicability in medical imaging and sci- 
entific visualization, but its use has been limited because it is 
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computationally expensive. Interactive rendering rates have been 
reported using large parallel processors [17] [19] and using algo- 
rithms that trade off image quality for speed [10] [8], but high- 
quality images take tens of seconds or minutes to generate on 
current workstations. In this paper we present a new algorithm 
which achieves near-interactive rendering rates on a workstation 
without significantly sacrificing quality. 

Many researchers have proposed methods that reduce render- 
ing cost without affecting image quality by exploiting coherence 
in the data set. These methods rely on spatial data structures that 
encode the presence or absence of high-opacity voxels so that 
computation can be omitted in transparent regions of the volume. 
These data structures are built during a preprocessing step from a 
classified volume: a volume to which an opacity transfer function 
has been applied. Such spatial data structures include octrees and 
pyramids [13] [12] [8] [3], k-d trees [18] and distance transforms 
[23]. Although this type of optimization is data-dependent, re- 
searchers have reported that in typical classified volumes 70-95% 
of the voxels are transparent [12] [18]. 

Algorithms that use spatial data structures can be divided into 
two categories according to the order in which the data structures 
are traversed: image-order or object-order. Image-order algo- 
rithms operate by casting rays from each image pixel and pro- 
cessing the voxels along each ray [9]. This processing order has 
the disadvantage that the spatial data structure must be traversed 
once for every ray, resulting in redundant computation (e.g. mul- 
tiple descents of an octree). In contrast, object-order algorithms 
operate by splatting voxels into the image while streaming through 
the volume data in storage order [20] [8]. However, this process- 
ing order makes it difficult to implement early ray termination, an 
effective optimization in ray-casting algorithms [12]. 

In this paper we describe a new algorithm which combines 
the advantages of image-order and object-order algorithms. The 
method is based on a factorization of the viewing matrix into a 3D 
shear parallel to the slices of the volume data, a projection to form 
a distorted intermediate image, and a 2D warp to produce the final 
image. Shear-warp factorizations are not new. They have been 
used to simplify data communication patterns in volume rendering 
algorithms for SIMD parallel processors [1] [17] and to simplify 
the generation of paths through a volume in a serial image-order 
algorithm [22]. The advantage of shear-warp factorizations is that 
scanlines of tlae volume data and scanlines of the intermediate im- 
age are always aligned. In previous efforts this property has been 
used to develop SIMD volume rendering algorithms. We exploit 
the property for a different reason: it allows efficient, synchro- 
nized access to data structures that separately encode coherence 
in the volume and the image. 

The factorization also makes efficient, high-quality resampling 
possible in an object-order algorithm. In our algorithm the re- 
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Figure 1: A volume is transformed to sheared object space for 
a parallel projection by translating each slice. The projection in 
sheared object space is simple and efficient. 
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Figure 2: A volume is transformed to sheared object space for a 
perspective projection by translating and scaling each slice. The 
projection in sheared object space is again simple and efficient. 

sampling filter footprint is not view dependent, so the resampling 
complications of splatting algorithms [20] are avoided. Several 
other algorithms also use multipass resampling [4] [7] [19], but 
these methods require three or more resampling steps. Our al- 
gorithm requires only two resampling steps for an arbitrary per- 
spective viewing transformation, and the second resampling is an 
inexpensive 2D warp. The 3D volume is traversed only once. 

Our implementation running on an SGI Indigo workstation can 
render a 2563 voxel medical data set in one second, a factor of at 
least five faster than previous algorithms running on comparable 
hardware. Other than a slight loss due to the two-pass resampling, 
our algorithm does not trade off quality for speed. This is in 
contrast to algorithms that subsample the data set and can therefore 
miss small features [10] [3]. 

Section 2 of this paper describes the shear-warp factoriza- 
tion and its important mathematical properties. We also describe 
a new extension of the factorization for perspective projections. 
Section 3 describes three variants of our volume rendering algo- 
rithm. The first algorithm renders classified volumes with a paral- 
lel projection using our new coherence optimizations. The second 
algorithm supports perspective projections. The third algorithm is 
a fast classification algorithm for rendering unclassified volumes. 
Previous algorithms that employ spatial data structures require an 
expensive preprocessing step when the opacity transfer function 
changes. Our third algorithm uses a classification-independent 
rain-max octree data structure to avoid this step. Section 4 con- 
tains our performance results and a discussion of image quality. 
Finally we conclude and discuss some extensions to the algorithm 
in Section 5. 

2 The Shear-Warp Factorization 
The arbitrary nature of the transformation from object space to 
image space complicates efficient, high-quality filtering and pro- 
jection in object-order volume rendering algorithms. This problem 
can be solved by transforming the volume to an intermediate co- 
ordinate system for which there is a very simple mapping from the 
object coordinate system and which allows efficient projection. 

We call the intermediate coordinate system "sheared object 
space" and define it as follows: 

Definition 1: By construction, in sheared object space 
all viewing rays are parallel to the third coordinate 
axis. 

Figure 1 illustrates the transformation from object space to sheared 
object space for a parallel projection. We assume the volume is 
sampled on a rectilinear grid. The horizontal lines in the figure 
represent slices of the volume data viewed in cross-section. After 
transformation the volume data has been sheared parallel to the set 
of slices that is most perpendicular to the viewing direction and 

the viewing rays are perpendicular to the slices. For a perspective 
transformation the definition implies that each slice must be scaled 
as well as sheared as shown schematically in Figure 2. 

Definition 1 can be formalized as a set of equations that trans- 
form object coordinates into sheared object coordinates. These 
equations can be written as a factorization of the view transfor- 
marion matrix Mview as follows: 

Mview = P '  S - Mwaw 

P is a permutation matrix which transposes the coordinate system 
in order to make the z-axis the principal viewing axis. S trans- 
forms the volume into sheared object space, and M w ~  transforms 
sheared object coordinates into image coordinates. Cameron and 
Undrill [1] and SchrSder and Stoll [17] describe this factorization 
for the case of rotation matrices. For a general parallel projection 
S has the form of a shear perpendicular to the z-axis: (1000) 

Spar = 0 1 0 0 
Sx sv 1 0 
0 0 0 1 

where s= and s u can be computed from the elements of Mview. 
For perspective projections the transformation to sheared object 
space is of the form: 

1 0 0 0 / 
Sper~p 0 1 0 0 

- ~  l i 1 i 
'-qx 8y s w 
0 0 0 1 

This matrix specifies that to transform a particular slice z0 of 
voxel data from object space to sheared object space the slice 
must be translated by (zos~, zos~) and then scaled uniformly by 
1/(1 + z0s~). The final term of the factorization is a matrix 
which warps sheared object space into image space: 

Mwarp = S-1 . p - 1  . Mview 

A simple volume rendering algorithm based on the shear-warp 
factorization operates as follows (see Figure 3): 

1. Transform the volume data to sheared object space by trans- 
lating and resampling each slice according to S. For per- 
spective transformations, also scale each slice. P specifies 
which of the three possible slicing directions to use. 

2. Composite the resampled slices together in front-to-back 
order using the "over" operator [15]. This step projects 
the volume into a 2D intermediate image in sheared object 
space. 
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Figure 3: The shear-warp algorithm includes three conceptual 
steps: shear and resample the volume slices, project resampled 
voxel scanlines onto intermediate image scanlines, and warp the 
intermediate image into the final image. 

3. Transform the intermediate image to image space by warp- 
ing it according to Mw~. This second resampling step 
produces the correct final image. 

The parallel-projection version of this algorithm was first de- 
scribed by Cameron and Undrill [l]. Our new optimizations are 
described in the next section. 

The projection in sheared object space has several geometric 
properties that simplify the compositing step of the algorithm: 

Property 1: Scanlines of pixels in the intermediate 
image are parallel to scanlines of voxels in the volume 
data. 

Property 2: All voxels in a given voxel slice are 
scaled by the same factor. 

Property 3 (parallel projections only): Every voxel 
slice has the same scale factor, and this factor can 
be chosen arbitrarily. In particular, we can choose a 
unity scale factor so that for a given voxel scanline 
there is a one-to-one mapping between voxels and 
intermediate-image pixels. 

In the next section we make use of these properties. 

3 Shear-Warp Algorithms 
We have developed three volume rendering algorithms based on 
the shear-warp factorization. The first algorithm is optimized for 
parallel projections and assumes that the opacity transfer function 
does not change between renderings, but the viewing and shad- 
ing parameters can be modified. The second algorithm supports 
perspective projections. The third algorithm allows the opacity 
transfer function to be modified as well as the viewing and shad- 
ing parameters, with a moderate performance penalty. 

3.1 Parallel Projection Rendering Algorithm 
Property 1 of the previous section states that voxel scanlines in the 
sheared volume are aligned with pixel scanlines in the intermediate 
image, which means that the volume and image data structures can 
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Figure 4: Offsets stored with opaque pixels in the intermediate 
image allow occluded voxels to be skipped efficiently. 

both be traversed in scanline order. Scanline-based coherence data 
structures are therefore a natural choice. The first data structure we 
use is a run-length encoding of the voxel scanlines which allows us 
to take advantage of coherence in the volume by skipping runs of 
transparent voxels. The encoded scanlines consist of two types of 
runs, transparent and non-transparent, defined by a user-specified 
opacity threshold. Next, to take advantage of coherence in the 
image, we store with each opaque intermediate image pixel an 
offset to the next non-opaque pixel in the same scanline (Figure 4). 
An image pixel is defined to be opaque when its opacity exceeds 
a user-specified threshold, in which case the corresponding voxels 
in yet-to-be-processed slices are occluded. The offsets associated 
with the image pixels are used to skip runs of opaque pixels 
without examining every pixel. The pixel array and the offsets 
form a run-length encoding of the intermediate image which is 
computed on-the-fly during rendering. 

These two data structures and Property 1 lead to a fast scanline- 
based rendering algorithm (Figure 5). By marching through the 
volume and the image simultaneously in scanline order we reduce 
addressing arithmetic. By using the run-length encoding of the 
voxel data to skip voxels which are transparent and the run-length 
encoding of the image to skip voxels which are occluded, we per- 
form work only for voxels which are both non-transparent and 
visible. 

For voxel runs that are not skipped we use a tightly-coded 
loop that performs shading, resampling and compositing. Prop- 
erties 2 and 3 allow us to simplify the resampling step in this 
loop. Since the transformation applied to each slice of volume 
data before projection consists only of a translation (no scaling or 
rotation), the resampling weights are the same for every voxel in 
a slice (Figure 6). Algorithms which do not use the shear-warp 
factorization must recompute new weights for every voxel. We 
use a bilinear interpolation filter and a gather-type convolution 
(backward projection): two voxel scanlines are traversed simulta- 
neously to compute a single intermediate image scanline at a time. 
Scatter-type convolution (forward projection) is also possible. We 
use a lookup-table based system for shading [6]. We also use a 
lookup table to correct voxel opacity for the current viewing angle 

voxel scanline: ! [ ] [ I I 

" | resample and ' 

I '  composite 
image !ntermediate : i ! : 

scanline: ~ ~! ~! =! ~ :  =.. 
skip i work ! skip i work I skip 

[ ]  transparent voxel run • opaque image pixel run 

[ ]  non-transparent voxel run [ ]  non-opaque image pixel run 

Figure 5: Resampling and compositing are performed by stream- 
ing through both the voxels and the intermediate image in scanline 
order, skipping over voxels which are transparent and pixels which 
are opaque. 
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Figure 6: Since each slice of the volume is only translated, every 
voxel in the slice has the same resampling weights. 

since the apparent thickness of a slice of voxels depends on the 
viewing angle with respect to the orientation of the slice. 

The opaque pixel links achieve the same effect as early ray 
termination in ray-casting algorithms [12]. However, the effec- 
tiveness of this optimization depends on coherence of the opaque 
regions of the image. The runs of opaque pixels are typically 
large so that many pixels can be skipped at once, minimizing the 
number of pixels that are examined. The cost of computing the 
pixel offsets is low because a pixel's offset is updated only when 
the pixel first becomes opaque. 

After the volume has been composited the intermediate image 
must be warped into the final image. Since the 2D image is small 
compared to the size of the volume this part of the computation 
is relatively inexpensive. We use a general-purpose affine image 
warper with a bilinear filter. 

The rendering algorithm described in this section requires a 
run-length encoded volume which must be constructed in a pre- 
processing step, but the data structure is view-independent so the 
cost to compute it can be amortized over many renderings. Three 
encodings are computed, one for each possible principal viewing 
direction, so that transposing the volume is never necessary. Dur- 
ing rendering one of the three encodings is chosen depending upon 
the value of the permutation matrix P in the shear-warp factoriza- 
tion. Transparent voxels are not stored, so even with three-fold 
redundancy the encoded volume is typically much smaller than 
the original volume (see Section 4.1). Fast computation of the 
run-length encoded data structure is discussed further at the end 
of Section 3.3. 

In this section we have shown how the shear-warp factoriza- 
tion allows us to combine optimizations based on object coherence 
and image coherence with very low overhead and simple, high- 
quality resampling. In the next section we extend these advantages 
to a perspective volume rendering algorithm. 

3.2 Perspective Projection Rendering Algorithm 
Most of the work in volume rendering has focused on parallel pro- 
jections. However, perspective projections provide additional cues 
for resolving depth ambiguities [14] and are essential to correctly 
compute occlusions in such applications as a beam's eye view 
for radiation treatment planning. Perspective projections present 
a problem because the viewing rays diverge so it is difficult to 
sample the volume uniformly. Two types of solutions have been 
proposed for perspective volume rendering using ray-casters: as 
the distance along a ray increases the ray can be split into multi- 
ple rays [14], or each sample point can sample a larger portion of 
the volume using a mip-map [11] [16]. The object-order splatting 
algorithm can also handle perspective, but the resampling filter 
footprint must be recomputed for every voxel [20]. 

The shear-warp factorization provides a simple and efficient 
solution to the sampling problem for perspective projections. Each 
slice of the volume is transformed to sheared object space by a 
translation and a uniform scale, and the slices are then resampled 
and composited together. These steps are equivalent to a ray- 
casting algorithm in which rays are cast to uniformly sample the 
first slice of volume data, and as each ray hits subsequent (more 

distant) slices a larger portion of the slice is sampled (Figure 2). 
The key point is that within each slice the sampling rate is uniform 
(Property 2 of the factofization), so there is no need to implement 
a complicated multirate filter. 

The perspective algorithm is nearly identical to the parallel 
projection algorithm. The only difference is that each voxel must 
be scaled as well as translated during resampling, so more than 
two voxel scanlines may be traversed simultaneously to produce a 
given intermediate image scanline and the voxel scanlines may not 
be traversed at the same rate as the image scanlines. We always 
choose a factorization of the viewing transformation in which the 
slice closest to the viewer is scaled by a factor of one so that no 
slice is ever! enlarged. To resample we use a box reconstruction 
filter and a box low-pass filter, an appropriate combination for 
both decimation and unity scaling. In the case of unity scaling 
the two filter widths are identical and their convolution reduces 
to the bilinear interpolation filter used in the parallel projection 
algorithm. 

The perspective algorithm is more expensive than the parallel 
projection algorithm because extra time is required to compute 
resampling weights and because the many-to-one mapping from 
voxels to pixels complicates the flow of control. Nevertheless, the 
algorithm is efficient because of the properties of the shear-warp 
factorization: the volume and the intermediate image are both 
traversed scanline by scanline, and resampling is accomplished via 
two simple resampling steps despite the diverging ray problem. 

3.3 Fast Classification Algorithm 
The previous two algorithms require a preprocessing step to run- 
length encode the volume based on the opacity transfer function. 
The preprocessing time is insignificant if the user wishes to gen- 
erate many images from a single classified volume, but if the user 
wishes to experiment interactively with the transfer function then 
the preprocessing step is unacceptably slow. In this section we 
present a third variation of the shear-warp algorithm that eval- 
uates the opacity transfer function during rendering and is only 
moderately slower than the previous algorithms. 

A run-length encoding of the volume based upon opacity is 
not an appropriate data structure when the opacity transfer func- 
tion is not fixed. Instead we apply the algorithms described in 
Sections 3.1-3.2 to unencoded voxel scanlines, but with a new 
method to determine which portions of each scanline are non- 
transparent. We allow the opacity transfer function to be any 
scalar function of a multi-dimensional scalar domain: 

= f(p, q .... ) 

For example, the opacity might be a function of the scalar field 
and its gradient magnitude [9]: 

o~ = f ( d ,  1~7dl) 

The function f essentially partitions a multi-dimensional feature 
space into transparent and non-transparent regions, and our goal 
is to decide quickly which portions of a given scanline contain 
voxels in the non-transparent regions of the feature space. 

We solve this problem with the following recursive algorithm 
which takes advantage of coherence in both the opacity transfer 
function and the volume data: 

Step 1: For some block of the volume that contains the current 
scanline, find the extrema of the parameters of the opac- 
ity transfer function (min(p),max(p),min(q),  max(q) .... ). 
These extrema bound a rectangular region of the feature 
space. 

Step 2: Determine if the region is transparent, i.e. f evaluated for 
all parameter points in the region yields only transparent 
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Figure 7: A min-max octree (a) is used to determine the range 
of the parameters p, q of the opacity transfer function f(p, q) in 
a subcube of the volume. A summed area table (b) is used to 
integrate f over that range of p, q. If the integral is zero (c) then 
the subcube contains only transparent voxels. 

opacities. If so, then discard the scanline since it must be 
transparent. 

Step 3: Subdivide the scanline and repeat this algorithm recur- 
sively. If the size of the current scanline portion is below a 
threshold then render it instead of subdividing. 

This algorithm relies on two data structures for efficiency (Fig- 
ure 7). First, Step 1 uses a precomputed min-max octree [21]. 
Each octree node contains the extrema of the parameter values 
for a subcube of the volume. Second, to implement Step 2 of the 
algorithm we need to integrate the function f over the region of 
the feature space found in Step 1. If the integral is zero then all 
voxels must be transparent.* This integration can be performed 
in constant time using a multi-dimensional summed-area table [2] 
[5]. The voxels themselves are stored in a third data structure, a 
simple 3D array. 

The overall algorithm for rendering unclassified data sets pro- 
ceeds as follows. The rain-max octree is computed at the time the 
volume is first loaded since the octree is independent of the opac- 
ity transfer function and the viewing parameters. Next, just before 
rendering begins the opacity transfer function is used to compute 
the summed area table. This computation is inexpensive provided 
that the domain of the opacity transfer function is not too large. 
We then use either the parallel projection or the perspective pro- 
jection rendering algorithm to render voxels from an unencoded 
3D voxel array. The array is traversed scanline by scanline. For 
each scanline we use the octree and the summed area table to de- 
termine which portions of the scanline are non-transparent. Voxels 
in the non-transparent portions are individually classified using a 
lookup table and rendered as in the previous algorithms. Opaque 
regions of the image are skipped just as before. Note that voxels 
that are either transparent or occluded are never classified, which 
reduces the amount of computation. 

The octree traversal and summed area table lookups add over- 
head to the algorithm which were not present in the previous 
algorithms. In order to reduce this overhead we save as much 
computed data as possible for later reuse: an octree node is tested 
for transparency using the summed area table only the first time 
it is visited and the result is saved for subsequent traversals, and 
if two adjacent scanlines intersect the same set of octree nodes 
then we record this fact and reuse information instead of making 
multiple traversals. 

This rendering algorithm places two restrictions on the opacity 
transfer function: the parameters of the function must be precom- 
putable for each voxel so that the octree may be precomputed, 
and the total number of possible argument tuples to the function 
(the cardinality of the domain) must not be too large since the 

*The user may choose a non-zero opacity threshold for transparent voxels, in 
which case a thresholded version of f must be integrated: let ] ' = f whenever f 
exceeds the threshold, and f J = 0 otherwise. 

summed area table must contain one entry for each possible tu- 
pie. Context-sensitive segmentation (classification based upon the 
position and surroundings of a voxel) does not meet these criteria 
unless the segmentation is entirely precomputed. 

The fast-classification algorithm presented here also suffers 
from a problem common to many object-order algorithms: if the 
major viewing axis changes then the volume data must be ac- 
cessed against the stride and performance degrades. Alternatively 
the 3D array of voxels can be transposed, resulting in a delay 
during interactive viewing. Unlike the algorithms based on a run- 
length encoded volume, it is typically not practical to maintain 
three copies of the unencoded volume since it is much larger than 
a run-length encoding. It is better to use a small range of view- 
points while modifying the classification function, and then to 
switch to one of the previous two rendering methods for render- 
ing animation sequences. In fact, the octree and the summed-area 
table can be used to convert the 3D voxel array into a run-length 
encoded volume without accessing transparent voxels, leading to 
a significant time savings (see the "Switch Modes" arrow in Fig- 
ure 12). Thus the three algorithms fit together well to yield an 
interactive tool for classifying and viewing volumes. 

4 Results 

4.1  S p e e d  a n d  Memory 
Our performance results for the three algorithms are summarized 
in Table 1. The "Fast Classification" timings are for the algorithm 
in Section 3.3 with a parallel projection. The timings were mea- 
sured on an SGI Indigo R4000 without hardware graphics accel- 
erators. Rendering times include all steps required to render from 
a new viewpoint, including computation of the shading lookup 
table, compositing and wmping, hut the preprocessing step is not 
included. The "Avg." field in the table is the average time in sec- 
onds for rendering 360 frames at one degree angle increments, and 
the "Min/Max" times are for the best and worst case angles. The 
"Mem." field gives the size in megabytes of all data structures. 
For the first two algorithms the size includes the three run-length 
encodings of the volume, the image data structures and all lookup 
tables. For the third algorithm the size includes the unencoded 
volume, the octree, the summed-area table, the image data struc- 
tures, and the lookup tables. The "brain" data set is an MRI scan 
of a human head (Figure 8) and the "head" data set is a CT scan 
of a human head (Figure 9). The "brainsmall" and "headsmall" 
data sets are decimated versions of the larger volumes. 

The timings are nearly independent of image size because this 
factor affects only the final wa R which is relatively insignificant. 
Rendering time is dependent on viewing angle (Figure 11) because 
the effectiveness of the coherence optimizations varies with view- 
point and because the size of the intermediate image increases as 
the rotation angle approaches 45 degrees, so more compositing 
operations must be performed. For the algorithms described in 
Sections 3.1-3.2 there is no jump in rendering time when the ma- 
jor viewing axis changes, provided the three run-length encoded 
copies of the volume fit into real memory simultaneously. Each 
copy contains four bytes per non-transparent voxel and one byte 
per run. For the 256x256x226 voxel head data set the three run- 
length encodings total only 9.8 Mbytes. All of the images were 
rendered on a workstation with 64 Mbytes of memory. To test the 
fast classification algorithm (Section 3.3) on the 256 ~ data sets we 
used a workstation with 96 Mbytes of memory. 

Figure 12 gives a breakdown of the time required to render the 
brain data set with a parallel projection using the fast classification 
algorithm (left branch) and the parallel projection algorithm (right 
branch). The time required to warp the intermediate image into 
the final image is typically 10-20% of the total rendering time 
for the parallel projection algorithm. The "Switch Modes" arrow 
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Data set 

brainsmall 
headsmall 
brain 
head 

Size (voxels) 

128x128x109 
128x128x113 
256x256x167 
256x256x225 

Parallel projection (§ 3.1) 
Avg. Min/Max Mere. 
0.4 s. 0.37-0.48 s. 4 Mb. 
0.4 0.35-0.43 2 
1.1 0.91-1.39 19 
1.2 1.04-1.33 13 

Perspective projection (§3.2) Fast classification (§3.3) 
Avg. Min/Max Mem. Avg. Min/Max Mem. 
1.0 s. 0.84-1.13 s. 4 Mb. 0.7 s. 0.61-0.84 s. 8 Mb. 
0.9 0.82-1.00 2 0.8 0.72-0.87 8 
3.0 2.44-2.98 19 2.4 1.91-2.91 46 
3.3 2.99-3.68 13 2.8 2.43-3.23 61 

Table 1: Rendering time and memory usage on an SGI Indigo workstation. Times are in seconds and include shading, resampling, 
projection and warping. The fast classification times include rendering with a parallel projection. The "Mem." field is the total size of 
the data structures used by each algorithm. 
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Figure 11 : Rendering time for a parallel projection of the head 
data set as the viewing angle changes. 

shows the time required for all three copies of the run-length 
encoded volume to be computed from the unencoded volume and 
the min-max octree once the user has settled on an opacity transfer 
function. 

The timings above are for grayscale renderings. Color ren- 
derings take roughly twice as long for parallel projections and 
1.3x longer for perspective because of the additional resampling 
required for the two extra color channels. Figure 13 is a color 
rendering of the head data set classified with semitransparent skin 
which took 3.0 sec. to render. Figure 14 is a rendering of a 
256x256x 110 voxel engine block, classified with semi-transparent 
and opaque surfaces; it took 2.3 sec. to render. Figure 15 is a ren- 
dering of a 256x256x159 CT scan of a human abdomen, rendered 
in 2.2 sec. The blood vessels of the subject contain a radio-opaque 
dye, and the data set was classified to reveal both the dye and bone 
surfaces. Figure 16 is a perspective color rendering of the engine 
data set which took 3.8 sec. to compute. 

For comparison purposes we rendered the head data set with 
a ray-caster that uses early ray termination and a pyramid to ex- 
ploit object coherence [12]. Because of its lower computational 
overhead the shear-warp algorithm is more than five times faster 
for the 1283 data sets and more than ten times faster for the 2563 
data sets. Our algorithm running on a workstation is competitive 
with algorithms for massively parallel processors ([17], [19] and 
others), although the parallel implementations do not rely on co- 
herence optimizations and therefore their performance results are 
not data dependent as ours are. 

Our experiments show that the running time of the algorithms 
in Sections 3.1-3.2 is proportional to the number of voxels which 
are resampled and composited. This number is small either if a 
significant fraction of the voxels are transparent or if the aver- 
age voxel opacity is high. In the latter case the image quickly 
becomes opaque and the remaining voxels are skipped. For the 
data sets and classification functions we have tried roughly n 2 
voxels are both non-transparent and visible, so we observe O(n 2) 
performance as shown in Table 1: an eight-fold increase in the 
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Figure 12: Performance results for each stage of rendering the 
brain data set with a parallel projection. The left side uses the 
fast classification algorithm and the right side uses the parallel 
projection algorithm. 

number of voxels leads to only a four-fold increase in time for 
the compositing stage and just under a four-fold increase in over- 
all rendering time. For our rendering of the head data set 5% of 
the voxels are non-transparent, and for the brain data set 11% of 
the voxels are non-transparent. Degraded performance can be ex- 
pected if a substantial fraction of the classified volume has low but 
non-transparent opacity, but in our experience such classification 
functions are less useful. 

4.2 Image Quality 
Figure 10 is a volume rendering of the same data set as in Figure 9, 
but produced by a ray-caster using tfilinear interpolation [12]. The 
two images are virtually identical. 

Nevertheless, there are two potential quality problems associ- 
ated with the shear-warp algorithm. First, the algorithm involves 
two resampling steps: each slice is resampled during composit- 
ing, and the intermediate image is resampled during the final warp. 
Multiple resampling steps can potentially cause blurring and loss 
of detail. However even in the high-detail regions of Figure 9 this 
effect is not noticeable. 

The second potential problem is that the shear-warp algorithm 
uses a 2D rather than a 3D reconstruction filter to resample the 
volume data. The bilinear filter used for resampling is a first-order 
filter in the plane of a voxel slice, but it is a zero-order (nearest- 
neighbor) filter in the direction orthogonal to the slice. Artifacts 
are likely to appear if the opacity or color attributes of the volume 
contain very high frequencies (although if the frequencies exceed 
the Nyquist rate then perfect reconstruction is impossible). 
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Figure 17 shows a case where a trilinear interpolation filter 
outperforms a bilinear filter. The left-most image is a rendering 
by the shear-warp algorithm of a portion of the engine data set 
which has been classified with extremely sharp ramps to produce 
high frequencies in the volume's opacity. The viewing angle is 
set to 45 degrees relative to the slices of the data set--the worst 
case--and aliasing is apparent. For comparison, the middle image 
is a rendering produced with a ray-caster using trilinear interpo- 
lation and otherwise identical rendering parameters; here there is 
virtually no aliasing. However, by using a smoother opacity trans- 
fer function these reconstruction artifacts can be reduced. The 
fight-most image is a rendering using the shear-warp algorithm 
and a less-extreme opacity transfer function. Here the aliasing is 
barely noticeable because the high frequencies in the scalar field 
have effectively been low-pass filtered by the transfer function. 
In practice, as long as the opacity transfer function is not a binary 
classification the bilinear filter produces good results. 

5 Conclusion 

The shear-warp factorization allows us to implement coherence 
optimizations for both the volume data and the image with low 
computational overhead because both data structures can be tra- 
versed simultaneously in scanline order. The algorithm is flexible 
enough to accommodate a wide range of user-defined shading 
models and can handle perspective projections. We have also 
presented a variant of the algorithm that does not assume a fixed 
opacity transfer function. The result is an algorithm which pro- 
duces high-quality renderings of a 2563 volume in roughly one 
second on a workstation with no specialized hardware. 

We are currently extending our rendering algorithm to support 
data sets containing both geometry and volume data. We have 
also found that the shear-warp algorithms parallelize naturally for 
MIMD shared-memory multiprocessors. We parallelized the re- 
sampling and compositing steps by distributing scanlines of the 
intermediate image to the processors. On a 16 processor SGI 
Challenge multiprocessor the 256x256x223 voxel head data set 
can be rendered at a sustained rate of 10 frames/sec. 
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Figure 8: Volume rendering with a par- 
allel projection of an MRI scan of a hu- 
man brain using the shear-warp algo- 
rithm (1.1 sec.). 

Figure 9: Volume rendering with a par- 
allel projection of a CT scan of a human 
head oriented at 45 degrees relative to 
the axes of the volume (1.2 sec.). 

Figure 10: Volume rendering of the 
same data set as in Figure 9 using a 
ray-caster [12] for quality comparison 
(13.8 sec.). 

Figure 13: Volume rendering with a 
parallel projection of the human head 
data set classified with semitransparent 
skin (3.0 sec.). 

Figure 14: Volume rendering with a 
parallel projection of an engine block 
with semitransparent and opaque sur- 
faces (2.3 sec.). 

Figure 15: Volume rendering with a 
parallel projection of a CT scan of a 
human abdomen (2.2 sec.). The blood 
vessels contain a radio-opaque dye. 

Figure 16: Volume rendering with a perspective projection of the 
engine data set (3.8 sec.). 

(a) (b) (c) 

Figure 17: Comparison of image quality with bilinear and trilinear 
filters for a portion of the engine data set. The images have been 
enlarged. (a) Bilinear filter with binary classification. (b) Trilinear 
filter with binary classification. (c) Bilinear filter with smooth 
classification. 
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