
COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

9 4

Fast Volume Rendering Using a Shear-Warp Factorization
of the Viewing Transformation

Philippe Lacroute

Computer Systems Laboratory
Stanford University

Marc Levoy

Computer Science Department
Stanford University

/"

Abstract

Several existing volume rendering algorithms operate by factor-
ing the viewing transformation into a 3D shear parallel to the data
slices, a projection to form an intermediate but distorted image,
and a 2D warp to form an undistorted final image. We extend
this class of algorithms in three ways. First, we describe a new
object-order rendering algorithm based on the factorization that is
significantly faster than published algorithms with minimal loss
of image quality. Shear-warp factorizations have the property that
rows of voxels in the volume are aligned with rows of pixels in the
intermediate image. We use this fact to construct a scanline-based
algorithm that traverses the volume and the intermediate image in
synchrony, taking advantage of the spatial coherence present in
both. We use spatial data structures based on run-length encoding
for both the volume and the intermediate image. Our implemen-
tation running on an SGI Indigo workstation renders a 2563 voxel
medical data set in one second. Our second extension is a shear-
warp factorization for perspective viewing transformations, and
we show how our rendering algorithm can support this extension.
Third, we introduce a data structure for encoding spatial coherence
in unclassified volumes (i.e. scalar fields with no precomputed
opacity). When combined with our shear-warp rendering algo-
rithm this data structure allows us to classify and render a 2563
voxel volume in three seconds. The method extends to support
mixed volumes and geometry and is parallelizable.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; 1.3.3 [Computer Graphics]: Picture/Image
Generation--Display Algorithms.

Additional Keywords: Volume rendering, Coherence, Scientific
visualization, Medical imaging.

1 Introduction

Volume rendering is a flexible technique for visualizing scalar
fields with widespread applicability in medical imaging and sci-
entific visualization, but its use has been limited because it is

Authors' Address: Center for Integrated Systems, Stanford University,
Stanford, CA 94305-4070

E-mail: lacroute@weevil.stanford.edu, levoy@cs.stanford.edu
Word Wide Web: http://www-graphics.stanford.edu/

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

computationally expensive. Interactive rendering rates have been
reported using large parallel processors [17] [19] and using algo-
rithms that trade off image quality for speed [10] [8], but high-
quality images take tens of seconds or minutes to generate on
current workstations. In this paper we present a new algorithm
which achieves near-interactive rendering rates on a workstation
without significantly sacrificing quality.

Many researchers have proposed methods that reduce render-
ing cost without affecting image quality by exploiting coherence
in the data set. These methods rely on spatial data structures that
encode the presence or absence of high-opacity voxels so that
computation can be omitted in transparent regions of the volume.
These data structures are built during a preprocessing step from a
classified volume: a volume to which an opacity transfer function
has been applied. Such spatial data structures include octrees and
pyramids [13] [12] [8] [3], k-d trees [18] and distance transforms
[23]. Although this type of optimization is data-dependent, re-
searchers have reported that in typical classified volumes 70-95%
of the voxels are transparent [12] [18].

Algorithms that use spatial data structures can be divided into
two categories according to the order in which the data structures
are traversed: image-order or object-order. Image-order algo-
rithms operate by casting rays from each image pixel and pro-
cessing the voxels along each ray [9]. This processing order has
the disadvantage that the spatial data structure must be traversed
once for every ray, resulting in redundant computation (e.g. mul-
tiple descents of an octree). In contrast, object-order algorithms
operate by splatting voxels into the image while streaming through
the volume data in storage order [20] [8]. However, this process-
ing order makes it difficult to implement early ray termination, an
effective optimization in ray-casting algorithms [12].

In this paper we describe a new algorithm which combines
the advantages of image-order and object-order algorithms. The
method is based on a factorization of the viewing matrix into a 3D
shear parallel to the slices of the volume data, a projection to form
a distorted intermediate image, and a 2D warp to produce the final
image. Shear-warp factorizations are not new. They have been
used to simplify data communication patterns in volume rendering
algorithms for SIMD parallel processors [1] [17] and to simplify
the generation of paths through a volume in a serial image-order
algorithm [22]. The advantage of shear-warp factorizations is that
scanlines of tlae volume data and scanlines of the intermediate im-
age are always aligned. In previous efforts this property has been
used to develop SIMD volume rendering algorithms. We exploit
the property for a different reason: it allows efficient, synchro-
nized access to data structures that separately encode coherence
in the volume and the image.

The factorization also makes efficient, high-quality resampling
possible in an object-order algorithm. In our algorithm the re-

© 1994 ACM-0-89791-667-0/94/007/0451 $01,50 451

SIGGRAPH 94, Orlando,Florida, July 24-29, 1994

viewing rays shear

volume
slices roject

ima
plane

varp

Figure 1: A volume is transformed to sheared object space for
a parallel projection by translating each slice. The projection in
sheared object space is simple and efficient.

viewing rays

)lume
ices

shear and scale ~t

~roject

warp

ir
lter of

P projection

Figure 2: A volume is transformed to sheared object space for a
perspective projection by translating and scaling each slice. The
projection in sheared object space is again simple and efficient.

sampling filter footprint is not view dependent, so the resampling
complications of splatting algorithms [20] are avoided. Several
other algorithms also use multipass resampling [4] [7] [19], but
these methods require three or more resampling steps. Our al-
gorithm requires only two resampling steps for an arbitrary per-
spective viewing transformation, and the second resampling is an
inexpensive 2D warp. The 3D volume is traversed only once.

Our implementation running on an SGI Indigo workstation can
render a 2563 voxel medical data set in one second, a factor of at
least five faster than previous algorithms running on comparable
hardware. Other than a slight loss due to the two-pass resampling,
our algorithm does not trade off quality for speed. This is in
contrast to algorithms that subsample the data set and can therefore
miss small features [10] [3].

Section 2 of this paper describes the shear-warp factoriza-
tion and its important mathematical properties. We also describe
a new extension of the factorization for perspective projections.
Section 3 describes three variants of our volume rendering algo-
rithm. The first algorithm renders classified volumes with a paral-
lel projection using our new coherence optimizations. The second
algorithm supports perspective projections. The third algorithm is
a fast classification algorithm for rendering unclassified volumes.
Previous algorithms that employ spatial data structures require an
expensive preprocessing step when the opacity transfer function
changes. Our third algorithm uses a classification-independent
rain-max octree data structure to avoid this step. Section 4 con-
tains our performance results and a discussion of image quality.
Finally we conclude and discuss some extensions to the algorithm
in Section 5.

2 The Shear-Warp Factorization
The arbitrary nature of the transformation from object space to
image space complicates efficient, high-quality filtering and pro-
jection in object-order volume rendering algorithms. This problem
can be solved by transforming the volume to an intermediate co-
ordinate system for which there is a very simple mapping from the
object coordinate system and which allows efficient projection.

We call the intermediate coordinate system "sheared object
space" and define it as follows:

Definition 1: By construction, in sheared object space
all viewing rays are parallel to the third coordinate
axis.

Figure 1 illustrates the transformation from object space to sheared
object space for a parallel projection. We assume the volume is
sampled on a rectilinear grid. The horizontal lines in the figure
represent slices of the volume data viewed in cross-section. After
transformation the volume data has been sheared parallel to the set
of slices that is most perpendicular to the viewing direction and

the viewing rays are perpendicular to the slices. For a perspective
transformation the definition implies that each slice must be scaled
as well as sheared as shown schematically in Figure 2.

Definition 1 can be formalized as a set of equations that trans-
form object coordinates into sheared object coordinates. These
equations can be written as a factorization of the view transfor-
marion matrix Mview as follows:

Mview = P ' S - Mwaw

P is a permutation matrix which transposes the coordinate system
in order to make the z-axis the principal viewing axis. S trans-
forms the volume into sheared object space, and M w ~ transforms
sheared object coordinates into image coordinates. Cameron and
Undrill [1] and SchrSder and Stoll [17] describe this factorization
for the case of rotation matrices. For a general parallel projection
S has the form of a shear perpendicular to the z-axis: (1000)

Spar = 0 1 0 0
Sx sv 1 0
0 0 0 1

where s= and s u can be computed from the elements of Mview.
For perspective projections the transformation to sheared object
space is of the form:

1 0 0 0 /
Sper~p 0 1 0 0

- ~ l i 1 i
'-qx 8y s w
0 0 0 1

This matrix specifies that to transform a particular slice z0 of
voxel data from object space to sheared object space the slice
must be translated by (zos~, zos~) and then scaled uniformly by
1/(1 + z0s~). The final term of the factorization is a matrix
which warps sheared object space into image space:

Mwarp = S-1 . p - 1 . Mview

A simple volume rendering algorithm based on the shear-warp
factorization operates as follows (see Figure 3):

1. Transform the volume data to sheared object space by trans-
lating and resampling each slice according to S. For per-
spective transformations, also scale each slice. P specifies
which of the three possible slicing directions to use.

2. Composite the resampled slices together in front-to-back
order using the "over" operator [15]. This step projects
the volume into a 2D intermediate image in sheared object
space.

452

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

1. shear & ~
resample/ r4.... ~

L / intermediate
voxel l~~l lJ¢~ql[/ imagescanl ine
scanline ~ ~""""',,,,,,,,,,,,~....~ I 3. warp &

voxel slice intermediate image final image

Figure 3: The shear-warp algorithm includes three conceptual
steps: shear and resample the volume slices, project resampled
voxel scanlines onto intermediate image scanlines, and warp the
intermediate image into the final image.

3. Transform the intermediate image to image space by warp-
ing it according to Mw~. This second resampling step
produces the correct final image.

The parallel-projection version of this algorithm was first de-
scribed by Cameron and Undrill [l]. Our new optimizations are
described in the next section.

The projection in sheared object space has several geometric
properties that simplify the compositing step of the algorithm:

Property 1: Scanlines of pixels in the intermediate
image are parallel to scanlines of voxels in the volume
data.

Property 2: All voxels in a given voxel slice are
scaled by the same factor.

Property 3 (parallel projections only): Every voxel
slice has the same scale factor, and this factor can
be chosen arbitrarily. In particular, we can choose a
unity scale factor so that for a given voxel scanline
there is a one-to-one mapping between voxels and
intermediate-image pixels.

In the next section we make use of these properties.

3 Shear-Warp Algorithms
We have developed three volume rendering algorithms based on
the shear-warp factorization. The first algorithm is optimized for
parallel projections and assumes that the opacity transfer function
does not change between renderings, but the viewing and shad-
ing parameters can be modified. The second algorithm supports
perspective projections. The third algorithm allows the opacity
transfer function to be modified as well as the viewing and shad-
ing parameters, with a moderate performance penalty.

3.1 Parallel Projection Rendering Algorithm
Property 1 of the previous section states that voxel scanlines in the
sheared volume are aligned with pixel scanlines in the intermediate
image, which means that the volume and image data structures can

I I opaque
pixel

D non-opaque
pixel

Figure 4: Offsets stored with opaque pixels in the intermediate
image allow occluded voxels to be skipped efficiently.

both be traversed in scanline order. Scanline-based coherence data
structures are therefore a natural choice. The first data structure we
use is a run-length encoding of the voxel scanlines which allows us
to take advantage of coherence in the volume by skipping runs of
transparent voxels. The encoded scanlines consist of two types of
runs, transparent and non-transparent, defined by a user-specified
opacity threshold. Next, to take advantage of coherence in the
image, we store with each opaque intermediate image pixel an
offset to the next non-opaque pixel in the same scanline (Figure 4).
An image pixel is defined to be opaque when its opacity exceeds
a user-specified threshold, in which case the corresponding voxels
in yet-to-be-processed slices are occluded. The offsets associated
with the image pixels are used to skip runs of opaque pixels
without examining every pixel. The pixel array and the offsets
form a run-length encoding of the intermediate image which is
computed on-the-fly during rendering.

These two data structures and Property 1 lead to a fast scanline-
based rendering algorithm (Figure 5). By marching through the
volume and the image simultaneously in scanline order we reduce
addressing arithmetic. By using the run-length encoding of the
voxel data to skip voxels which are transparent and the run-length
encoding of the image to skip voxels which are occluded, we per-
form work only for voxels which are both non-transparent and
visible.

For voxel runs that are not skipped we use a tightly-coded
loop that performs shading, resampling and compositing. Prop-
erties 2 and 3 allow us to simplify the resampling step in this
loop. Since the transformation applied to each slice of volume
data before projection consists only of a translation (no scaling or
rotation), the resampling weights are the same for every voxel in
a slice (Figure 6). Algorithms which do not use the shear-warp
factorization must recompute new weights for every voxel. We
use a bilinear interpolation filter and a gather-type convolution
(backward projection): two voxel scanlines are traversed simulta-
neously to compute a single intermediate image scanline at a time.
Scatter-type convolution (forward projection) is also possible. We
use a lookup-table based system for shading [6]. We also use a
lookup table to correct voxel opacity for the current viewing angle

voxel scanline: ! [] [I I

" | resample and '

I ' composite
image !ntermediate : i ! :

scanline: ~ ~! ~! =! ~ : =..
skip i work ! skip i work I skip

[] transparent voxel run • opaque image pixel run

[] non-transparent voxel run [] non-opaque image pixel run

Figure 5: Resampling and compositing are performed by stream-
ing through both the voxels and the intermediate image in scanline
order, skipping over voxels which are transparent and pixels which
are opaque.

453

SlGGRAPH 94, Orlando, Florida, July 24-29, 1994

• original voxel

© resampled voxel

Figure 6: Since each slice of the volume is only translated, every
voxel in the slice has the same resampling weights.

since the apparent thickness of a slice of voxels depends on the
viewing angle with respect to the orientation of the slice.

The opaque pixel links achieve the same effect as early ray
termination in ray-casting algorithms [12]. However, the effec-
tiveness of this optimization depends on coherence of the opaque
regions of the image. The runs of opaque pixels are typically
large so that many pixels can be skipped at once, minimizing the
number of pixels that are examined. The cost of computing the
pixel offsets is low because a pixel's offset is updated only when
the pixel first becomes opaque.

After the volume has been composited the intermediate image
must be warped into the final image. Since the 2D image is small
compared to the size of the volume this part of the computation
is relatively inexpensive. We use a general-purpose affine image
warper with a bilinear filter.

The rendering algorithm described in this section requires a
run-length encoded volume which must be constructed in a pre-
processing step, but the data structure is view-independent so the
cost to compute it can be amortized over many renderings. Three
encodings are computed, one for each possible principal viewing
direction, so that transposing the volume is never necessary. Dur-
ing rendering one of the three encodings is chosen depending upon
the value of the permutation matrix P in the shear-warp factoriza-
tion. Transparent voxels are not stored, so even with three-fold
redundancy the encoded volume is typically much smaller than
the original volume (see Section 4.1). Fast computation of the
run-length encoded data structure is discussed further at the end
of Section 3.3.

In this section we have shown how the shear-warp factoriza-
tion allows us to combine optimizations based on object coherence
and image coherence with very low overhead and simple, high-
quality resampling. In the next section we extend these advantages
to a perspective volume rendering algorithm.

3.2 Perspective Projection Rendering Algorithm
Most of the work in volume rendering has focused on parallel pro-
jections. However, perspective projections provide additional cues
for resolving depth ambiguities [14] and are essential to correctly
compute occlusions in such applications as a beam's eye view
for radiation treatment planning. Perspective projections present
a problem because the viewing rays diverge so it is difficult to
sample the volume uniformly. Two types of solutions have been
proposed for perspective volume rendering using ray-casters: as
the distance along a ray increases the ray can be split into multi-
ple rays [14], or each sample point can sample a larger portion of
the volume using a mip-map [11] [16]. The object-order splatting
algorithm can also handle perspective, but the resampling filter
footprint must be recomputed for every voxel [20].

The shear-warp factorization provides a simple and efficient
solution to the sampling problem for perspective projections. Each
slice of the volume is transformed to sheared object space by a
translation and a uniform scale, and the slices are then resampled
and composited together. These steps are equivalent to a ray-
casting algorithm in which rays are cast to uniformly sample the
first slice of volume data, and as each ray hits subsequent (more

distant) slices a larger portion of the slice is sampled (Figure 2).
The key point is that within each slice the sampling rate is uniform
(Property 2 of the factofization), so there is no need to implement
a complicated multirate filter.

The perspective algorithm is nearly identical to the parallel
projection algorithm. The only difference is that each voxel must
be scaled as well as translated during resampling, so more than
two voxel scanlines may be traversed simultaneously to produce a
given intermediate image scanline and the voxel scanlines may not
be traversed at the same rate as the image scanlines. We always
choose a factorization of the viewing transformation in which the
slice closest to the viewer is scaled by a factor of one so that no
slice is ever! enlarged. To resample we use a box reconstruction
filter and a box low-pass filter, an appropriate combination for
both decimation and unity scaling. In the case of unity scaling
the two filter widths are identical and their convolution reduces
to the bilinear interpolation filter used in the parallel projection
algorithm.

The perspective algorithm is more expensive than the parallel
projection algorithm because extra time is required to compute
resampling weights and because the many-to-one mapping from
voxels to pixels complicates the flow of control. Nevertheless, the
algorithm is efficient because of the properties of the shear-warp
factorization: the volume and the intermediate image are both
traversed scanline by scanline, and resampling is accomplished via
two simple resampling steps despite the diverging ray problem.

3.3 Fast Classification Algorithm
The previous two algorithms require a preprocessing step to run-
length encode the volume based on the opacity transfer function.
The preprocessing time is insignificant if the user wishes to gen-
erate many images from a single classified volume, but if the user
wishes to experiment interactively with the transfer function then
the preprocessing step is unacceptably slow. In this section we
present a third variation of the shear-warp algorithm that eval-
uates the opacity transfer function during rendering and is only
moderately slower than the previous algorithms.

A run-length encoding of the volume based upon opacity is
not an appropriate data structure when the opacity transfer func-
tion is not fixed. Instead we apply the algorithms described in
Sections 3.1-3.2 to unencoded voxel scanlines, but with a new
method to determine which portions of each scanline are non-
transparent. We allow the opacity transfer function to be any
scalar function of a multi-dimensional scalar domain:

= f(p, q)

For example, the opacity might be a function of the scalar field
and its gradient magnitude [9]:

o~ = f (d , 1~7dl)

The function f essentially partitions a multi-dimensional feature
space into transparent and non-transparent regions, and our goal
is to decide quickly which portions of a given scanline contain
voxels in the non-transparent regions of the feature space.

We solve this problem with the following recursive algorithm
which takes advantage of coherence in both the opacity transfer
function and the volume data:

Step 1: For some block of the volume that contains the current
scanline, find the extrema of the parameters of the opac-
ity transfer function (min(p),max(p),min(q), max(q)).
These extrema bound a rectangular region of the feature
space.

Step 2: Determine if the region is transparent, i.e. f evaluated for
all parameter points in the region yields only transparent

454

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

~ summed
area table

--~ R - - ~ f (p , q)

min-max octree Pmin Pma~-
(a) (b) (c)

9
- 0

Figure 7: A min-max octree (a) is used to determine the range
of the parameters p, q of the opacity transfer function f(p, q) in
a subcube of the volume. A summed area table (b) is used to
integrate f over that range of p, q. If the integral is zero (c) then
the subcube contains only transparent voxels.

opacities. If so, then discard the scanline since it must be
transparent.

Step 3: Subdivide the scanline and repeat this algorithm recur-
sively. If the size of the current scanline portion is below a
threshold then render it instead of subdividing.

This algorithm relies on two data structures for efficiency (Fig-
ure 7). First, Step 1 uses a precomputed min-max octree [21].
Each octree node contains the extrema of the parameter values
for a subcube of the volume. Second, to implement Step 2 of the
algorithm we need to integrate the function f over the region of
the feature space found in Step 1. If the integral is zero then all
voxels must be transparent.* This integration can be performed
in constant time using a multi-dimensional summed-area table [2]
[5]. The voxels themselves are stored in a third data structure, a
simple 3D array.

The overall algorithm for rendering unclassified data sets pro-
ceeds as follows. The rain-max octree is computed at the time the
volume is first loaded since the octree is independent of the opac-
ity transfer function and the viewing parameters. Next, just before
rendering begins the opacity transfer function is used to compute
the summed area table. This computation is inexpensive provided
that the domain of the opacity transfer function is not too large.
We then use either the parallel projection or the perspective pro-
jection rendering algorithm to render voxels from an unencoded
3D voxel array. The array is traversed scanline by scanline. For
each scanline we use the octree and the summed area table to de-
termine which portions of the scanline are non-transparent. Voxels
in the non-transparent portions are individually classified using a
lookup table and rendered as in the previous algorithms. Opaque
regions of the image are skipped just as before. Note that voxels
that are either transparent or occluded are never classified, which
reduces the amount of computation.

The octree traversal and summed area table lookups add over-
head to the algorithm which were not present in the previous
algorithms. In order to reduce this overhead we save as much
computed data as possible for later reuse: an octree node is tested
for transparency using the summed area table only the first time
it is visited and the result is saved for subsequent traversals, and
if two adjacent scanlines intersect the same set of octree nodes
then we record this fact and reuse information instead of making
multiple traversals.

This rendering algorithm places two restrictions on the opacity
transfer function: the parameters of the function must be precom-
putable for each voxel so that the octree may be precomputed,
and the total number of possible argument tuples to the function
(the cardinality of the domain) must not be too large since the

*The user may choose a non-zero opacity threshold for transparent voxels, in
which case a thresholded version of f must be integrated: let] ' = f whenever f
exceeds the threshold, and f J = 0 otherwise.

summed area table must contain one entry for each possible tu-
pie. Context-sensitive segmentation (classification based upon the
position and surroundings of a voxel) does not meet these criteria
unless the segmentation is entirely precomputed.

The fast-classification algorithm presented here also suffers
from a problem common to many object-order algorithms: if the
major viewing axis changes then the volume data must be ac-
cessed against the stride and performance degrades. Alternatively
the 3D array of voxels can be transposed, resulting in a delay
during interactive viewing. Unlike the algorithms based on a run-
length encoded volume, it is typically not practical to maintain
three copies of the unencoded volume since it is much larger than
a run-length encoding. It is better to use a small range of view-
points while modifying the classification function, and then to
switch to one of the previous two rendering methods for render-
ing animation sequences. In fact, the octree and the summed-area
table can be used to convert the 3D voxel array into a run-length
encoded volume without accessing transparent voxels, leading to
a significant time savings (see the "Switch Modes" arrow in Fig-
ure 12). Thus the three algorithms fit together well to yield an
interactive tool for classifying and viewing volumes.

4 Results

4.1 S p e e d a n d Memory
Our performance results for the three algorithms are summarized
in Table 1. The "Fast Classification" timings are for the algorithm
in Section 3.3 with a parallel projection. The timings were mea-
sured on an SGI Indigo R4000 without hardware graphics accel-
erators. Rendering times include all steps required to render from
a new viewpoint, including computation of the shading lookup
table, compositing and wmping, hut the preprocessing step is not
included. The "Avg." field in the table is the average time in sec-
onds for rendering 360 frames at one degree angle increments, and
the "Min/Max" times are for the best and worst case angles. The
"Mem." field gives the size in megabytes of all data structures.
For the first two algorithms the size includes the three run-length
encodings of the volume, the image data structures and all lookup
tables. For the third algorithm the size includes the unencoded
volume, the octree, the summed-area table, the image data struc-
tures, and the lookup tables. The "brain" data set is an MRI scan
of a human head (Figure 8) and the "head" data set is a CT scan
of a human head (Figure 9). The "brainsmall" and "headsmall"
data sets are decimated versions of the larger volumes.

The timings are nearly independent of image size because this
factor affects only the final wa R which is relatively insignificant.
Rendering time is dependent on viewing angle (Figure 11) because
the effectiveness of the coherence optimizations varies with view-
point and because the size of the intermediate image increases as
the rotation angle approaches 45 degrees, so more compositing
operations must be performed. For the algorithms described in
Sections 3.1-3.2 there is no jump in rendering time when the ma-
jor viewing axis changes, provided the three run-length encoded
copies of the volume fit into real memory simultaneously. Each
copy contains four bytes per non-transparent voxel and one byte
per run. For the 256x256x226 voxel head data set the three run-
length encodings total only 9.8 Mbytes. All of the images were
rendered on a workstation with 64 Mbytes of memory. To test the
fast classification algorithm (Section 3.3) on the 256 ~ data sets we
used a workstation with 96 Mbytes of memory.

Figure 12 gives a breakdown of the time required to render the
brain data set with a parallel projection using the fast classification
algorithm (left branch) and the parallel projection algorithm (right
branch). The time required to warp the intermediate image into
the final image is typically 10-20% of the total rendering time
for the parallel projection algorithm. The "Switch Modes" arrow

455

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

Data set

brainsmall
headsmall
brain
head

Size (voxels)

128x128x109
128x128x113
256x256x167
256x256x225

Parallel projection (§ 3.1)
Avg. Min/Max Mere.
0.4 s. 0.37-0.48 s. 4 Mb.
0.4 0.35-0.43 2
1.1 0.91-1.39 19
1.2 1.04-1.33 13

Perspective projection (§3.2) Fast classification (§3.3)
Avg. Min/Max Mem. Avg. Min/Max Mem.
1.0 s. 0.84-1.13 s. 4 Mb. 0.7 s. 0.61-0.84 s. 8 Mb.
0.9 0.82-1.00 2 0.8 0.72-0.87 8
3.0 2.44-2.98 19 2.4 1.91-2.91 46
3.3 2.99-3.68 13 2.8 2.43-3.23 61

Table 1: Rendering time and memory usage on an SGI Indigo workstation. Times are in seconds and include shading, resampling,
projection and warping. The fast classification times include rendering with a parallel projection. The "Mem." field is the total size of
the data structures used by each algorithm.

1500 -
d

"~'1000
I-
~g

" E

~- 500 -
E

Max: 1330 msec.
Min: 1039 msec.
Avg: 1166 msec.

0 I I I I
0 90 180 270 360

Rotation Angle (Degrees)

Figure 11 : Rendering time for a parallel projection of the head
data set as the viewing angle changes.

shows the time required for all three copies of the run-length
encoded volume to be computed from the unencoded volume and
the min-max octree once the user has settled on an opacity transfer
function.

The timings above are for grayscale renderings. Color ren-
derings take roughly twice as long for parallel projections and
1.3x longer for perspective because of the additional resampling
required for the two extra color channels. Figure 13 is a color
rendering of the head data set classified with semitransparent skin
which took 3.0 sec. to render. Figure 14 is a rendering of a
256x256x 110 voxel engine block, classified with semi-transparent
and opaque surfaces; it took 2.3 sec. to render. Figure 15 is a ren-
dering of a 256x256x159 CT scan of a human abdomen, rendered
in 2.2 sec. The blood vessels of the subject contain a radio-opaque
dye, and the data set was classified to reveal both the dye and bone
surfaces. Figure 16 is a perspective color rendering of the engine
data set which took 3.8 sec. to compute.

For comparison purposes we rendered the head data set with
a ray-caster that uses early ray termination and a pyramid to ex-
ploit object coherence [12]. Because of its lower computational
overhead the shear-warp algorithm is more than five times faster
for the 1283 data sets and more than ten times faster for the 2563
data sets. Our algorithm running on a workstation is competitive
with algorithms for massively parallel processors ([17], [19] and
others), although the parallel implementations do not rely on co-
herence optimizations and therefore their performance results are
not data dependent as ours are.

Our experiments show that the running time of the algorithms
in Sections 3.1-3.2 is proportional to the number of voxels which
are resampled and composited. This number is small either if a
significant fraction of the voxels are transparent or if the aver-
age voxel opacity is high. In the latter case the image quickly
becomes opaque and the remaining voxels are skipped. For the
data sets and classification functions we have tried roughly n 2
voxels are both non-transparent and visible, so we observe O(n 2)
performance as shown in Table 1: an eight-fold increase in the

~ P r e p r o c e s s Dataset

. t 77sec.____ Switc

I v°lume + l octree
• 2280 msec.

intermediateimage I
. ~ 0 msec.

New Classification- i~:3-.:3)

Switch
Modes

8.5 sec.
,I run-length I encoding I

980 msec.

intermediateimage I

e l 0 msec. ;

New viewpoint (§3.1)

Figure 12: Performance results for each stage of rendering the
brain data set with a parallel projection. The left side uses the
fast classification algorithm and the right side uses the parallel
projection algorithm.

number of voxels leads to only a four-fold increase in time for
the compositing stage and just under a four-fold increase in over-
all rendering time. For our rendering of the head data set 5% of
the voxels are non-transparent, and for the brain data set 11% of
the voxels are non-transparent. Degraded performance can be ex-
pected if a substantial fraction of the classified volume has low but
non-transparent opacity, but in our experience such classification
functions are less useful.

4.2 Image Quality
Figure 10 is a volume rendering of the same data set as in Figure 9,
but produced by a ray-caster using tfilinear interpolation [12]. The
two images are virtually identical.

Nevertheless, there are two potential quality problems associ-
ated with the shear-warp algorithm. First, the algorithm involves
two resampling steps: each slice is resampled during composit-
ing, and the intermediate image is resampled during the final warp.
Multiple resampling steps can potentially cause blurring and loss
of detail. However even in the high-detail regions of Figure 9 this
effect is not noticeable.

The second potential problem is that the shear-warp algorithm
uses a 2D rather than a 3D reconstruction filter to resample the
volume data. The bilinear filter used for resampling is a first-order
filter in the plane of a voxel slice, but it is a zero-order (nearest-
neighbor) filter in the direction orthogonal to the slice. Artifacts
are likely to appear if the opacity or color attributes of the volume
contain very high frequencies (although if the frequencies exceed
the Nyquist rate then perfect reconstruction is impossible).

456

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

Figure 17 shows a case where a trilinear interpolation filter
outperforms a bilinear filter. The left-most image is a rendering
by the shear-warp algorithm of a portion of the engine data set
which has been classified with extremely sharp ramps to produce
high frequencies in the volume's opacity. The viewing angle is
set to 45 degrees relative to the slices of the data set--the worst
case--and aliasing is apparent. For comparison, the middle image
is a rendering produced with a ray-caster using trilinear interpo-
lation and otherwise identical rendering parameters; here there is
virtually no aliasing. However, by using a smoother opacity trans-
fer function these reconstruction artifacts can be reduced. The
fight-most image is a rendering using the shear-warp algorithm
and a less-extreme opacity transfer function. Here the aliasing is
barely noticeable because the high frequencies in the scalar field
have effectively been low-pass filtered by the transfer function.
In practice, as long as the opacity transfer function is not a binary
classification the bilinear filter produces good results.

5 Conclusion

The shear-warp factorization allows us to implement coherence
optimizations for both the volume data and the image with low
computational overhead because both data structures can be tra-
versed simultaneously in scanline order. The algorithm is flexible
enough to accommodate a wide range of user-defined shading
models and can handle perspective projections. We have also
presented a variant of the algorithm that does not assume a fixed
opacity transfer function. The result is an algorithm which pro-
duces high-quality renderings of a 2563 volume in roughly one
second on a workstation with no specialized hardware.

We are currently extending our rendering algorithm to support
data sets containing both geometry and volume data. We have
also found that the shear-warp algorithms parallelize naturally for
MIMD shared-memory multiprocessors. We parallelized the re-
sampling and compositing steps by distributing scanlines of the
intermediate image to the processors. On a 16 processor SGI
Challenge multiprocessor the 256x256x223 voxel head data set
can be rendered at a sustained rate of 10 frames/sec.

Acknowledgements

We thank Pat Hanrahan, Sandy Napel and North Carolina Memo-
rial Hospital for the data sets, and Maneesh Agrawala, Mark
Horowitz, Jason Nieh, Dave Ofelt, and Jaswinder Pal Singh for
their help. This research was supported by Software Publish-
ing Corporation, ARPA/ONR under contract N00039-91-C-0138,
NSF under contract CCR-9157767 and the sponsoring companies
of the Stanford Center for Integrated Systems.

References

[1] Cameron, G. G. and P. E. Undrill. Rendering volumetric
medical image data on a SIMD-architecture computer. In
Proceedings of the Third Eurographics Workshop on Ren-
dering, 135-145, Bristol, UK, May 1992.

[2] Crow, Franklin C. Summed-area tables for texture map-
ping. Proceedings of SIGGRAPH '84. Computer Graphics,
18(3):207-212, July 1984.

[3] Danskin, John and Pat Hanrahan. Fast algorithms for volume
ray tracing. In 1992 Workshop on Volume Visualization, 91-
98, Boston, MA, October 1992.

[4] Drebin, Robert A., Loren Carpenter and Pat Hanrahan. Vol-
ume rendering. Proceedings of SIGGRAPH '88. Computer
Graphics, 22(4):65-74, August 1988.

[5] Glassner, Andrew S. Multidimensional sum tables. In
Graphics Gems, 376-381. Academic Press, New York, 1990.

[6] Glassner, Andrew S. Normal coding. In Graphics Gems,
257-264. Academic Press, New York, 1990.

[7] Hanrahan, Pat. Three-pass affine transforms for volume ren-
dering. Computer Graphics, 24(5):71-77, November 1990.

[8] Laur, David and Pat Hanrahan. Hierarchical splatting:
A progressive refinement algorithm for volume render-
ing. Proceedings of SIGGRAPH '91. Computer Graphics,
25(4):285-288, July 1991.

[9] Levoy, Marc. Display of surfaces from volume data. IEEE
Computer Graphics & Applications, 8(3):29-37, May 1988.

[10] Levoy, Marc. Volume rendering by adaptive refinement. The
Visual Computer, 6(1):2-7, February 1990.

[11] Levoy, Marc and Ross Whitaker. Gaze-directed volume ren-
dering. Computer Graphics, 24(2):217-223, March 1990.

[12] Levoy, Marc. Efficient ray tracing of volume data. ACM
Transactions on Graphics, 9(3):245-261, July 1990.

[13] Meagher, Donald J. Efficient synthetic image generation of
arbitrary 3-D objects. In Proceeding of the IEEE Confer-
ence on Pattern Recognition and Image Processing, 473-
478, 1982.

[14] Novins, Kevin L., Francois X. Sillion, and Donald P. Green-
berg. An efficient method for volume rendering using
perspective projection. Computer Graphics, 24(5):95-102,
November 1990.

[15] Porter, Thomas and Tom Duff. Compositing digital im-
ages. Proceedings of SIGGRAPH '84. Computer Graphics,
18(3):253-259, July 1984.

[16] Sakas, Georgios and Matthias Gerth. Sampling and anti-
aliasing of discrete 3-D volume density textures. In Proceed-
ings of Eurographics '91, 87-102, Vienna, Austria, Septem-
ber 1991.

[17] Schr~der, Peter and Gordon Stoll. Data parallel volume ren-
dering as line drawing. In Proceedings of the 1992 Workshop
on Volume Visualization, 25-32, Boston, October 1992.

[18] Subramanian, K. R. and Donald S. Fussell. Applying space
subdivision techniques to volume rendering. In Proceedings
of Visualization '90, 150-159, San Francisco, California, Oc-
tober 1990.

[19] V6zina, Guy, Peter A. Fletcher, and Philip K. Robertson.
Volume rendering on the MasPar MP-1. In 1992 Workshop
on Volume Visualization, 3-8, Boston, October 1992.

[20] Westover, Lee. Footprint evaluation for volume render-
ing. Proceedings of SIGGRAPH '90. Computer Graphics,
24(4):367-376, August 1990.

[21] Wilhelms, Jane and Allen Van Gelder. Octrees for faster
isosurface generation. Computer Graphics, 24(5):57-62,
November 1990.

[22] Yagel, Roni and Arie Kaufman. Template-based volume
viewing. In Eurographics 92, C-153-167, Cambridge, UK,
September 1992.

[23] Zuiderveld, Karel J., Anton H.J. Koning, and Max A.
Viergever. Acceleration of ray-casting using 3D distance
transforms. In Proceedings of Visualization in Biomedical
Computing 1992, 324-335, Chapel Hill, North Carolina, Oc-
tober 1992.

457

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

Figure 8: Volume rendering with a par-
allel projection of an MRI scan of a hu-
man brain using the shear-warp algo-
rithm (1.1 sec.).

Figure 9: Volume rendering with a par-
allel projection of a CT scan of a human
head oriented at 45 degrees relative to
the axes of the volume (1.2 sec.).

Figure 10: Volume rendering of the
same data set as in Figure 9 using a
ray-caster [12] for quality comparison
(13.8 sec.).

Figure 13: Volume rendering with a
parallel projection of the human head
data set classified with semitransparent
skin (3.0 sec.).

Figure 14: Volume rendering with a
parallel projection of an engine block
with semitransparent and opaque sur-
faces (2.3 sec.).

Figure 15: Volume rendering with a
parallel projection of a CT scan of a
human abdomen (2.2 sec.). The blood
vessels contain a radio-opaque dye.

Figure 16: Volume rendering with a perspective projection of the
engine data set (3.8 sec.).

(a) (b) (c)

Figure 17: Comparison of image quality with bilinear and trilinear
filters for a portion of the engine data set. The images have been
enlarged. (a) Bilinear filter with binary classification. (b) Trilinear
filter with binary classification. (c) Bilinear filter with smooth
classification.

458

