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Figurel: Our texture geneation procesgakesan exampletexture patc (left) anda randomnoise(middle)asinput, and modifieshis randomnoiseto male
it look like the givenexampletexture. Thesynthesizetexture (right) canbeof arbitrary size andis perceivedasverysimilar to the givenexample Usingour
algorithm, texturescanbe geneatedwithin secondsandthe synthesizedesultsare alwaystileable

Abstract

Texture synthesiss importantfor mary applicationsin computer
graphicsyision, andimageprocessingHowever, it remainsdiffi-

cult to designanalgorithmthatis bothefficientandcapableof gen-
eratinghigh quality results. In this paper we presentan efficient
algorithmfor realistictexture synthesis.The algorithmis easyto

useandrequiresonly a sampletexture asinput. It generatesex-

tureswith perceved quality equalto or betterthanthoseproduced
by previous techniqueshut runstwo ordersof magnitudefaster
This permitsusto applytexture synthesigo problemswhereit has
traditionally beenconsideredmpractical. In particular we have

appliedit to constrainedsynthesisfor imageeditingandtemporal
texturegenerationOur algorithmis derived from Markov Random
Field texture modelsand generatesexturesthrougha determinis-
tic searchingprocess. We acceleratehis synthesigprocesausing
tree-structuregtectorquantization.
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1 Introduction

Texture is a ubiquitousvisual experience. It candescribea wide

variety of surfacecharacteristicsuchasterrain, plants, minerals,
fur and skin. Sincereproducingthe visual realismof the physi-

calworld is a majorgoalfor computergraphics texturesarecom-

monly emplg/ed whenrenderingsyntheticimages.Thesetextures
canbe obtainedfrom a variety of sourcesuchashand-dran pic-

turesor scanneghotographsHand-dravn picturescanbe aesthet-
ically pleasing,but it is hardto make themphoto-realistic. Most

scannedmages,however, are of inadequatesize and canleadto

visible seamsr repetitionif they aredirectly usedfor texturemap-

ping.

Texture synthesigs an alternatve way to createtextures. Be-
causesynthetictextures can be madeary size, visual repetition
is avoided. Texture synthesiscanalsoproducetileableimagesby
properlyhandlingthe boundaryconditions. Potentialapplications
of texture synthesisare alsobroad; someexamplesareimagede-
noising,occlusionfill-in, andcompression.

The goal of texture synthesicanbe statedasfollows: Givena
texture sample,synthesizea new texture that, whenperceved by
ahumanobserer, appeardo be generatedby the sameunderlying
stochastigrocess.The major challengesre 1) modeling-how to
estimatethe stochastigorocessrom a given finite texture sample
and2) sampling-how to developanefficientsamplingprocedurdo
producenew texturesfrom a given model. Both the modelingand
samplingparts are essentiaffor the succesof texture synthesis:
the visual fidelity of generatedextureswill dependprimarily on



the accurag of the modeling,while the efficiengy of the sampling
procedurewill directly determinghe computationatostof texture
generation.

In this paper we presenta very simple algorithmthat can ef-
ficiently synthesizea wide variety of textures. The inputsconsist
of an exampletexture patchand a randomnoiseimagewith size
specifiedby the user(Figurel). The algorithmmodifiesthis ran-
domnoiseto maleit look like thegivenexample.Thistechniquas
flexible andeasyto use,sinceonly anexampletexture patch(usu-
ally aphotograph)s required.New texturescanbe generateavith
little computatiortime, andtheir tileability is guaranteedThe al-
gorithmis alsoeasyto implementithetwo majorcomponentsrea
multiresolutionpyramid anda simplesearchinglgorithm.

The key advantageof this algorithmarequality andspeed:the
quality of the synthesizedexturesareequalto or betterthanthose
generatedy previous techniquesyhile the computationspeeds
two ordersof magnitudeasterthanthoseapproachethatgenerate
comparablgesultsto our algorithm. This permitsusto apply our
algorithmin areaswheretexture synthesishastraditionally been
consideredoo expensve. In particular we have extendedhealgo-
rithm to constrainedgynthesigor imageeditingandmotiontexture
synthesis.

1.1 Previous Work

Numerousapproachehave beenproposedor texture analysisand
synthesisandan exhaustve suney is beyondthe scopeof this pa-
per We briefly review somerecentandrepresentate works and
referthereaderto [8] and[12] for morecompletesuneys.

Physical Simulation: It is possibleto synthesizecertainsur
facetexturesby directly simulatingtheir physicalgeneratiorpro-
cesses. Biological patternssuchas fur, scales,and skin canbe
modeledusingreactiondiffusion [26] and cellular texturing [27].
Someweatheringand mineralphenomenaan be faithfully repro-
ducedby detailedsimulations[5]. Thesetechniquesanproduce
texturesdirectly on 3D meshesso the texture mappingdistortion
problemis avoided. However, differenttexturesareusuallygener
atedby very different physicalprocesseso theseapproachesre
applicableto only limited classe®f textures.

Markov Random Field and Gibbs Sampling: Mary algo-
rithms modeltexturesby Markov RandomFields (or in a differ-
entmathematicatlorm, GibbsSampling) andgenerataexturesby
probabilitysampling[6, 28, 20, 18]. SinceMarkov RandomFields
have beenproven to be a good approximationfor a broadrange
of textures, thesealgorithmsare generaland someof them pro-
ducegoodresults.A dravbackof Markov Randontield sampling,
though,is thatit is computationallyexpensve: evensmalltexture
patchesantake hoursor daysto generate.

FeatureMatching: Somealgorithmsmodeltexturesasa setof
featuresandgeneratenen imagesby matchingthe featuresn an
exampletexture[9, 4, 22]. Thesealgorithmsare usuallymoreef-
ficientthanMarkov RandomField algorithms.HeegerandBemen
[9] modeltexturesby matchingmaginal histogramsf imagepyra-
mids. Their techniquesucceed®n highly stochastidexturesbut
fails on more structuredones. De Bonet[4] synthesizesiew im-
agesby randomizingan input texture samplewhile preservinghe
cross-scalaependenciesThis methodworks betterthan [9] on
structuredextures,but it canproduceboundaryartifactsif thein-
puttextureis nottileable.SimoncelliandPortilla[22] generateaex-
turesby matchingthejoint statisticsof the imagepyramids. Their
methodcansuccessfullycaptureglobaltextural structuresout fails
to presere local patterns.
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Figure2: Howtexturesdiffer fromimages. (a) is a geneal image while (b)
is a texture. A movablewindowwith two different positionsare drawn as
bladk squaesin (a) and (b), with the corresponding:ontentsshownbelow
Different regions of a texture are alwaysperceivedto be similar (b1,b2),
which is notthe casefor a geneal image (al,a2).In addition,ead pixelin
(b) is only relatedto a smallsetof neighboringpixels. Thesetwo charac-
teristicsare called stationarityandlocality, respectively

1.2 Overview

Ourgoalwasto developanalgorithmthatcombinegheadwantages
of previous approaches.We want it to be efficient, general,and
able to producehigh quality, tileabletextures. It shouldalso be
userfriendly; i.e., the numberof tunableinput parametershould
beminimal. This canbe achiered by a carefulselectionof the tex-
ture modelingand synthesigprocedure For the texture model,we
useMarkov RandomFields (MRF) sincethey have beenproven
to cover the widestvariety of usefultexture types. To avoid the
usualcomputationakxpenseof MRFs, we have developeda syn-
thesisproceduravhich avoidsexplicit probabilityconstructiorand
sampling.

Markov RandomField methodamodela texture asarealization
of a local andstationaryrandomprocess.Thatis, eachpixel of a
textureimageis characterizedby a small setof spatiallyneighbor
ing pixels, andthis characterizatioiis the samefor all pixels. The
intuition behindthis modelcanbe demonstratedy the following
experiment(Figure2). Imaginethatavieweris givenanimage,but
only allowed to obsere it througha small movable window. As
thewindow is moved the viewer canobsere differentpartsof the
image.Theimageis stationanyif, undera properwindow size,the
obserable portion always appearssimilar. The imageis local if
eachpixel is predictablefrom a smallsetof neighboringpixelsand
is independenof therestof theimage.

Basedon theselocality and stationarityassumptionsour algo-
rithm synthesizes new texture so thatit is locally similar to an
exampletexturepatch.The new textureis generategbixel by pixel,
and eachpixel is determinedso that local similarity is presered
betweerthe exampletexture andthe resultimage. This synthesis
procedureunlike mostMRF basedhlgorithmsjs completelydeter
ministic andno explicit probability distribution is constructed As
aresult,it is efficientandamenabléo furtheracceleration.

Theremaindeof thepaperis organizedasfollows. In Section2,
we presentthe algorithm. In Section3, we demonstratesynthe-
sisresultsandcomparethemwith thosegeneratedby previous ap-
proaches. In Section4, we proposeacceleratiortechniques. In
Sections5 and 6, we discussapplications]imitations,andexten-
sions.
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Figure 3: Singleresolutiontexture synthesis.(a) is the input texture and
(b)-(d) showdifferent synthesissteges of the outputimage. Pixelsin the
outputimage are assignedn a rasterscanordering Thevalue of eah

outputpixel p is determinedby comparingits spatial neighborhoodV (p)

with all neighborhoodsn the input texture. Theinput pixel with the most
similar neighborhoodwill be assignedo the correspondingoutput pixel.
Neighborhood<rossingthe outputimage boundaries(shownin (b) and
(d)) arehandledtoroidally, asdiscussedh Sectior2.4. Althoughthe output
image startsasa randomnoise only the last few rowsand columnsof the
noiseare actually used. For clarity, we presentthe unusednoisepixelsas
blac. (b) synthesizinghefirst pixel, (c) synthesizinghe middlepixel, (d)
synthesizinghelast pixel.

2 Algorithm

UsingMarkov RandonFieldsasthetexture model,the goalof the
synthesisalgorithmis to generatea new texture so that eachlo-

cal region of it is similar to anotherregion from the input texture.
We first describehow the algorithmworks in a singleresolution,
andthenwe extendit usinga multiresolutionpyramidto obtainim-

provementsin efficiengy. For easyreferencewe list the symbols
usedin Table1l andsummarizeéhealgorithmin Table2.

Symbol Meaning
I, Inputtexturesample
I Outputtextureimage
G Gaussiampyramidbuilt from I,
Gs Gaussiampyramidbuilt from I

i An inputpixelin I, or G,
P An outputpixel in I or G

N(p) Neighborhoodaroundthe pixel p
)

G(L Lthlevel of pyramid G
G(L,x,y) | Pixelatlevel L andposition(z,y) of G
{RxC,k} (2D) neighborhoodontainingk levels,
with sizeRxC atthetoplevel
{RxCxD,k} | 3D neighborhoodontainingk levels,

with sizeRxCxD atthetop level

Tablel: Tableof symbols

2.1 Single Resolution Synthesis

The algorithm startswith aninput texture samplel, anda white
randomnoisels. We forcetherandomnoise/; to look like I, by
transformingl; pixel by pixel in arasterscanordering,i.e. fromtop
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Figure4: Synthesisesultswith different neighborhoodsizes. Theneigh-
borhoodsizesare (a) 5x5, (b) 7x7,(c) 9x9, respectivelyAll imagesshown
areof size128x128 Notethatastheneighborhoodsizeincreasegheresult-
ing texture quality getsbetter However, thecomputatiorcostalsoincreases.
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Figure5: Causalityof the neighborhood(a) sampletexture (b) synthesis
resultusinga causalneighborhoodc) synthesigesultusinga noncausal
neighborhoodBoth (b) and(c) are geneatedfromthe samerandomnoise

usinga 9x9neighborhood As shown a noncausaheighborhoods unable

to geneatevalid results.

to bottomandleft to right. Figure3 shaws a graphicalillustration
of thesynthesigprocess.

To determinethe pixel value p at I, its spatialneighborhood
N(p) (the L-shapedregionsin Figure 3) is comparedagainstall
possibleneighborhoodsV(p;) from I,. The input pixel p; with
themostsimilar N (p; ) is assignedo p. We useasimple L norm
(sumof squarediifference)to measurehe similarity betweerthe
neighborhoodsThe goal of this synthesigprocesss to ensurethat
the newly assignecpixel p will maintainasmuchlocal similarity
betweenl, and Is; aspossible. The sameprocesss repeatedor
eachoutputpixel until all the pixelsaredeterminedThisis akinto
puttingtogethemjigsav puzzle:thepiecesaretheindividual pixels
andthefithessbetweernthesepiecess determinedy the colorsof
thesurroundingheighborhoogbixels.

2.2 Neighborhood

Becausehe setof local neighborhoodsV(p;) is usedasthe pri-
mary modelfor textures,the quality of the synthesizedesultswill
dependbn its sizeandshape.Intuitively, the size of the neighbor
hoodsshouldbe onthescaleof thelargestregulartexturestructure;
otherwisethis structuremay be lost andthe resultimagewill look
too random.Figure4 demonstratethe effect of the neighborhood
sizeonthe synthesigesults.

The shapeof the neighborhoodvill directly determinethe qual-
ity of I,. It mustbecausalj.e. theneighborhooaanonly contain
thosepixels precedingthe currentoutput pixel in the rasterscan
ordering. The reasonis to ensurethat eachoutput neighborhood
N(p) will includeonly alreadyassignedixels. For the first few
rows andcolumnsof I, N(p) maycontainunassignegnoise)pix-
elsbut asthealgorithmprogresseall theother N (p) will be com-
pletely “valid” (containingonly alreadyassignedixels). A non-
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Figure6: A causalmultiresolutionneighborhoodvith size {5x5,2. The
currentlevel of the pyramid is shownat left and the next lower resolution
levelis shownat right. Thecurrentoutputpixelp, markedasX, is locatedat
( ), whee isthecurrentlevel numberand( ) is its coodinate
At thislevel of the pyramid the image is only partially complete Thus,
wemustusethe precedingpixelsin therasterscanordering(markedasO).
Thepositionof the parent of the current pixel, locatedat ( - -),
is marled as Y. Sincethe parent’s level is completethe neighborhoodctan
containpixelsaroundY, markedby Q. Whensearhing for a matd for pixel
X, theneighborhoodrectoris constructedhatincludesthe O’s, Q’s,and,
in scanlineorder.

causalN (p), whichalwaysincludesunassignegixels,is unableto
transform/, to look like I, (Figure5). Thus,the noiseimageis
only usedwhengeneratinghe first few rows and columnsof the
outputimage.After this, it is ignored.

2.3 Multiresolution Synthesis

The singleresolutionalgorithm captureghe texture structureshy
usingadequatelsizedneighborhoodsHowever, for texturescon-

taining large scalestructuresnve have to uselarge neighborhoods,

andlargeneighborhoodslemandnorecomputationThis problem
canbe solved by usinga multiresolutionimagepyramid[3]; com-

putationis saved becauseve canrepresentarge scalestructures
morecompactlyby a few pixelsin a certainlower resolutionpyra-

mid level.

The multiresolution synthesisalgorithm proceedsas follows.
Two Gaussiarpyramids,G, and G, arefirst built from 7, and
I, respectiely. The algorithmthentransformsG, from lower to
higher resolutions,suchthat eachhigher resolutionlevel is con-
structedfrom the alreadysynthesizedower resolutionlevels. This
is similar to the sequencén which a pictureis painted:long and
thick stroles are placedfirst, and detailsare then added. Within
eachoutputpyramid level Gs(L), the pixels are synthesizedn a
way similar to the single resolutioncasewherethe pixels are as-
signedin a rasterscanordering. The only modificationis thatfor
themultiresoltioncase gachneighborhoodV (p) containgpixelsin
thecurrentresolutionaswell asthosein thelowerresolutionsThe
similarity betweertwo multiresolutionneighborhoods measured
by computingthe sumof the squaredlistanceof all pixels within
them.Thesdower resolutionpixelsconstrairthesynthesigprocess
sothattheaddedhigh frequeng detailswill be consistentvith the
alreadysynthesizedbw frequeng structures.

An exampleof a multiresolutionneighborhoods shavn in Fig-
ure6. It consistof two levels,with sizes5x5and3x3, respectiely.
Within a neighborhoodwe choosehe sizesof the lower levels so
thatthey areabouthalf the sizesof the previous higherresolution
levels. For clarity, we usethesymbol{ RxC,k} to indicatemultires-
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Figure7: Synthesisesultswith the sameneighborhoodbut differentnum-
bers of pyramid levels (a) 1 level, (b) 2 levels, (c) 3 levels. Exceptfor the
lowestresolution,which is synthesizedvith a 5x5 singleresolutionneigh-
borhood,eat pyramidlevelis synthesizedsingthe multiresolutionneigh-
borhoodshownin Figure 6. Note that as the numberof pyramid levels
increasestheimage qualityimproves.

olution neighborhoodsvhich containk levelswith sizeRxC atthe
toplevel.

Figure7 shavsresultsof multiresolutionsynthesisvith different
numbersof pyramid levels. Note that Figure7 (c), althoughsyn-
thesizedvith asmall{5x5,2} multiresolutionneighborhoodlooks
comparablevith Figure4 (c), which was generatedvith a larger
9x9singleresolutionneighborhoodThis demonstratea majorad-
vantageof multiresolutionsynthesis:moderatelysmall neighbor
hoodscanbeusedwithout sacrificingsynthesigjualities.

2.4 Edge Handling

Proper edge handling for N(p) near the image boundariesis
very important. For the synthesispyramid the edgeis treated
toroidally. In otherwords, if G.(L,z,y) denotesthe pixel at
level L and position (x, y) of pyramid Gs, then Gs(L, z, y)
Gs(L, x , Y N), where and N arethe num-
berof rows andcolumns,respectrely, of Gs(L). Handlingedges
toroidally is essentiato guaranteehat the resultingsynthetictex-
turewill tile seamlessly

FortheinputpyramidG,, toroidalneighborhoodsgypically con-
tain discontinuitieaunlessl, is tileable.A reasonabledgehandler
for G, is to padit with a reflectedcopy of itself. Anothersolu-
tion is to useonly thoseN (p;) completelyinsideG,, anddiscard
thosecrossingthe boundaries.Becausea reflectve edgehandler
may introducediscontinuitiesin the derivative, we adoptthe sec-
ondsolutionwhich usesonly interior blocks.

2.5 |Initialization

Naturaltexturesoften containrecognizablestructuresaswell asa
certainamountof randomnessSinceour goalis to reproducere-
alistictextures,it is essentiathatthe algorithmcapturetherandom
aspeciof the textures. This notion of randomnessansometimes
be achieved by entroy maximization[28], but the computational
costis prohibitive. Instead,we initialize the outputimagels asa
white randomnoise,and graduallymodify this noiseto look like
the input texture I,. This initialization step seedsthe algorithm
with sufiiciententropy, andletstherestof thesynthesigprocesgo-
cuson the transformatiorof I, towardsl,. To make this random
noisea betterinitial guessye alsoequalizethe pyramid histogram
of G with respecto G, [9].

1Themultiresolutionalgorithmis alsoessentiafor tileability if acausal
neighborhoods used.Sincea singleresolutioncausaheighborhoodV (p)
containonly pixelsabove p in scanlineorder theverticaltileability maynot
be enforced. A multiresolutionneighborhoodwhich containssymmetric
regionsatlower resolutionlevels, avoidsthis problem.



The initial noiseaffectsthe synthesigorocessn the following
way. For the singleresolutioncase neighborhoodi thefirst few
rows and columnsof I containnoisepixels. Thesenoisepixels
introduceuncertaintyin the neighborhoodnatchingprocesscaus-
ing the boundarypixels to be assignedsemi-stochasticallyHow-
ever, thesearchingrocesss still deterministic Therandomness
causedoy theinitial noise). The restof the noisepixels areover
writtendirectly duringsynthesisFor themultiresolutioncase how-
ever, moreof thenoisepixelscontrituteto thesynthesigprocessat
leastindirectly, sincethey determinetheinitial valueof the lowest
resolutionlevel of G.

2.6 Summary of Algorithm

We summarizehealgorithmin thefollowing pseudocode.

function I,  TextureSynthesid,, p )

1 I, Initialize( p );

2 G. BuildPyramid(,);

3 Gs  BuildPyramid(s);

4 foreach level L from lowerto higherresolutionsof G
5 loop throughall pixels (zs, ys) of Gs(L)

6 FindBestMatch@G,, Gs, L, x5, ys);
7 GS (La xsa yS) 1

8 I,  ReconPyramidfs);

9 return I;

function FindBestMatch(G,, Gs, L, x5, ys)

1 Ns;  BuildNeighborhood@s, L, x5, ys);

2 N, ° null; null;

3 loop throughall pixels (x4, y.) 0f Go(L)

4 N, BuildNeighborhood@., L, x4, y.);
5 if Match(V,, Ns)  Match(V, ° , Ns)

6 Na, s Na; Ga(L7 xa,ya);
7 return ;

Table2: Pseudocodef the Algorithm

The architectureof this algorithmis flexible; it is composed
from several orthogonalcomponentsWe list thesecomponentss
follows anddiscusghe correspondinglesignchoices.

Pyramid:  The pyramids are built from and reconstructedo

imagesusing the standardroutines BuildPyramid and Recon-

Pyramid. Various pyramids can be usedfor texture synthesis;
examplesare Gaussianpyramids [20], Laplacianpyramids [9],

steerablepyramids[9, 22], and feature-baseghyramids[4]. A

Gaussianpyramid, for example, is built by successie filtering

anddownsamplingoperationsand eachpyramid level, exceptfor

the highestresolution,is a blurred and decimatedversionof the
original image. Reconstructiorof Gaussianpyramidsis trivial,

sincetheimageis availableat the highestresolutionpyramidlevel.

Thesedifferentpyramidsgive differenttrade-ofs betweenspatial
and frequeng resolutions. In this paper we chooseto usethe
Gaussiarpyramidfor its simplicity andgreaterspatiallocalization
(adetaileddiscussiorof thisissuecanbefoundin [19]). However,

otherkinds of pyramidscanbe usedinstead.

Neighborhood: The neighborhoodccan have arbitrary size and
shapetheonly requirements thatit containsonly valid pixels. A
noncausal/symmetriceighborhoodfor example,canbe usedby
extendingthe original algorithmwith two passegSection5.1).

SynthesisOrdering: A rasterscanorderingis usedin line 5 of the
function TextureSynthesis. This, however, canalsobe extended.
For example,a spiral orderingcanbe usedfor constrainedexture

synthesigSection5.1). The synthesisorderingshouldcooperate
with the BuildNeighborhood so that the output neighborhoods
containonly valid pixels.

Searching: An exhaustve searchingprocedurg=indBestM atch
is emplo/ed to determinethe outputpixel values. Becausehis is
a standardprocessyariouspoint searchingalgorithmscanbe used
for accelerationThiswill bediscussedh detailin Sectior4.

3 Synthesis Results

To testthe effectivenessof our approachwe have run the algo-
rithm onmary differentimagesrom standardexturesets.Figure8
shavs examplesusingtheMIT VisTex set[16], whichcontaingeal
world texturesphotographedndematurallighting conditions.Ad-
ditional texture synthesigesultsare available on our projectweb-
site.

A visual comparisonof our approachwith several otheralgo-
rithmsis shawn in Figure9. Result(a) is generatedy Heegerand
Bemgens algorithm [9] using a steerablgoyramid with 6 orienta-
tions. The algorithmcapturesertainrandomaspect®f thetexture
but fails on the dominatinggrid-like structuresResult(b) is genef
atedby De Bonets approacti4] wherewe choosehis randomness
parameteto malke the resultlook best. Thoughcapableof cap-
turing more structuralpatternsthan (a), certainboundaryartifacts
arevisible. This is becauséis approachcharacterizesexturesby
lower frequeng pyramidlevelsonly; thereforethe lateralrelation-
shipbetweerpixelsatthesamdevel is lost. Result(c) is generated
by Efros and Leungs algorithm[6]. This techniqueis basedon
theMarkov RandonField modelandis capableof generatindiigh
quality textures. However, a direct applicationof their approach
canproducenon-tileableresults?

Result(d) is synthesizedising our approach.lt is tileableand
the image quality is comparablewith those synthesizeddirectly
from MRFs. It took about8 minutesto generataisinga 195MHz
R10000processor However, this is not the maximum possible
speedachiezable with this algorithm. In the next section,we de-
scribemodificationghatacceleratéhe algorithmgreatly

4 Acceleration

Our deterministicsynthesisprocedureavoids the usualcomputa-
tional requirementor samplingfrom a MRF. However, the algo-
rithm asdescribedcemploys exhaustve searchingwhich malesit
slow. Fortunatelyacceleratioris possible Thisis achieved by con-
sideringneighborhoodsV (p) aspointsin a multiple dimensional
spaceandcastingtheneighborhoodnatchingprocessasanearest-
pointsearchingroblem[17].

The nearest-poinsearchingoroblemin multiple dimensionss
statedasfollows: givenaset of pointsandanovel querypoint

ina -dimensionabkpacefind a pointin the setsuchthatits dis-
tancefrom s lessetthan,or equalto, thedistanceof fromary
otherpointin the set. Because large numberof suchqueriesmay
needto be conductecbver the samedataset , the computational
costcanbe reducedf we preprocess to createa datastructure
that allows fast nearest-pointjueries. Marny suchdatastructures
have beenproposedandwereferthereadetto [17] for amorecom-
pletereferenceHowever, mostof thesealgorithmsassumegeneric
inputsand do not attemptto take advantageof ary specialstruc-
turesthey may have. Popat[20] obseredthattheset of spatial
neighborhoodd$rom a texture can often be characterizedvell by

2Thoughnotstatedn theoriginal papef6], we have foundthatit is pos-
sibleto extendtheir approachusingmultiresolutionpyramidsandatoroidal
neighborhoodo male tileabletextures.
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Figure 8: Texture synthesigresults. The smallerpatcheg(size 128x128)are the input textures,andto their right are synthesizedesults
(size200x200).Eachtextureis generatedisinga 4-level Gaussiarpyramid, with neighborhoodizes{3x3,1}, {5x5,2}, {7x7,2}, {9x9,2},

respectrely, from lowerto higherresolutions VisTex textures:(a) Water0000(b) Misc 0000(c) Metal 0004(d) Fabric0015(e) Terrain0000
(f) Clouds0000(g) Tile 0007(h) Stone0002(i) Flowers0000(j) Leaves0009.
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Figure9: A comparisonof texture synthesigesultsusingdifferent algorithms: (a) Heager and Bergen's method[9] (b) De Bonets method[4] (c) Efros
and Leungs method6] (d) Our method.Only Efrosand Leungs algorithm producesesultscompaable with ours. However, our algorithmis two orders of
magnitudefasterthantheirs (Sectiond). Thesampletexture patc hassize64x64,andall theresultimagesare of size192x192.A 9x9neighborhoods used
for (c), and(d) is synthesizedsingthe sameparametes asindicatedin the captionof Figure 8.

a clusteringprobability model. Taking adwantageof this cluster
ing property we proposeo usetree-structuredectorquantization
(TSVQ,[7]) asthesearchinglgorithm[25].

4.1 TSVQ Acceleration

Tree-structureslectorquantizatio(TSVQ)is acommontechnique
for datacompressionlt takesa setof trainingvectorsasinput,and
generates binary-tree-structuredodebook. The first stepis to
computethe centroidof the setof training vectorsanduseit asthe
root level codevord. To find the childrenof this root, the centroid
anda perturbedcentroidare chosenasinitial child codevords. A
generalized.loyd algorithm[7], consistingof alternationdetween
centroidcomputatiorandnearestentroidpartition,is thenusedto
find thelocally optimal codevordsfor thetwo children. Thetrain-
ing vectorsaredivided into two groupsbasedon thesecodavords
andthe algorithmrecurseson eachof the subtrees.This process
terminatesvhenthe numberof codevords exceedsa pre-selected
sizeor the averagecodingerroris belov a certainthreshold. The
final codebooks the collectionof theleaflevel codevords.
Thetreegeneratedhy TSVQ canbe usedasa datastructurefor
efficient nearest-pointjueries.To find the nearespoint of a given
queryvector thetreeis traversedrom therootin abest-firstorder
ing by comparinghequeryvectorwith thetwo childrencodevords,
andthenfollows theonethathasaclosercodavord. Thisprocesss
repeatedor eachvisitednodeuntil aleafnodeis reachedThebest
codevordis thenreturnedasthecodavord of thatleafnode.Unlike
full searchingtheresultcodevord maynotbetheoptimalonesince
only partof thetreeis traversed.However, the resultcodevord is
usuallycloseto the optimal solution,andthe computationis more
efficientthanfull searchinglf thetreeis reasonablyalancedthis
canbe enforcedin the algorithm), a single searchwith codebook
size  canbeachieedin time ( ), whichis muchfaster
thanexhaustve searchingvith lineartime complexity ().

To useTSVQ in our synthesisalgorithm,we simply collectthe
set of neighborhoodpixels N(p;) for eachinput pixel and treat
themasa vector of size equalto the numberof pixelsin N(p;).
We use thesevectors {N(p;)} from eachG,(L) as the train-
ing data,andgeneratehe correspondingdree structurecodebooks

(L). Duringthesynthesiprocessthe(approximateflosespoint
for eachN (p) at G(L) is found by doing a best-firstiraversalof

(L). Becausehis treetraversalhastime compleity (N )
(whereN is thenumberof pixelsof G, (L)), thesynthesigroce-
durecanbeexecutedvery efficiently. Typicaltexturestake seconds
to generatetheexacttiming depend®ntheinputandoutputimage
sizes.

(a)D103

(b) D11

Exhaustve TSVQ

Figure 10: Acceleated synthesisising TSVQ.The original Brodatztex-
tures,with size128x128 are shownin the left column. Theresultsgener
atedby exhaustiveseaching and TSVQare shownin the middleand right
columnsrespectively All geneatedimages are of size200x200. Theav-
erage running time for exhaustivesearhing is 360 seconds.The avelage
training time for TSVQis 22 secondsind the average synthesigimeis 7.5
seconds.

4.2 Acceleration Results

An example comparingthe results of exhaustve searchingand
TSVQis shavn in Figurel0. Theoriginalimagesizesare128x128
andthe resultingimagesizesare 200x200. The averagerunning
time for exhaustve searchings 360 seconds.The averagetrain-
ing time for TSVQis 22 secondsaindthe averagesynthesigime is
7.5seconds.Thecodeis implementedn C++ andthetimingsare
measure®n a195MHzR10000processorAs shavn in Figurel10,
resultsgenerateavith TSVQ acceleratiorareroughly comparable
in quality to thosegeneratedrom the unacceleratedpproach.in
somecases,TSVQ will generatanoreblurry images. We fix this
by allowing limited backtrackingn the treetraversalsothatmore
thanoneleaf nodecanbevisited. Theamountof backtrackingcan
beusedasa parametewhich tradesoff betweerimagequality and
computatiortime. Whenthe numberof visited leaf nodesis equal
to the codebooksize,the resultwill be the sameasthe exhaustve
searchingase.

Onedisadwantageof TSVQ accelerations the memoryrequire-
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Figure1l: TSVQacceleation with differentcodeboolsizes.Theoriginal
image sizeis 64x64and all thesesynthesizedesultsare of size128x128.
Thenumberof codevordsin eac caseare (a) 64 (b) 512(c) 4096(all).

Algorithm TrainingTime | SynthesisTime

EfrosandLeung none 1941seconds
Exhaustve Searching none 503seconds
TSVQ acceleration 12 seconds 12 seconds

Table3: A breakdowrof runningtime for the textures shownin Figure 9.
Thefirst row showsthetiming of Efrosand Leungs algorithm. Thesecond
andthird rowsshowthetiming of our algorithm,usingexhaustivesearching
and TSVQacceleation, respectivelyAll the timingswere measued using
a195MHz R10000processar

ment.Becaus@ninputpixel canappeain multiple neighborhoods,
afull-sizedTSVQtreecanconsume ( N) memorywhere is
the neighborhoodizeand V is the numberof inputimagepixels.
Fortunatelytexturesusuallycontainrepeatingstructurestherefore
we canusecodebookswith fewer codavordsthanthe input train-
ing set.Figurell shavstexturesgeneratedy TSVQwith different
codeboolksizes.As expectedthe imagequality improveswhenthe
codebooksize increases.However, resultsgeneratedvith fewer
codavordssuchas(b) look plausiblecomparedvith thefull code-
bookresult(c). In our experiencewe canusecodebookdessthan
10 percentthe size of the original training datawithout noticeable
degradationof quality of the synthesisresults. To further reduce
theexpenseof training,we canalsotrainon a subsetatherthanthe
entirecollectionof inputneighborhoodectors.

Table 3 shaws a timing breakdavn for generatinghe textures
shavn in Figure9. Ourunacceleratedlgorithmtook 503 seconds.
TheTSVQ acceleratedlgorithmtook 12 seconddor training,and
anotherl2 secondgor synthesis. In comparisonEfros and Le-
ung’s algorithm[6] took half anhourto generatehe sametexture
(the time compleity of our approachover Efros and Leungs is

( N) (N) whereN is the numberof inputimagepixels).
Becausetheir algorithm usesa variable sized neighborhoodt is
difficult to accelerate.Our algorithm, on the other hand, usesa
fixed neighborhoodand can be directly acceleratedy ary point
searchin@lgorithm.

5 Applications

Oneof the chief advantagef our texture synthesignethodis its
low computationalkcost. This permitsus to explore a variety of
applicationsjn additionto the usualtexture mappingfor graphics,
that were previously impractical. Presentedhereare constrained
synthesidor imageeditingandtemporaltexture generation.

5.1 Constrained Texture Synthesis

Photographsfilms and imagesoften containregions that are in
somesensedlawed. A flaw canbeascrambledegiononascanned
photograph scratcheson an old film, wires or propsin a movie

(@) (b)

(©) (d)

Figure12: Constainedtexture synthesis(a) a texture containinga black
region that needsto befilled in. (b) multiresolutionblending[3] with an-
othertextureregionwill produceboundaryartifacts. (c) Adirectapplication
ofthealgorithmin Sectior2 will producevisiblediscontinuitiesat theright
andbottomboundaries(d) A mud betterresultcanbe geneatedby using
amodificationof thealgorithmwith 2 passes.

film frame,or simply anundesirablebjectin animage. Sincethe

processesausingtheseflaws are oftenirreversible,an algorithm
thatcanfix theseflaws is desirable.For example,Hirani and Tot-

suka[10] developedaninteractve algorithmthatfindstranslation-
ally similar regionsfor noiseremoval. Often,the flawed portionis

containedwithin a region of texture, andcanbe replacedby con-

strainedtexture synthesig6, 11].

Texture replacemenby constrainedsynthesismust satisfy two
requirementsthe synthesizedegion mustlook like the surround-
ing texture,andtheboundanbetweerthenewv andold regionsmust
beinvisible. Multiresolutionblending[3] with anothersimilar tex-
ture, shawvn in Figure 12 (b), will producevisible boundariesor
structuredextures. Betterresultscanbe obtainedby applyingour
algorithmin Section2 over the flawed regions, but discontinuities
still appearat the right and bottom boundariesas shavn in Fig-
ure 12 (c). Theseartifactsare causedy the causalneighborhood
aswell astherasterscansynthesiordering.

To remove theseboundaryartifacts a noncausal(symmetric)
neighborhoodnustbeused.However, we have to modify theorig-
inal algorithm so that only valid (alreadysynthesizedpixels are
containedwithin the symmetricneighborhoodsptherwisethe al-
gorithmwill notgeneratevalid results(Figure5). Thiscanbedone
with atwo-passxtensionof theoriginalalgorithm.Eachpasss the
sameasthe original multiresolutionprocessexceptthata different
neighborhoods used.During thefirst passtheneighborhoodon-
tainsonly pixelsfrom thelowerresolutionpyramidlevels. Because
the synthesigrogressei a lower to higherresolutionfashion,a
symmetricneighborhoodtan be usedwithout introducinginvalid
pixels. This passusesthe lower resolutioninformationto “extrap-
olate” the higherresolutionregionsthatneedto bereplacedIn the



Original Result

Figurel3: Image extrapolationof Brodatztexture D36. Theoriginal image
is onthe left and the synthesizedesultis on theright. Theblad regionis
filled in sothatit looksconsistentvith therestof theimage.

secondpass,a symmetricneighborhoodhat containspixels from
both the currentandlower resolutionsis used. Thesetwo passes
alternatefor eachlevel of the outputpyramid. In the accelerated
algorithm, the analysisphaseis also modified so thattwo TSVQ
treescorrespondingo thesetwo kinds of neighborhoodsire built
for eachlevel of the input pyramid. Finally, we also modify the
synthesiorderingin thefollowing way: insteadof theusualraster
scanordering, pixels in the filled regions are assignedn a spiral
fashion. For example,the hole in Figure 12 (a) is replacedfrom
outsideto inside from the surroundingregion until every pixel is
assignedFigure 12 (d)). This spiral synthesisorderingremoves
the directionalbiaswhich causeghe boundarydiscontinuitiegas
in Figure12(c)).

With aslightchangeof the synthesiordering thealgorithmcan
be appliedto otherapplications,suchasthe imageextrapolation
shavn in Figure13. The algorithm could alsobe extendedasan
interactve tool for imageeditingor denoising/15].

5.2 Temporal Texture Synthesis

The low costof our acceleratealgorithmenablesus to consider
synthesizingexturesof dimensiongreaterthantwo. An example
of 3D textureis atemporaltexture. Temporaltexturesaremotions
with indeterminatextentbothin spaceandtime. They candescribe
awide variety of naturalphenomenauchasfire, smole, andfluid
motions. Sincerealisticmotion synthesiss oneof the majorgoals
of computegraphicsatechniquahatcansynthesizéemporalex-
tureswould be useful. Most existing algorithmsmodeltemporal
texturesby directsimulation;examplesincludefluid, gas,andfire
[23]. Direct simulations,however, are often expensve and only
suitablefor specifickinds of textures;thereforean algorithmthat
canmodelgeneramotiontextureswould be advantageouf?4].
Temporatexturesconsistof 3D spatial-temporatolumeof mo-
tion data. If the motion datais local andstationarybothin space
andtime, the texture canbe synthesizedy a 3D extensionof our
algorithm. This extensioncanbe simply doneby replacingvarious
2D entitiesin theoriginalalgorithm,suchasimagespyramids,and
neighborhoodswith their 3D counterparts.For example,the two
Gaussiarpyramidsare constructedy filtering anddowvnsampling
from 3D volumetricdata;theneighborhoodsontainlocal pixelsin
boththe spatialandtemporaldimension.The synthesiprogresses
from lower to higher resolutions,and within eachresolutionthe
outputis synthesizedlice by slicealongthetime domain.
Figurel4shavs synthesisesultsof severaltypicaltemporakex-
tures: fire, smole, and oceanwaves (animationsavailable on our
webpage)Theresultingsequencesapturetheflavor of theoriginal
motions,andtile both spatiallyandtemporally This techniqueis
alsoefficient. Acceleratedby TSVQ, eachresultframetook about

20 secondso synthesize.Currentlyall the texturesare generated
automatically;we plan to extendthe algorithmto allow more ex-
plicit usercontrols(suchasthedistribution andintensityof thefire
andsmole).

6 Conclusions and Future Work

Texturesare importantfor a wide variety of applicationsin com-
putergraphicsandimageprocessing.On the otherhand,they are
hardto synthesize.The goal of this paperis to provide a practi-
cal tool for efficiently synthesizinga broadrangeof textures. In-
spiredby Markov Randon¥ield methodspuralgorithmis general:
a wide variety of texturescanbe synthesizedwithout ary knowl-
edgeof their physicalformationprocessesThe algorithmis also
efficient: by aproperacceleratiousingTSVQ, typicaltexturescan
be generateavithin second®n currentPCsandworkstations.The
algorithmis alsoeasyto use: only an exampletexture patchis re-
quired.

Thebasicversionof our algorithm(Section2) relatesto anear
lier work by Popatand Picard[20] in thata causalneighborhood
andrasterscanorderingare usedfor texture synthesis.However,
insteadof constructingexplicit probability models,our algorithm
usesdeterministicsearching.This approachshareshe simplicity
of EfrosandLeung[6], but usedix-sizedneighborhoodsvhich al-
low TSVQaccelerationThefactthatsuchasimpleapproachworks
well on mary differenttexturesimpliesthattheremay be compu-
tationalredundanciesn other texture synthesistechniques.This
algorithmsharessomeof the samdimitationsasMarkov Random
Field approachesin particular only local andstationaryphenom-
enacanberepresentedOthervisualcuessuchas3D shapedepth,
lighting, or reflectioncannot be capturedy this simplemodel.

Aside from constrainedsynthesisand temporal textures, nu-
merousapplicationsof our approacteare possible.Otherpotential
applications/gtensionsare:

Multidimensional texture: The notion of texture extendsnatu-
rally to multi-dimensionatiata.Oneexamplewaspresentedh this

paper- motionsequenceslhe sametechniquecanalsobe directly

appliedto solid texturesor animatedsolid texture synthesis. We

are alsotrying to extend our algorithmfor generatingstructured
solid texturesfrom 2D views [9].

Texture compression/decompression:  Texturesusually contain
repeatingpatternsandhigh frequeng information; thereforethey

are not well compressedby transform-basedechniquessuch
as JPEG. However, codebook-basedcompressiontechniques
work well on textures[1]. This suggestghat texturesmight be

compressabldy our synthesistechnique. Compressiornwould

consistof building a codebook,but unlike [1], no codeindices
would be generatedpnly the codebookwould be transmittedand

the compressiorratio is controlledby the numberof codavords.

Decompressiomvould consistof texture synthesis. This decom-
pressiorstep,if accelerate@nemoreorderof magnitudeover our

current software implementation,could be usablefor real time

texture mapping. The advantageof this approachover[1] is much

greatercompressionsinceonly thecodebookis transmitted.

Motion synthesigediting: Some motions can be efficiently
modeledas spatial-temporatextures. Others,suchas animal or
humanmotion,aretoo highly structuredor suchadirectapproach.
However, it might be possibleto encodetheir motion as joint
angles,and then apply texture analysis-synthesit the resulting
1D temporalmotionsignals.

Modeling geometric details: Models scannedrom real world
objects often contain texture-like geometricdetails, making the
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Figure14: Tempoal texture synthesisesults.(a) fire (b) smole (c) oceanwaves.In ead pair of images, the spatial-tempaal volumeof the original motion
sequencés shownon theleft, andthe correspondingsynthesisesultis shownon theright. A 3-level Gaussiarpyramid, with neighborhoodsizes{5x5x5,2,
{3x3x3,23, {1x1x1,3}, are usedfor synthesisTheoriginal motionsequencesontain32 frames,and the synthesisesultscontain64 frames.Theindividual
framesizesare (a) 128x128b) 150x112(c) 150x112 Acceleatedby TSVQ thetraining timesare (a) 1875(b) 2155(c) 2131secondsndthe synthesisimes
per frameare (a) 19.78(b) 18.78(c) 20.08seconds.To savememorywe useonly a random10 percentof the input neighborhoodrectos to build the (full)

codebooks.

modelsexpensve to store transmitor manipulate Thesegeometric
detailscanbe representeds displacemenmapsover a smoother
surface representatior[13]. The resulting displacementmaps
shouldbe compressable/decompressa@$e?D texturesusingour

technique. Taking this idea further, missinggeometricdetails,a

commonproblemin mary scanningsituationg14], couldbefilled

in usingour constrainedexture synthesigechnique.

Direct synthesis over meshes. Mappingtexturesontoirregular
3D meshedy projectionoften causedlistortions[21]. Thesedis-
tortionscansometimedefixedby establishinguitableparameter
izationof themesh but amoredirectapproactwould beto synthe-
sizethetexturedirectly overthemesh.In principle,thiscanbedone
usingour technique However, thiswill requireextendingordinary
signalprocessingperationsuchasfiltering anddowvnsamplingto
irregular3D meshes.
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