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Figure 1: A scene consisting of 15 rows of soldiers rendered at 1080p without motion blur (top) and with 1300 pixels of motion blur (bottom).
The visualiations depict the number of shaded micropolygon vertices per pixel (shown at the beginning of the frame) when performing occlusion
culling with the tz-pyramid (middle) and a traditional z-pyramid (right). Rendering with a traditional z-pyramid for occlusion culling shades
4.1x as many micropolygons than are visible. The tz-pyramid culls scene geometry more effectively, shading only 1.2x as many vertices than

are visible, a 3.5x improvement.

Abstract

Occlusion culling using a traditional hierarchical depth buffer, or z-pyramid, is less effective when rendering with
motion blur. We present a new data structure, the tz-pyramid, that extends the traditional z-pyramid to represent
scene depth values in time. This temporal information improves culling efficacy when rendering with motion blur.
The tz-pyramid allows occlusion culling to adapt to the amount of scene motion, providing a balance of high
efficacy with large motion and low cost in terms of depth comparisons when motion is small. Compared to a
traditional z-pyramid, using the tz-pyramid for occlusion culling reduces the number of micropolygons shaded by
up to 3.5x. In addition to better culling, the tz-pyramid reduces the number of depth comparisons by up to 1.4x.

1. Introduction

Motion blur is an important effect for cinematic-quality ren-
dering and is present in almost all computer generated films.
Lately, there has been increasing interest in adding mo-
tion blur to real-time rendering systems. While the prob-
lem of rasterizing moving objects has received some atten-
tion [CCC87, AMMHO7, FLB*09], the related problem of
occlusion culling for moving objects has not.

A simple way to cull moving objects with an existing static
occlusion-culling algorithm is to test an object for occlusion
using a conservative bound over the object’s range of mo-
tion. Unfortunately, under large motion, this bound is overly
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conservative, diminishing the effectiveness of culling. Fig-
ure 1 shows a scene rendered with increasing amounts of
motion. With a large amount of motion (Figure 1-bottom),
the renderer shades 4.1x more micropolygon vertices than
are ultimately visible. Work is wasted both to generate these
vertices and process them in subsequent pipeline stages,
such as shading and rasterization.

The goal of occlusion culling is to discard occluded portions
of objects as early as possible in the rendering pipeline to
improve overall performance. To do so, this paper extends
the image-space z-pyramid of Greene et al. [GKM93] to sup-
port effective culling of motion blurred objects. In particular,
we present a new data structure that aggregates image-space
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depth values hierarchically in both space and time: the tz-
pyramid. The tz-pyramid is much more effective than a tra-
ditional z-pyramid when rendering scenes with motion blur.
For the scene in Figure 1-bottom, occlusion culling with
the tz-pyramid reduces the number of shaded micropolygon
vertices by more than 3.5x compared to culling with a tra-
ditional z-pyramid. While providing better culling, the tz-
pyramid also reduces the number of depth comparisons by
1.4x.

2. Background and Related Work
2.1. Occlusion Culling Using the Z-Pyramid

In z-buffer based renderers, an object is occluded if its depth
is farther than the contents of the z-buffer at all visibility
sample locations it overlaps. Instead of checking each value
individually, occlusion tests are often accelerated by using
a hierarchical z-buffer, or z-pyramid [SS89, GKM93]. A z-
pyramid is a quad-tree where each node stores the maximum
depth value (i.e. the farthest value) for a spatial region of the
screen. The leaf level of the z-pyramid is the multi-sample z-
buffer. The root level is a single value equal to the maximum
depth in the multi-sample z-buffer. When the z-buffer is up-
dated, the z-pyramid is also updated in a bottom-up fashion.

To determine if an object is occluded, the z-pyramid is tested
recursively. For a given node in the z-pyramid, the object’s
minimum depth over that spatial region is compared against
the value stored in that node. If the node’s z-value is closer
than the object’s minimum depth, the object is occluded in
that region of the screen. If the object is closer than the value
in the z-pyramid, the object may be visible. In this case, the
four children of the node are tested recursively. The object
is occluded (and may be culled) only if all four children de-
termine the object is occluded in their respective screen re-
gions. If the test reaches the leaves of the z-pyramid, the
recursion terminates and either returns true (the object is oc-
cluded) or false (the object may not be occluded).

For an occlusion test, the z-pyramid returns true only when
a test against all overlapped leaves would return true as well.
However, by pre-aggregating maximum depth information
for large regions of the screen, the z-pyramid requires only a
few depth comparisons (against values in higher tree levels)
to quickly cull large objects. Therefore, the z-pyramid is an
acceleration structure used to avoid checking object depth
against all overlapped leaf cells. As an optimization to avoid
visiting many tree levels, it is common to begin traversal of
the z-pyramid at the level where the spatial extent of nodes
is roughly the size of the object [GKM93].

To support occlusion culling, a rendering system must be
able to compute the screen regions covered by an object,
as well as the object’s depth in these regions. For compli-
cated objects, this information may be difficult to compute
exactly without performing the expensive work occlusion
culling seeks to avoid. Instead, conservative bounds are used
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Figure 2: A simplified REYES pipeline. Base patches are
provided as input to Split which recursively generates sub-
patches. When a splitting threshold is reached, patches are
sent to Dice producing an output grid of micropolygons. The
grid is then shaded and rasterized.

for occlusion tests. When the conservative bounds are tight,
occlusion culling is more effective.

2.2. REYES Occlusion Culling

This paper focuses on occlusion culling in the context
of a simplified REYES-style [CCC87] pipeline shown in
Figure 2. This pipeline adaptively subdivides application-
provided input primitives into many small sub-primitives
(Split), then tessellates the sub-primitives into meshes of
micropolygons called grids. Programmable displacement
(Dice) and surface shading (Shade) occur at each grid vertex
prior to stochastic rasterization (Rast). Our implementation
uses a z-buffer to resolve visibility of rasterized fragments.

Occlusion culling may be used at three major places in our
simplified REYES pipeline: during Split, just before Dice,
and just before Shade (see Figure 2). Each pipeline location
has a different cost and benefit associated with performing
occlusion culling. Culling during the splitting process has
the maximum benefit, but uses coarse bounds that incorpo-
rate displacement expansion and the control cage of Bézier
patches. Culling prior to dicing (like [HMAMO9]) has tighter
bounds, but incurs the cost of splitting all primitives into
diceable subpatches. Culling before shading has the tightest
bounds (taken from the final geometric positions), but must
generate the micropolygons for the entire scene.

Unfortunately, there is very little literature related to oc-
clusion culling for REYES-based systems. The original
REYES description did not explicitly include occlusion
culling [CCC87]. More recent versions of Pixar’s Render-
Man [AGOO] have some form of hierarchical occlusion
culling, but it is unclear if it leverages temporal resolution
to effectively cull moving objects or not.

The Gelato system [WGEROS] rasterizes diced grids before
shading to determine if they should be shaded. If the grid
is visible (i.e. it is unoccluded for at least one time or lens
sample), it is shaded and then rasterized again. This is an
expensive, but effective way to reduce shading work. As
mentioned previously, however, culling at this point does
not avoid the cost of generating the micropolygons for the
full scene. While not focused on micropolygon rendering,
Akenine-Moller et al. [AMMHO7] proposed, but did not
implement, a simple occlusion-culling scheme that would
maintain multiple z-pyramids, one for each time sample. We
will later refer to this approach as tz-slice.

(© The Eurographics Association 2010.



Boulos et al. / Space-Time Hierarchical Occlusion Culling for Micropolygon Rendering with Motion Blur

t
t
L
L
L) S
i |
solid occluder
(region covered by green object for entire frame)

X
Figure 3: A simple occlusion scenario with two objects
both moving left to right during a frame. The occludee (blue)
is behind the occluder (green) for each instant in time, but
would not be culled by a traditional z-pyramid. A traditional
z-pyramid only discerns occlusion when the occludee is al-
ways behind the region we refer to as the solid occluder.

2.3. GPU Occlusion Culling

In modern GPUs, the traditional z-pyramid has been adapted
for efficient, fixed-function occlusion culling [Mor00,
AMHHOS] (referred to as HiZ by ATI and ZCULL by
NVIDIA [NVI08]). Occlusion culling in GPUs aims to re-
duce both rasterization cost and the depth buffer compar-
isons that occur as part of “early-z”. Before quad-fragments
are shaded, the covered depth values are compared against
the multi-sample depth buffer. If all the covered depth values
of a quad-fragment are farther than the values in the depth
buffer, the quad-fragment is discarded removing unneces-
sary shading work. This test is referred to as early-z because
it occurs prior to shading and frame-buffer blending.

The original z-pyramid focused only on determining “is oc-
cluded”. To avoid performing depth comparisons when an
object is definitely visible, an additional z,,;, pyramid may
be maintained to determine “is not occluded” [SS89, Gre95,
AMSO03]. The fast z-clear mechanism in HyperZ [Mor(00]
also has this benefit for the first layer of polygons drawn
(knowing that a depth tile is clear is equivalent to knowing
that its closest z value is Znear).

High-performance implementations also compress the
multi-sample depth buffer and z-pyramid to reduce the cost
of reading the structures (see [HAMOG6] for both a survey of
patents and a contributed compression scheme in this area).
Removing several layers of the z-pyramid is also common
practice (e.g. treating 2x2 pixel tiles as leaves, and only stor-
ing up to 8x8 pixel tiles as the coarsest level [Mor00]).

3. Occlusion Culling with Motion Blur
3.1. Problem Framing

Figure 3 illustrates a simple scenario involving a large oc-
cluder (in green) and a small occludee (in blue). The spatial
extent of the two objects at four frame sample times is shown
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Figure 4: A traditional z-pyramid (left) has a single z-max
value per node while the tz-pyramid (right) has a tree of z-
max values per node. Each value in the tz-pyramid repre-
sents the maximum z-value in a region of the depth buffer for
a span of frame time.

in the x-t space-time diagram. Both objects are moving from
left to right. The blue object is fully occluded at all times and
is not visible in the rendered image.

The green object covers a small region of the image for the
entire frame. This highlighted region, which we refer to as
the solid occluder, is the intersection of the green object’s
spatial extent at all times. The size of the solid occluder is
the size of the object minus the amount of motion. When an
object moves by an amount greater than its size in a single
frame, no pixels are fully covered by that object (this makes
motion blur similar to transparency, inspiring the term solid
occluder). After the green object has been rendered, only
non-leaf nodes of the z-pyramid that lie within the solid oc-
cluder contain zyqx values closer than the far plane.

As stated earlier, a simple way to conservatively determine if
the blue object is occluded is to bound its spatial extent and
depth over the entire frame, and to test this bound against the
z-pyramid. This test will classify the blue object as occluded
only if its bound lies within the solid occluder for the entire
frame. Given the motion of objects in Figure 3, this test will
fail and the blue object will not be culled. Intuitively, this
use of the z-pyramid for moving objects compares the union
of an occludee’s positions in a frame to the intersection of
the occluder’s positions. When objects are moving quickly,
these loose bounds make culling much less effective.

Clearly, we would like to tighten bounds by performing oc-
clusion checks over narrower windows of time. For example,
the solid occluder of the green object does occlude a conser-
vative bound of the blue object for the time interval [t,#;]
(the blue object is still not occluded between [ty,#3]). The
simplest way to introduce temporal information into occlu-
sion culling is to have an array of N z-pyramids, where N
is the number of unique times (for interleaved sampling) or
time strata (for stratified sampling) used in visibility sam-
pling. To perform an occlusion check, each z-pyramid is
checked in sequence for occlusion using a tight bound for
the occludee at each time (or time interval). We refer to this
approach as “slicing” time or tz-slice [AMMHO7]. Although
it provides effective culling, tz-slice requires up to N times
as many depth comparisons as the traditional z-pyramid.
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When the occluder or the occludee is stationary, temporal
resolution provides no occlusion-culling benefit. If the oc-
cluder is static, the solid occluder is equivalent to the oc-
cluder itself. Similarly, if the occludee is static, testing for
occlusion at individual time samples is unnecessary as the
object must be occluded for every time sample to be oc-
cluded. There is a need for occlusion-culling mechanisms
to adapt to the motion of scene objects, only paying the cost
of extra depth comparisons when high motion is present.

3.2. The tz-pyramid

We extend the traditional z-pyramid to store a hierarchy of
Zmax values at each node (Figure 4). Nodes in this hierarchy
represent the maximum depth value for the corresponding
region of space, for different spans of time. We refer to this
data structure as a time-dependent z-pyramid or tz-pyramid.

The leaf nodes of the time pyramid store zjuqx values for nar-
row spans of time (e.g. single time samples or individual
time strata). Inner hierarchy nodes correspond to larger time
spans. The root of the time pyramid stores the region’s max-
imum depth value for the entire frame and is equivalent to
the single zuqx value stored in a traditional z-pyramid node.

The tz-pyramid’s time hierarchy allows occlusion culling to
adapt to scene motion characteristics. When motion is small
(recall there is little benefit to high time resolution) occlusion
culling is performed using a few depth comparisons against
trees nodes near the root level. When motion is large, finer
time resolution is gained by performing depth comparisons
against a larger number of nodes at a lower time level.

Our tz-pyramid implementation stores the temporal hierar-
chy in each spatial node as a complete binary tree. The to-
tal size of the tz-pyramid (including the multi-sample depth
buffer) is 8/3 the size of the underlying multi-sample depth
buffer (the spatial quad-tree contributes a factor of 4/3, the
temporal binary tree contributes another factor of 2). For a
2 megapixel framebuffer with 16 samples per pixel, the tz-
pyramid requires 342 MB of storage (214 MB for the inter-
nal nodes and 128 MB for the mutli-sample depth buffer).
Implementations may reduce this storage cost by sacrificing
spatial or temporal resolution, at the cost of culling efficacy.

A tz-pyramid is a generalization of both the traditional z-
pyramid and the tz-slice. If the temporal hierarchy in the tz-
pyramid is simply a single node, the tz-pyramid is equivalent
to a traditional z-pyramid (each node represents a region of
space for all values of time). Instead, if non-leaf nodes of the
temporal hierarchy are removed the tz-pyramid is equivalent
to the tz-slice.

3.2.1. Updating the tz-pyramid

Like a traditional z-pyramid, updating the tz-pyramid oc-
curs whenever a new depth value is written into the z-
buffer. With the INTERLEAVEUVT stochastic rasterization

Algorithm 1 UpdateTZPyramid(x, y, t, z)
spatialLevel = SpatialLeafLevel
currentTile = SpatialTile(x, y)
UpdateTimePyramid(currentTile, t, z)
while spatialLevel != RootLevel do
parentTile = GetParent(currentTile)
parentZ = GetPyramidValue(parentTile, t)
zMax = Znear
for all children of parentTile do
zMax = max(zMax, GetTimeValue(child, t))
end for
if IsCloser(zMax, parentZ) then
UpdateTimePyramid(parentTile, t, zZMax)
spatialLevel = parentLevel
currentTile = parentTile
else
return
end if
end while

algorithm [FLB*09], each visibility sample has an associ-
ated tuple index i (for the INTERVAL algorithm, samples
have associated intervals of time instead of indices). Given a
new depth value for a particular visibility sample, the pyra-
mid is updated bottom-up in the same fashion as the tradi-
tional z-pyramid. The only difference is that instead of up-
dating a single depth value in each spatial node, a tree of
depth values for the time samples is updated. Pseudocode
for the updating procedure is shown in Algorithm 1.

The number of depth updates to the tz-pyramid (both multi-
sample depth and inner node values) is bounded above by
8/3 the number of writes to the underlying multi-sample
depth buffer. For reasonably depth sorted primitives, the
number of updates does not increase with depth complex-
ity (i.e. only the final visible geometry writes depth). Impor-
tantly, the algorithmic cost to updated z-pyramids is domi-
nated by computing maximum values over the multi-sample
depth buffer, not writing new values to the tree. The cost to
compute the maximum value is identical for all configura-
tions of the tz-pyramid, time-dependent or not, as the multi-
sample depth buffer is the same in all cases.

3.2.2. Occlusion Culling with the tz-pyramid

Testing objects for occlusion with the tz-pyramid is also sim-
ilar to the traditional z-pyramid. Given a particular temporal
and spatial level, an object’s minimum depth is compared
to the values stored in the tz-pyramid. If the object cannot
definitively be occluded for a given space-time tile, the sub-
tiles are checked recursively.

To decide where to begin traversal, both a spatial and tem-
poral level must be chosen. For the spatial level, we use a
similar heuristic as Greene et al. [GKM93] for non-moving
primitives: given an object size, determine the level at which

(© The Eurographics Association 2010.
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Algorithm 2 IsOccluded(spaceLevel, timeLevel)

for all timeRanges in timeLevel do
for all spatialTiles covered by bounds[timeRanges] do
tileZ = GetPyramidValue(spatialTile, timeRange)
if IsCloser(zMin[timeRange], tileZ) then
if spaceLevel == SpatialLeafLevel and
timeLevel == TimeLeafLevel then
return false
else
newSpace = NextLevel(spaceLevel)
newTime += TimeStep(newSpace, timeRange)
if IsOccluded(newSpace, newTime) then
return false
end if
end if
end if
end for
end for
return true

a single tile is large enough to cover the object. Instead of us-
ing the bounds over the full range of motion, we use the size
of the object at the start of the frame. This avoids choosing a
coarser spatial level simply because the object is moving.

Given a chosen spatial level, the temporal level is chosen to
be the coarsest level for which the object does not appear to
be moving at the given spatial scale. More precisely, the tem-
poral level is computed by finding the first temporal sample
which results in a different spatial region than the object at
the beginning of the frame (the level is then the base-2 loga-
rithm of the temporal sample index). This results in choosing
levels near the root of the temporal hierarchy when the ob-
ject is not moving much, but using finer levels if necessary.

Our algorithm always traverses to a finer level in space but
only changes the temporal level when necessary. As with the
spatial dimension of a traditional z-pyramid, it only makes
sense to “refine” the temporal dimension and traverse to
the finer levels of the tree. Deciding when to refine in time
is based on applying the same condition used to initialize
traversal: if at the new spatial resolution the object would
appear to be moving, the temporal resolution is increased.
For simplicity, our algorithm only refines time by one level
instead of allowing an arbitrary jump.

Pseudocode for testing an object for occlusion is shown in
Algorithm 2. For compactness, we’ve omitted passing in the
object’s screen-space bounds (bounds) and corresponding
Zmin values (zMin). These variables are arrays that hold val-
ues for the all ranges of time used in the tz-pyramid (includ-
ing a single sample). If the traversal has reached either the
spatial or temporal leaf level, that dimension can no longer
be refined (i.e. NextLevel returns spaceLevel or TimeStep re-
turns 0). Once the spatial and temporal leaf has been reached
a definitive “not occluded” can be returned.
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Like the traditional z-pyramid, the temporal hierarchy of the
tz-pyramid reduces the number of depth comparisons com-
pared to testing individual temporal samples. Both the tz-
pyramid and the tz-slice return the same answer (occluded
or not) for a particular object. Because the tz-pyramid allows
occlusion tests to adapt to the amount of motion present, the
tz-pyramid will usually discover an object is occluded with
fewer depth comparisons than the tz-slice. However, if an
object is not occluded, the tz-pyramid may perform more
comparisons traversing the temporal hierarchy.

4. Evaluation

We implemented our algorithms as part of a software mi-
cropolygon rendering pipeline. To generate half-pixel area
micropolygons, we use the DiagSplit [FFB*09] tessellation
algorithm. For stochastic rasterization, we use the INTER-
LEAVEUVT algorithm [FLB*09] with 16 samples per pixel
and a 2x2 pixel interleaving tile (64 interleaved time sam-
ples). Our set of test scenes (see Figure 5) include varying
amounts of motion blur, occlusion granularity, and depth
complexity. All scenes are rendered with camera path ani-
mations at 1080p.

Instead of reporting architecturally-dependent metrics (e.g.
wall-clock time), we measure algorithmic quantities: the
number of generated positions (diced points), shaded ver-
tices (shaded points), and depth comparisons (equivalently
reads) for both the inner nodes of the tz-pyramid and the
underlying multi-sample depth buffer. As mentioned previ-
ously, the cost of updating the data structures is similar for
all schemes and independent of depth complexity, so we do
not include it here.

We begin our evaluation by determining where occlusion
culling should be used in our micropolygon rendering
pipeline. Next, we evaluate the temporal and spatial reso-
lution tradeoff when using the tz-pyramid in terms of the
three metrics listed above (diced points, shaded points, and
depth reads). Finally, we show the tz-pyramid can drasti-
cally reduce the number of depth comparisons relative to
tz-slice without impacting culling efficacy.

4.1. Pipeline Placement

In Figure 6 we evaluate four different options for pipeline
placement using the tz-pyramid: before shading, before dic-
ing, both before dicing and shading, and culling at every
stage in the pipeline. Culling at every stage in the pipeline
is the obvious choice to remove the downstream work, but
may increase the number of depth comparisons performed.
The data in Figure 6 demonstrates that with the exception
of only culling prior to shading, culling at every stage per-
forms fewer total depth comparisons than culling at later
stages only. This is because culling a large object will per-
form fewer depth comparisons than culling the equivalent



Boulos et al. / Space-Time Hierarchical Occlusion Culling for Micropolygon Rendering with Motion Blur

Average Motion

Occlusion Granularity

Average Depth Complexity

STICKS  Moderate (40 pixels)
ARMY High (350 pixels)
ZINKIA Low (10 pixels)

Fine 4
Coarse 11
Varying 6

Figure 5: Frames from STICKS, ARMY, and ZINKIA with and without motion blur. The scenes have a range of motion amounts,

occlusion granularity, and depth complexity.

Depth Comparisons
(relative to no occlusion culling)

05
00
STICKS ARMY ZINKIA
Before Shade B  Before Dice & Shade I
Before Dice 1 All Stages

Figure 6: Culling at every stage in the pipeline is the best
choice in our tests. Each bar shows the number of multi-
sample (dark) and pyramid inner node (light) depth reads
relative to not culling (lower bars are better). Culling at all
stages has low cost while culling the most downstream work.

set of diced patches. While only culling prior to shading per-
forms slightly fewer depth comparisons (due to the reduction
in coarse comparisons), postponing culling until after dicing
would be prohibitively expensive in practice (e.g. doing so
results in roughly 3.5x more diced points in ZINKIA).

4.2. Impact of Temporal and Spatial Resolution

In Table 1 we compare 16 different spatial and temporal con-
figurations for the tz-pyramid for the three different metrics.
The spatial leaf sizes range from 2x2 pixels to 16x16 pix-
els (decreasing in area by 4x at each step). The temporal
resolution ranges from 64 slices in time (full temporal res-
olution) down to a single value. Traditional z-pyramids are

represented in the rightmost column for each scene. A step
up or left increases the leaf storage by 4x, while steps down
or right decrease storage by 4x. Stepping along the up-right
diagonal roughly maintains the data structure footprint.

Increasing temporal resolution reduces the amount of dic-
ing and shading work performed. At the same time, in-
creasing temporal resolution often incurs a relatively small
increase in the number of depth comparisons. The maxi-
mum benefit occurs for scenes with higher average amounts
of motion (STICKS and ARMY). For STICKS, at 2x2 pixel
leaves with full temporal resolution the tz-pyramid dices
1.8x fewer points than the traditional z-pyramid at the same
spatial resolution. For ARMY, the relative benefit increases to
3.2x, while ZINKIA sees only a slight benefit from improved
culling in the foreground. For higher amount of motions (as
in Figure 1), the benefit of using the tz-pyramid increases.

If full spatial and temporal resolution would not be possible
(e.g. because storage is at a premium), Table 1 suggests it
is often preferable to sacrifice spatial resolution rather than
temporal resolution for scenes with high motion. Intuitively,
sacrificing temporal resolution inflates spatial bounds result-
ing in reduced resolution in both space and time. For ARMY,
the 16x16 pixel spatial resolution with full temporal reso-
lution results in fewer diced points, shaded points, and to-
tal depth comparisons than the similar footprint 2x2 pixel
z-pyramid with no temporal resolution. On the other hand,
scenes with low average motion (ZINKIA) or fine-grained
occlusion (STICKS) prefer a more balanced tradeoff between
spatial resolution (tied to the size of the occluders) and tem-
poral resolution (tied to the amount of motion).

(© The Eurographics Association 2010.
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STICKS ARMY ZINKIA

spatial \ temporal 64 16 4 1 64 16 4 1 64 16 4 1
2x2 || 48 | 53| 69 | 85 || .23 | 32| 48 | .73 || .30 | .30 | 31 | .34

diced 4x4 || 54 | 58 | 70 | 86 || 25 | 33 | 49 | 73 || 31 | 31| .32 | 35
points 8x8 || 63 | .66 | .74 | 87 || 29 | 36 | .50 | .74 || 33 | 33 | 34 | 36
16x16 || .74 | .76 | .80 | .89 || 35 | 40 | 52 | .75 || .36 | .36 | .36 | .38

2x2 || 40 | 44 | 61 | B3 || 28 | 35| 49 | .73 || .36 | .37 | .38 | .39

shaded 4x4 || 45| 49| 63 | 84 || 30| 36 | 50 | .73 || .37 | .38 | .38 | .40
points 8x8 || 54| 57| 68| .86 || 33 | 39| .51 | 73 || 39| .39 | 40 | 41
16x16 || .69 | .71 | .77 | .88 || 38 | 42 | 52 | .74 || 41 | 42 | 42 | 43

2x2 || 96 | 78 | 77 | 96 || .64 | 48 | 58 | 91 || 34 | 33| 33 | 34

zreads 4x4 || 80 | 73| 77 | 95 || 63 | 48 | 58 | 90 || .33 | 33 | 33 | 34
88 || 76 | .73 | .78 | 94 || .62 | 49 | S8 | 89 || 34| 34 | 34| 35

16x16 || .82 | .81 | .83 | 94 || 61 | 51 | .59 | .89 || .36 | .36 | .36 | .37

Table 1: Number of diced points, shaded points and depth comparisons relative to not culling, for our three scenes at different
spatial and temporal leaf sizes (in pixels and time slices, respectively). Increasing temporal resolution reduces the number of
diced points by up to 3.2x and shaded points by up to 2.6x when there is high motion (ARMY). The relative increase in total
depth comparisons is minimal due to the higher culling efficacy.

4.3. Reducing Depth Comparisons

In Figure 7 we compare the number of coarse depth compar-
isons for the two algorithms on the ARMY scene with varying
amounts of motion blur. Recall that the only performance
characteristic that differs between the the tz-pyramid and
tz-slice is the number of depth comparisons (i.e. both al-
gorithms result in the same number of diced and shaded
points). For low amounts of motion blur, the tz-pyramid re-
sults in a large reduction in coarse depth comparisons (ap-
proximately 18x). As the amount of motion increases, the
tz-pyramid performs relatively more comparisons. Once the
amount of motion passes 1100 pixels in a single frame (65%
of the screen), the tz-pyramid performs more depth compar-
isons than tz-slice. This amount of motion is extreme and
would be uncommon in practice.

For this configuration of 16 samples per pixel and 2x2 pixel
interleaving pattern, the tz-pyramid can perform 64x fewer
depth comparisons to determine an object is occluded. How-
ever, if an object is not occluded, the tz-pyramid must reach
the leaves of the tree to make this decision. Traversing the
6 temporal levels (log,(64)) could produce a 6x increase in
depth comparisons performed. The same is true for the tra-
ditional z-pyramid: occluded objects will often stop higher
than the leaves, but unoccluded objects now require more
depth comparisons. For scenes with sufficiently high depth
complexity (and consequently more occlusion), the benefit
of the tz-pyramid outweighs the potential increase in depth
comparisons for visible objects.

5. Discussion

The tz-pyramid extends the traditional z-pyramid by incor-
porating time resulting in effective culling when rendering
scenes with motion blur. While we have focused on motion
blur, the tz-pyramid would also work without modification
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Figure 7: The tz-pyramid reduces the number of coarse
z-reads by 18x for ARMY with low amounts of motion.
As the amount of motion increases, the relative benefit of
the pyramid decreases. Once the motion becomes extreme,
most of the scene becomes partially occluded, and the tz-
pyramid performs more work.

for defocus blur as well if the INTERLEAVEUVT or INTER-
VAL stochastic rasterization algorithms are used [FLB*09]
as both algorithms statically correlate the time and lens po-
sitions. However, unlike the sorted list of time values, the
correspondence between time and lens positions is intention-
ally scrambled for higher quality. Taking two (u,v,t) tuples
that are close together in time results in two lens positions
that are far apart and vice versa. This suggests that while we
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can expect a hierarchy in either time or lens position to have
benefit, we likely cannot achieve both.

Our traversal initialization and walking strategy is just one
heuristic of many possible. It is certainly not optimal, since it
ignores information about the occluder. In particular, we do
not take advantage of static occluders. Despite this, our algo-
rithm works well in practice: for determining that an object is
occluded, the tz-pyramid performs substantially fewer depth
comparisons than the tz-slice. For objects that are not oc-
cluded, however, the extra time levels in the tz-pyramid may
be a hindrance (similar to the traditional z-pyramid). Using
the tz-pyramid for z,,;, culling would be straightforward, but
was not the focus of our work.

Typical high-performance implementations use compressed
representations for depth values to reduce bandwidth (in-
cluding lossy compression of the z-pyramid to reduce stor-
age). We have not analyzed this, but believe it would be an
interesting topic for future work. In that same vein, the tz-
pyramid itself could be transposed: instead of storing a hier-
archy in time within each spatial cell, a time pyramid could
have traditional z-pyramids at each node. The architecture-
independent metrics we’ve presented are invariant under
this change; however, it is likely that architectural tradeoffs
would prefer one representation over the other.

While this work has been presented in the context of
REYES-style micropolygon rendering pipeline, the tz-
pyramid also applies to other systems that support motion
blurred visibility [AMMHO07, RKLC*10]. In those systems,
both tessellation and rasterization work could be culled by
using the tz-pyramid. Assuming that a fragment shading
based system would still rely on an early-z mechanism to
avoid shading work, the tz-pyramid should also reduce the
number of depth comparisons performed as well.

Ultimately, we would like to see the tz-pyramid imple-
mented as part of a future graphics pipeline. Motion blur is
an important visual effect, but poor occlusion culling would
deter its use. While this paper was algorithmic in focus, we
believe variations of our description could result in interest-
ing work to determine the right balance of complexity and
effectiveness for a real-time implementation.
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