
Visualization of Heterogeneous Data

Mike Cammarano, Xin (Luna) Dong, Bryan Chan, Jeff Klingner, Justin Talbot, Alon Halevy, and Pat Hanrahan

Abstract— Both the Resource Description Framework (RDF), used in the semantic web, and Maya Viz u-forms represent data
as a graph of objects connected by labeled edges. Existing systems for flexible visualization of this kind of data require manual
specification of the possible visualization roles for each data attribute. When the schema is large and unfamiliar, this requirement
inhibits exploratory visualization by requiring a costly up-front data integration step. To eliminate this step, we propose an automatic
technique for mapping data attributes to visualization attributes. We formulate this as a schema matching problem, finding appropriate
paths in the data model for each required visualization attribute in a visualization template.

Index Terms—Data integration, RDF, attribute inference.

1 INTRODUCTION

Recently, there has been tremendous interest in web mashups, which
combine data from multiple web services into new visualizations and
applications [4, 44]. Mashups require technology both to easily inte-
grate diverse data sources and to easily create visualizations.

A major challenge to creating mashups is the nature of the data
on the web. Since the web is not centrally managed, databases do
not always conform to agreed upon schemas. Globally, the genera-
tion of data can be considered as a loosely coupled bottom-up pro-
cess [2]. The classic example is Wikipedia which is being created by
thousands of people around the world. Another example is Google-
Base [19]; GoogleBase allows anyone to add new records with an ar-
bitrary schema to a shared database. The result is that most data on the
web (and also in businesses and governments) is heterogeneous, un-
structured, and often incomplete. Researchers in the database commu-
nity have called such a collection of heterogeneous data a data space,
and have formulated a long-term research agenda to provide technolo-
gies for managing such data spaces [16].

Semantic web technologies like the Resource Description Frame-
work (RDF) [5] and triple-stores attempt to provide a common denom-
inator format within which diverse data sources can be represented.
RDF represents data as a graph. Each node in the graph is an object
represented by a uniform resource identifier. Edges connect nodes to
other nodes or to literals which represent attributes. Although most
data on the web is not represented as RDF, the data model is general
enough that it provides a convenient unifying abstraction. We will not
assume the existence of an ontology – semantics of objects need not
be agreed upon and the data may be incomplete.

In this paper, we consider the problem of visualizing heterogeneous
collections of data. We describe a system that is able to automatically
find the information in the collection of data that is needed to create a
visualization. The user starts by creating a query that returns a result
set of objects. This query could be from a text-based search engine
or from a more structured query browser. The user then selects a type
of visualization, for example, a map, time or scatterplot. In order to
create the visualization, various attributes of are needed. For example,
to place an item on a map, a geolocation needs to be retrieved for
each object. In order to find these attributes, the system searches for

• Mike Cammarano, Bryan Chan, Jeff Klingner, Justin Talbot, and Pat
Hanrahan are with Stanford University.
E-mail: {mcammara, bryanc, klingner, jtalbot}@stanford.edu,
hanrahan@cs.stanford.edu.

• Xin (Luna) Dong is with University of Washington,
E-mail: lunadong@cs.washington.edu.

• Alon Halevy is with Google, E-mail: halevy@google.com.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online 2
November 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

the attributes it needs by following links between objects in the data
space. Once the attributes are found, the visualization is drawn and
presented to the user.

Our approach is based on decoupling the schema of the underlying
data from the specification of a visualization. By introducing a layer
of search to mediate between the user’s visualization specification and
the actual RDF data, the user can request visualizations without having
to know the schema in advance.

The specific contributions of this paper are the following:

• We describe a formalism for specifying visualizations with-
out requiring detailed knowledge of the data sources or their
schemas.

• We formulate the problem of matching visualizations to infor-
mation in the sources as a variant of schema matching. We break
the matching problem into two phases: a path indexing phase to
enumerate and prioritize which paths to consider, followed by a
search for combinations of path instances that attempts to select
the best set of paths to use for each object.

• We describe the implementation of our technique and some ex-
periences from fielding it on different scenarios. We evaluate
the system by performance as well as accuracy in returning good
matches. Examples are given using a variety of visual repre-
sentations including maps, timelines, scatterplots, and node-link
diagrams.

In this paper we will emphasize examples of our technique ap-
plied to dbpedia [7], an RDF database automatically extracted from
Wikipedia. However, we have also used it for visualizing collections
of documents in a digital library, and visualizing personal information
like e-mails and address books.

2 OVERVIEW

Our technique takes a set of object instances and a specification of
fields needed for a visualization. For each object instance, it then at-
tempts to choose paths to the attributes that best fit the requirements of
the requested fields. This technique is intended to be used as just one
component of a larger interactive platform for searching and brows-
ing loosely-coupled heterogeneous data. In particular, this paper will
not address the initial query mechanisms for selecting the objects of
interest.

We contrast our technique against two existing mechanisms for syn-
thesizing visualizations from databases of objects and their attributes.
One common approach to visualizing objects of many different types
is to have a display method for each class. For example, most object-
oriented programming languages include a method to convert an ob-
ject to a string for display purposes. The display method can take as
input any of the properties of the instance to compute the visualiza-
tion. The obvious disadvantage of this method is that the visualization
is solely determined by the class of an object, and cannot be tailored
to a particular context or task.

Fig. 1. A small portion of the dbpedia RDF graph illustrating the heterogeneity of representations for people and places. Each box in the diagram
depicts an object and several of its literal valued attributes. Associations between objects are shown by arrows.

A more flexible method for specifying visualizations can be found
in the Maya Viz system [3], which separates the visualization method
from the class definition. In this approach, the visualization only re-
qures that data objects have specific attributes conforming to known
semantic roles. This allows two advantages. First, any set of objects
can be displayed as long as each object has the required properties,
even if they differ on other attributes. For example, if an object has
a timestamp field, then it can be displayed on a timeline. Second, by
separating the visualization method from the object definition, multi-
ple visualizations can be created for each object. However, this method
requires up-front data integration, since objects must be annotated with
roles clarifying how their attributes should be interpreted.

In contrast, we want to support casual exploration of unfamiliar data
sets without requiring data integration in advance. These data sets may
suffer from incomplete data and inconsistent naming conventions. Our
approach is to tightly integrate search with visualization. Each vi-
sualization will be able to invoke graph searches that aim to provide
“best-effort” retrieval of the requested properties. We propose multi-
ple heuristics to guide these searches. Nevertheless, they cannot be
expected to have perfect precision or recall, so missing or incorrect
values must be handled. Our visualizations can make potential errors
easy to discover by showing a confidence score associated with each
item, as well as the lineage (the paths followed in the RDF graph to
obtain it).

2.1 Heterogeneous Data
We are interested in working with data sets with missing or inconsis-
tently named data. We will base most of our examples on the dbpedia
corpus, a large and rich data source that exhibits these challenges.

Figure 1 shows a small portion of the dbpedia RDF graph. It con-
sists of 6 objects: 2 representing public figures, and 4 representing
geographic locations. This example helps to illustrate the heterogene-
ity present in dbpedia data describing people and places. In particular,
note that:

• There are multiple distinct attributes with similar semantics.
• Each object has an incomplete subset of the possible attributes.
• The above effects can be compounded when following sequences

of multiple associations.
• Consequently, retrieving semantically equivalent information

pertaining to two different objects may require traversing com-
pletely different paths in the graph.

For example, while the attribute describing senator John Kerry’s
place of birth is named PLACE OF BIRTH, the analogous attribute for

Edgar Allan Poe is named birth place. Similarly, note the different
representations for latitude and longitude. The object describing the
city of Aurora, Colorado has attributes for these values in the dbpe-
dia namespace, and the values are encoded as strings in degrees, min-
utes, seconds format. The entry for Boston, Massachusetts does not
have attributes directly describing geolocation. However, Boston is
associated with an object from the auxiliary geonames database (also
available from dbpedia.org) via the sameAs relation. The geonames
object describing Boston does have latitude and longitude attributes.
They are formatted as signed decimal values, as opposed to the string
format used for Aurora, Colorado.

Next, consider following a sequence of several associations to
retrieve a distant attribute. For example, the geographic coordi-
nates of John Kerry’s birthplace can be found by first following
the PLACE OF BIRTH association, and then the latitude and longitude at-
tributes, respectively. We can write these paths as:

dbp:PLACE OF BIRTH.dbp:latitude
dbp:PLACE OF BIRTH.dbp:longitude

Note that we abbreviate (or omit) the namespaces of predicates within
the paper text for ease of reading. In order to obtain the analogous
geocoordinates for Edgar Allan Poe’s birthplace, completely different
paths must be followed. In this case:

dbp:birth place.owl:sameAs.geo:latitude
dbp:birth place.owl:sameAs.geo:longitude

In addition to needing to traverse different association paths to obtain
analogous fields for different source objects, this case would also re-
quire converting the results into a common format. Recall that one
pair of coordinates are expressed as decimals and the other as strings
encoding the sexagesimal degrees-minutes-seconds format.

Several other observations may help to convey the heterogeneity of
dbpedia. Searching for attribute names containing the string “birth”
reveals at least 12 different attribute names that all appear to describe
dates of birth. There is also great variability in which attributes are
available. Consider the relations that originate with one of the 100
current U.S. senators. There are 70 different kinds of relations ob-
served, but each senator uses, on average, only 27 of them with some
having as few as 15 and some as many as 41.

Figure 2 is a visualization of dbpedia data that attempts to place
U.S. senators on a map according to their state. In this case, the ob-
ject describing a senator does not have an attribute for geolocation.
However, as we have previously noted, it can be reasonable to infer
geolocation attributes from associated objects like their home state.
Our technique allows needed attributes to be automatically inherited
from associated objects when the visualization requires it.

Fig. 3. A timeline of manned spaceflight. The data is extracted automatically from dbpedia and then displayed using the SIMILE timeline widget [6].

Fig. 2. A map marking states with their senators, based on data auto-
matically extracted from dbpedia.

3 FORMALISM

This paper considers the following problem: given a set of objects
and a visualization, find for each object the attributes required by the
visualization. To define our problem formally, we first define the data
model and the specification of a visualization.

3.1 Data Model
We model our data as a set of object instances. Objects have a set
of attributes, each of which can take one or several values. Objects
can also be linked with other objects by associations. A class repre-
sents a set of similar objects and summarizes the related attributes and
associations.

With this model, we can view our data as a labeled directed graph.
Specifically, each node in our graph corresponds to either an object
or a literal. Edges from an object to a literal are attributes, and edges
from one object to another are associations.

Note that this abstract data model is equivalent to that of RDF. Each
subject–predicate–object triple in an RDF model corresponds to a di-
rected edge from the subject to the object, labeled with the predicate.

3.2 Visualization Specification
We specify a visualization using a schema and an encoding. This
approach for formalizing a visualization is based on the work of
Bertin [9] and others [28, 34, 38]. Formally, a visualization is speci-
fied by a set of triples {(T1,N1,E1), . . . ,(Tk,Nk,Ek)}, where for each

i ∈ [1,k], (Ti,Ni,Ei) represents a visualization attribute: Ti is the type
of the attribute, Ni is the name of the attribute, and Ei is the visual en-
coding for the attribute. The encodings represent mappings to visual
variables. Typical encodings include spatial position (x and y), color,
size, text, etc. In some cases encodings simply map fields onto param-
eterized templates; we express these encodings as template.parameter.

Only the Ti and Ni terms need to be considered by the search algo-
rithm. The Ei visual encodings are then applied to the results returned
by the search. Each of our examples will be accompanied by a brief
description of how the the visual encodings are implemented.

Note that the name used to specify a visualization attribute Ni need
not be a predicate appearing on the graph. This is a strength of our
search-centric approach.

Example 3.1. First, consider the visualization used in Figure 2, where
U.S. senators are shown on a map according to their state. The de-
sired fields are the senators’ pictures, and the names and geographical
coordinates of their associated states. Accordingly, the visualization
specification given to the search algorithm is:

{(decimal, state latitude, y),
(decimal, state longitude, x),
(string, name, tooltip),
(Img, image, icon),
(string, state, text)}

The visual encodings are implemented using a javascript map com-
ponent that positions each label and icon over a background map im-
age at the specified geospatial coordinates. �

Example 3.2. Next, suppose we want to visualize the space race by
plotting astronauts and cosmonauts on a timeline of their respective
missions. We will use the SIMILE timeline component [6] to per-
form the visual encoding for this example. The following visualization
specification describes the fields to search for and how to map them to
the input parameters supported by the timeline component:

{(date, mission date, timeline.start),
(Img, missioninsignia, timeline.icon),
(string, name, timeline.title),
(Img, image, timeline.image),
(string, nationality, timeline.color)}

Figure 3 shows a screenshot of the results obtained when we apply
this visualization specification to the list of all astronauts. �

3.3 Satisfying Visualization Requirements
Given a set of object instances N = {n1, . . . ,nl} and a selected vi-
sualization {(T1,N1,E1), . . . ,(Tk,Nk,Ek)}, our goal is to find for each
object ni, i ∈ [1, l], the set of required inputs. Hence, to apply the visu-
alization, we need to find k paths for each of the objects in N . Every
such path translates into the node sequence followed from the object.

The path must terminate with an attribute leading to a value of the re-
quired type. Although edges in the graph are directed, we allow them
to be traversed in either direction. Edges followed “backwards” will
be prefixed by a caret in our path notation.

We need a mechanism to evaluate whether a candidate set of paths
to attributes corresponds well to the requested set of visualization
attributes. For example, suppose we have a visualization attribute
(string,birthplacename,Ei), and we’re visualizing a set of object in-
stances for people including John Kerry and Edgar Allan Poe. For
some object instances the path may be

dbp:PLACE OF BIRTH.dbp:official name
while for others the path may be

dbp:birth place.dbp:official name.
Both of these paths should be ranked highly. On the other hand, a

candidate visualization in which the path was:
foaf:spouse.dbp:birth place.dbp:official name

would be much less suitable.
We formally define the visualization matching problem as follows.

Definition 3.3. Let o be an object instance and {(T1,N1,E1),
. . . ,(Tk,Nk,Ek)} be a visualization. Visualization matching finds a tu-
ple of paths (p1, . . . , pk), where for each i ∈ [1,k],

• the path pi begins at the node that represents object o,
• the end of pi is a node whose type matches Ti,
• the path pi semantically matches Ni. �

The next section will describe the search and ranking algorithms.
We will introduce several heuristics for assessing the quality of can-
didate paths by considering properties like branching factor and the
discriminability of the literals.

4 TECHNIQUE

A visualization specification defines a set of required parameters. For
each object o that we want to display, we must find paths that fit the re-
quirements of the current visualization. Since many paths may match a
visualization attribute, the main objective is to rank and filter out irrel-
evant paths and then return a result that best represents the remaining
path choices for object o.

We propose a two-phase visualization matching algorithm designed
to solve this problem.

The path indexing phase matches each visualization attribute to a set
of path templates called schema paths. These are sequences of pred-
icates, which the next phase uses as a roadmap to find the attributes
for each object. Working at this summary level increases efficiency
on data sets with a provided schema and ensures a globally consistent
ranking on paths. This consistency is important since using the same
schema path for as many objects as possible produces a less confus-
ing visualization than independently choosing different paths for each
object.

The second phase, instance matching, takes an object and finds the
best assignment of attributes from the database for the visualization
attributes in the visualization specification. This search in the database
is guided by the schema paths from the first phase. We describe several
heuristics to handle multiple possible matches.

4.1 Path Indexing
Each attribute required for the visualization is specified by a name and
a type. For each class of objects in the data sources and each visualiza-
tion attribute, the path indexing process finds paths through the schema
that end with the specified type and that semantically match the speci-
fied name. For data sets like dbpedia where building a concise schema
is difficult we consider all the objects to be in the same class and use
nearby paths up to a maximum distance for schema paths. In a way,
this represents the schema induced by the subgraph around the objects.

Note that the paths generated at this stage do not have attribute val-
ues from individual object instances. They are only sequences of pred-
icates that act as “path templates” for finding real attribute values later
on. For this reason, we refer to these as schema paths.

Path indexing is split into two stages. First we find available schema
paths, and then rank these by how well they fit the visualization speci-
fication.

4.1.1 Path Enumeration

We generate schema paths for each attribute in the visualization spec-
ification and use a number of heuristics to prune away bad paths as
early as possible.

When there is a schema available, it provides a summary of associ-
ations between classes. This permits an efficient enumeration of paths
by following these associations. For dbpedia, the absence of a known
schema and size of the database make the cost of generating all paths
prohibitive. Instead, we enumerate schema paths based only on those
instances involved in a visualization.

We will use the notation C0.A1.C1.An.Cn.a for a path, where
Ci are classes, Ai are associations, and a is an attribute. For
example, one possible path to a latitude for a Person is Per-
son.birth place.City.sameAs.Geoname.latitude. Note that for any given (a,C)
pair, there may be zero, one, or many schema paths.

A number of heuristics help to filter away irrelevant paths. Given
our intuitive preference for short, direct paths, the algorithm will con-
sider only those paths that do not contain loops and are shorter than
a specified length bound. We allowed a maximum path length of 4
for the U.S. senators visualization in example 3.1, and paths up to
length 3 for all other examples. The longer the paths, the more time-
consuming the search, so it is advantageous to avoid wasting effort
serching overly-long paths.

In addition to the loop and path length constraints, we also lim-
ited the branching factor for each association in a chain. Associations
that have a high branching factor describe one-to-many relationships,
whereas we typically want to retrieve attributes that are functionally
dependent on the initial objects. Consequently, only associations with
low branching factor are followed. Specifically, only associations with
a branching factor less than 4 were used. The choice of 4 as the maxi-
mum branching factor was ad hoc. Different tasks and data sets might
benefit from a different value for this parameter.

4.1.2 Path Ranking

We now rank the available schema paths against the name for each
visualization attribute. This is handled as a word-matching problem
between the name and the schema path.

Words are extracted from a path C0.A1.C1.An.Cn.a by con-
sidering word delimeters and camel-casing. For example Per-
son.placeOfBirth.latitude turns into the bag of words {place, of, birth, lati-
tude}. Similarly a visualization attribute birth latitude would translate
into {birth, latitude}.

To determine how well a schema path matches a visualization at-
tribute, we use two measures: The term frequency-inverse document
frequency (TF/IDF) score [36] between the two word sets and the
length of the schema path.

TF/IDF takes a set of search words (visualization attribute), and
finds documents (schema paths) with many matching words. Frequent
words like “of” and “the” have less influence on the score.

This score alone is insufficient, since longer schema paths repeating
a word in the visualization attribute will tend to score higher, yet a
shorter match is intuitively the more direct and likely correct answer.
Thus we give shorter paths priority by scaling the TF/IDF score by
the factor l·α+1

l·α where l is the length of the schema path and α is a
constant that decides much to increase the weight of shorter paths. For
our examples, we found that longer paths rarely made better matches,
so we used a strong bias of α = 1

4 .
These two elements are combined to produce an overall score:

Score = S · l ·α +1
l ·α

�

4.2 Instance Matching
At query time, we have a set of object instances that we want to display
using a particular visualization, and we need to find for each instance
particular attribute values that satisfy the visualization specification.

Consider an instance o and a visualization specification:

{(T1,N1,E1), . . . ,(Tk,Nk,Ek)}.

Instance matching returns a tuple of paths (p1, . . . , pk), where for each
i ∈ [1,k], pi is a path starting from o and ending with a value node of
type Ti. The path pi should be an instance of the schema path proposed
as a match to (Ti,Ni) during path indexing. Note that the path index-
ing algorithm generally proposes multiple candidate schema paths for
each attribute, and each path can yield multiple path instances for ob-
ject o. Since we typically use only one value in the visualization, we
need to choose the best value among the alternative combinations of
instance paths. The score computed for each schema path by the path
indexing algorithm is the main ranking criterion, but we now describe
two additional heuristics.

4.2.1 Ranking Function
Majority-Rule Heuristic: When multiple attribute values are reached
along paths with equal scores, we can apply the majority-rule voting
heuristic. For example, suppose multiple equally ranked paths from
a Person instance to a latitude attribute yield the results {“49◦ 15’ N”,
“37◦ 55’ N”, “49◦ 15’ N”}. Given these alternatives, the majority rule
heuristic suggests we should return “49◦ 15’ N”, the most frequently
occurring value.

Specifically, consider a ranked list L returned by path indexing.
Let P = {p1 . . . pm} be the set of path instances whose corresponding
schema paths have the same matching score in L. We denote by v(pi)
the attribute value at the end of the path pi, and by |v(pi)| the number
of times value v(pi) appears in paths in P. We assign a majority-rule
score m to each path pi:

m(pi) =
|v(pi)|

maxp∈P(|v(p)|)

Common-Path Heuristic: The second heuristic we have is the
common-path heuristic. The path scores from the path indexing and
the majority-rule heuristic apply to each path independently. How-
ever, there may be implicit dependencies between required attributes.
In the following example we illustrate this sort of dependency.

Example 4.1. Consider the astronaut timeline example where an as-
tronaut may have flown on multiple missions, each with a mission date
and a mission insignia. Suppose we query this data source with the visu-
alization specification:

{(date,missiondate,E1),(Img,missioninsignia,E2)}

The schema paths that might be used for these fields are:
dbp:mission.dbp:launch
dbp:mission.dbp:insignia

In the dbpedia dataset, good matches for both of these paths pass
through a node representing the mission. Intuitively, for each object
instance, we should prefer attribute values found at the end of paths
that pass through the same intermediate node. Suppose the following
four paths are present:

dbr:Buzz Aldrin.mission.dbr:Gemini 12.launch=“1966-11-11”
dbr:Buzz Aldrin.mission.dbr:Gemini 12.insignia=“Gemini 12 insignia.png”
dbr:Buzz Aldrin.mission.dbr:Apollo 11.launch=“1969-07-16”
dbr:Buzz Aldrin.mission.dbr:Apollo 11.insignia=“Apollo 11 insignia.png”

Then, the tuples (“1966-11-11”, “Gemini 12 insignia.png”) and (“1969-07-
16”, “Apollo 11 insignia.png”) would be preferred to those which spuri-
ously pair one mission’s launch date with the other mission’s insignia.
This dependency between the attributes could not be made explicit in
the visualization specification since we assume no knowledge of the

schema. However, we apply a common-path heuristic to automati-
cally discover this type of implicit dependency between attributes. We
give a higher score to a tuple of attributes which were reached along
paths that share intermediate nodes. �

We now formally define the common-path score. Consider a can-
didate matching result (p1, . . . , pk), where p1, . . . , pk are paths from
instance o. The common-path score is proportional to the number
of common intermediate nodes shared by the paths to each attribute.
Specifically, let Ii be the set of intermediate nodes in path pi. We de-
note by |Ii| the size of Ii. The common-path score C is defined as
follows:

C = ∑i |Ii|− |
⋃

i Ii|
∑i |Ii|

+ ε

Here, a small ε > 0 ensures that C > 0.

Example 4.2. Consider our running example and the candidate
matching (lastname.Poe, birth place.Boston.sameAS.4930956.latitude.42.3,
birth place.Boston.sameAS.4930956.longitude.−71.1). The first path con-
tains intermediate node Poe, the second path includes intermediate
nodes {Boston, 4930956}, and the third includes intermediate nodes
{Boston, 4930956}. Thus, the common-path score for this candidate
matching is 5−3

5 + ε = 0.4 + ε . However, for a candidate matching
where the latitude and longitude are obtained through different City
nodes, the common-path score would only be ε . �

Finally, the overall score for a candidate matching result
(p1, . . . , pk) combines the matching scores of the corresponding
schema paths and the scores computed according to the two heuris-
tics.

Formally, we define S = ∏i[s(pi)], where s(pi) is the matching
score computed during path indexing for the schema path that pi cor-
responds to. We define M = ∏i[m(pi)] as the overall majority-rule
score, where m(pi) is the majority-rule score for path pi. We define
the common-path score C as described above. The final score for a
matching result (p1, . . . , pk) is computed as follows:

score(p1, . . . , pn) = S ·M ·C

4.2.2 Instance Matching Algorithm

Having outlined the ranking function we use, we now describe the
algorithm in detail. Again, consider an instance o of class C, and a
visualization specification {(T1,N1,E1), . . . ,(Tk,Nk,Ek)} We proceed
in two steps.

First, we process the fields of the visualization specification sequen-
tially. For each visualization attribute, we consider the ranked list of
schema paths generated by path indexing. For each schema path p,
we query the database for path instances that originate from o and
match p. We begin with the schema paths with the highest matching
scores, and proceed until we have processed schema paths with score
M, where M is the highest score with which a schema path can retrieve
non-empty path instances for o. For each retrieved path instance, we
compute the majority-rule score. Note that here we consider only the
highest score M; a possible alternative is to consider the top-k such
scores.

Second, for each combination of the path instances, denoted by
{p1, . . . , pk}, we compute the final score and rank these candidate re-
sults accordingly. All tuples of matching results that tie for the highest
score will be delivered to the visualization, subject to a cap on the
maximum number of desired results per instance.

5 EXPERIMENTAL RESULTS

The two main evaluation criteria are match quality and running time of
the algorithm. We focussed more heavily on generating high quality
paths, so there are some cases where our implementation runs slowly.

Fig. 4. A scatterplot of inflation versus GDP for countries in the dbpedia
data, drawn using the dōjō [1] charting widget.

Fig. 5. A node-link diagram depicting the citation relationships among a
set of papers. The diagram uses an attribute-based graph layout gov-
erned by papers’ publication date and citation count.

Fig. 6. A version of the senators map annotated with confidence scores.
The bar beneath each item encodes the aggregate score for its fields,
with short red bars for low scores and wide green bars for high scores.

No heuristics 42
Favor short paths 51
Limit branching factor of associations 54
No short literals as intermediate nodes 58

Table 1. Number of senators for whom correct geocoordinates are ob-
tained as successive heuristics are enabled.

5.1 Data and Test Cases
We used the dbpedia data set from March 2007 containing 18.9 mil-
lion relations (either associations or attributes). It contains 2.3 million
objects and 2.8 million distinct literals, with a total of 8,914 distinct
types of relations. We were particularly interested in generating vi-
sualizations of people, places, and times from this noisy dbpedia data.
For example, mapping senators by state, as in Figure 2, placing human
visitors to outer space on a timeline of their missions (Figure 3), and
plotting economic indicators for countries on a chart (Figure 4). The
visualization specifications used to synthesize the map and timeline
were given in section 3.2. For the chart, we used the following:

{(dollar, GDP per capita, x),
(percent, inflation, y),
(Img, flag, icon)}

The visual encoding for this example is implemented using a
javascript scatterplot component from the dōjō toolkit [1]. Each flag
image is positioned in x and y according to the GDP per capita and
inflation fields, respectively.

In addition to the dbpedia corpus, we also applied our technique to
an RDF description of the publication history of the ACM SIGGRAPH
conference, which provides an interesting test case for visual analysis
of citations. Figure 5 is a node-link diagram depicting the citation re-
lationships among several papers. The visualization specification for
this node-link diagram uses two queries, one to retrieve metadata about
each paper to create, decorate, and place the nodes in the graph, and
one to retrieve the edges connecting them. The input specification for
the node query is

{(string, title, text),
(integer, year, x),
(integer, citecount, y),
(image, image, icon)},

and the input specification for the edge query is:
{(paper, citedpaper, edge)}

The visual encodings for this example are implemented in a Java ap-
plet built using prefuse [21]. It uses an attribute-based graph layout,
in which year of publication determines a paper’s position along the
x-axis, while total citation count governs position on the y-axis. This
layout was designed to facilitate visual discovery of the webs of in-
fluence embedded within the citation graph. The citation applet pro-
vides some brushing/selection interactivity as well. When a paper is
selected, its full title and thumbnail image are shown, and the papers
it cites or is cited by are highlighted.

Note that in choosing which search results to display, only the single
highest scoring result is used for each paper node. Since there are
generally multiple citations per paper, all equally high-scoring results
for the edge specification are drawn as edges.

5.2 Match Quality
We will now more closely examine the paths chosen by our approach.

As Table 2 shows, multiple schema paths were used to match many
of the more challenging visualization attributes. Finding and speci-
fying such paths would have been difficult to do manually with any
simple query. Among the senators, for example, we find that 7 differ-
ent paths were used in different cases in order to obtain latitudes.

Although our technique does discover many good matches, there
are many missing or incorrect attributes. We will examine causes for
these issues relative to the senator example. In the map of senators
in Figure 2 imperfect precision and recall are clearly evident. Sev-
eral senators are omitted from the map entirely, usually because no
path could be found leading to a latitude and longitude in decimal for-
mat. Also, incorrect state names are found for some senators. In these
cases, the preferred paths to attributes failed to find any results, and
lower ranking paths were used. Since each path used has a confidence
score, we can provide a visual indication of the scores. For example, in
Figure 6, a bar beneath the images of senators varies in width and color
depending on the scores associated with their search results. Appro-
priate image urls were found for every senator. However, Wikipedia
has undergone many updates since the dbpedia data was last collected,
and some formerly valid image urls are no longer live.

Map of U.S. Senators (101 objects)

image dbp:image name 101

name dbp:name 94
dbp:NAME 9

state dbp:state 67
dbp:jr percent 2Fsr and state 36

state latitude dbp:state.r̂dfs:label.dbp:Capital.my:latitude 31
dbp:state.ĝeo:name.geo:latitude 22
d̂bp:preceded.dbp:state.dbp:LargestCity.my:latitude 2
dbp:state.d̂bp:Name.dbp:Capital.my:latitude 2
d̂bp:preceded.dbp:state.dbp:Capital.my:latitude 1
d̂bp:preceded.dbp:state.dbp:LowestPoint.my:latitude 1
dbp:state.d̂bp:Place.dbp:Latitude 1

state longitude dbp:state.r̂dfs:label.dbp:Capital.my:longitude 32
dbp:state.ĝeo:name.geo:longitude 22
d̂bp:preceded.dbp:state.dbp:LargestCity.my:longitude 2
d̂bp:preceded.dbp:state.dbp:Capital.my:longitude 1
d̂bp:preceded.dbp:state.dbp:LowestPoint.my:longitude 1
dbp:state.d̂bp:Place.dbp:Longitude 1
dbp:state.r̂dfs:label.dbp:LargestCity.my:longitude 1

Scatterplot of Inflation (255 objects)

flag dbp:image flag 248
dbp:flag 3
dbp:flag p1 2
dbp:flag s1 1

GDP per capita dbp:GDP PPP per capita 211
dbp:GDP nominal per capita 24
dbp:GDP 1
dbp:GDP per capita 1

inflation dbp:currency.dbp:inflation rate 104
d̂bp:using countries.dbp:inflation rate 63

Timeline of Astronauts (710 objects)

image dbp:image 386
dbp:image name 2

mission insignia dbp:insignia 382

mission launch dbp:mission.dbp:launch 317

name foaf:name 307
dbp:name 212
dbp:character name 12
dbp:English name 1
dbp:NAME 1
dbp:Name 1
dbp:full name 1

nationality dbp:nationality 492
dborg:birthplace.d̂bp:birth place.dbp:nationality 2
dborg:deathplace.d̂bp:PLACE OF DEATH.dbp:nationality 1
dborg:deathplace.d̂bp:birth place.dbp:nationality 1
dbp:placeofbirth.d̂bp:birth place.dbp:nationality 1

Table 2. Valid paths found for each of the dbpedia examples and the
number of object instances that used each path.

In section 4, we proposed multiple heuristics for ranking the quality
of paths. We now examine the utility of these heuristics by quantifying
their effect on the accuracy of the geocoordinate values, as shown in
Table 1 With all heuristics enabled, 58 of the senators were correctly
assigned to a location in their home state.

5.3 Execution Time
Table 3 shows a summary of the execution times for the path indexing
and instance matching phases. Searching for the long paths needed in
the senator example is currently slow because we enumerate and then
rank paths separately. The size of a complete enumeration grows expo-
nentially with path length. Ideally, enumeration and ranking should be
done together using a technique like an A* search, where low rankings
predicted from partial paths can prevent further enumeration.

Other than the astronaut timeline, instance matching performs rea-
sonably. However, for the astronaut case, there are many alternative
paths for each field. Performance suffers here because we use a naive
Cartesian product of the attribute matches from each field to evaluate
the instance matching heuristics.

6 RELATED WORK

User interfaces for databases have been approached from two main
directions: helping users precisely and conveniently express their in-
formation needs, and helping users visualize query results.

enumerate rank match
paths (s) paths (s) instances (s)

U.S. Senator map 300 160 2.6
inflation scatterplot 18 4.9 0.43
astronaut timeline 20 18 131

Table 3. Execution times for each matching phase on the dbpedia test
cases.

The first category focuses on interactive interfaces for query for-
mulation and query refinement. VIQING [30] provides a visual inter-
face for querying relational data. Lore [18] uses Dataguides to walk
users through XML schemas for composition of XML queries. Other
authors have considered keyword-based search over XML data [26,
22, 8]. CLIDE [31] offers an interactive interface for users to pose
queries in a data-integration environment. Several papers [40, 37, 45]
have considered how to provide integrative refinement of queries to
view XML data, RDF data, and images. VisTrails [11] streamlines the
process of creating multiple related visualizations by modeling work-
flows. Finally, Polyviou et al. [32] propose a visual query language
that allows complex queries over heterogeneous data.

Our work falls in the second category, which studies the visu-
alization of information. The visualization of unstructured data,
such as documents, webpages, and tags, is studied in several pa-
pers [14, 17, 13, 15]. For structured data, Catarci et al. [12] surveyed a
large number of systems that visualize relational data. Visionary [39],
Visage [35] and DEVise [27] display query results on a canvas and
provide powerful visualization features such as zooming, panning and
distortion. Keim [24] surveyed the visualization of data from those
that are one-dimensional and those that are multidimensional. Xmdv-
Tool [42], XGobi [10], and VisDB [25] studied how to visualize query
results when they correspond to high-dimensional data. NUITS [41]
displays the results of keyword search on relational data as a tree of
tuples connected by foreign keys.

Of particular importance are formal models of visualizations. Much
of the early work in this area was inspired by Bertin’s Semiology of
Graphics [9]. Bertin is credited with specifying visualization as rela-
tions and encodings. Mackinlay [28] developed APT, which formal-
ized Bertin’s methodology and showed how to optimize the choice of
visual encodings. Sage [34] is a more recent system that develops a
more elaborate data model for designing visualizations. DEVise [27]
extends the formal approach using relational algebra and in particular
develops methods for linking multiple views. Wilkinson’s Grammar
of Graphics [43] presents a very thoughtful and detailed design of a
system for formalism the specification of visualizations. The VizQL
language [20] further extends the method for specifying visualizations
by including support for data cubes and table-based visualizations.

Finally, a number of systems have been designed to allow users
to interactively define visualization of information. For example, in
Polaris [38] users can specify the visualization of a data warehouse.
In Haystack [23] users can specify the display of personal information
(stored as RDF data) using RDF. However, these systems all make the
assumption that the schema of the data is known a priori.

Our work is different from the above in that we consider the vi-
sualization of loosely-coupled heterogeneous data. Our system treats
visualizations as first-class citizens and the visualizations are specified
independently of the data sources. To display a set of objects, possi-
bly from disparate data sources, we perform run-time schema match-
ing to select attributes that best match the visualization specifications.
Schema matching has been studied extensively (see Rahm and Bern-
stein [33] for a survey). However, our problem domain, where visu-
alization requirements motivate the reorganization of semi-structured
data, poses several novel challenges.

First, we perform matching between two different kinds of at-
tributes. Visualization attributes always have names and types; At-
tribute paths from the database always have names but may be miss-
ing types, as in the dbpedia dataset. More importantly, attribute paths
have a large set of corresponding data instances, while visualization at-

tributes usually have no such examples. Second, we choose to match
each visualization attribute to an attribute path, generated by follow-
ing a sequence of associations. This allows desired data to be found
indirectly via associated objects, but significantly increases the num-
ber of possible matches. Third, we match at the instance level. Object
instances may have different types of attributes and associations, thus
the matching results will also differ.

Many techniques for improving schema matching can be used with
our approach In particular, a corpus-based approach [29] can handle
synonyms in addition to exact word matches.

7 CONCLUSIONS AND FUTURE WORK

Visualization and data management are interrelated. When data comes
from multiple sources and is highly heterogeneous, much of the initial
interaction with it will be exploratory. Users need to see the data in or-
der to even formulate appropriate queries. We described techniques for
deeply integrating automatic searching within a visualization pipeline.
This is a new way to approach the problem of visualizing heteroge-
neous data. We introduced a mechanism for describing visualizations
independently of the data in the sources, and an algorithm for retriev-
ing the appropriate data for a given visualization. Our initial experi-
ments have shown that our system is able to find the appropriate data
often enough to be useful as an exploratory tool, while sheltering users
from schema heterogeneity.

We note two ways this work might be extended. The first is to au-
tomatically select the visualization that is most appropriate for a given
set of objects from a library of alternatives. The second is to integrate
visualization and querying—using the query to give us additional hints
for selecting appropriate visualizations and using the visualization to
help the user formulate the next query. Such interactive query formu-
lation would work well with a more flexible query specification, which
could include preferred paths or path components.

ACKNOWLEDGEMENTS

This material is based on work supported by SRI International/DARPA
contract #55-000679 TO-5, Battelle Memorial Institute/US DOE un-
der contract #15597-3, and Boeing under contract #SPO 35845-1.

REFERENCES

[1] dōjō javascript toolkit. http://dojotoolkit.org/.
[2] Information commons. http://www.maya.com/infocommons/.
[3] Maya Viz. http://www.mayaviz.com/web/concepts/

downloads/viz comotion overview.pdf.
[4] Programmableweb. http://www.programmableweb.com/.
[5] Resource description framework (rdf). http://www.w3.org/RDF/.
[6] Simile timeline. http://simile.mit.edu/timeline/.
[7] S. Auer, C. Bizer, R. Cyganiak, O. Erling, K. Idehen, G. Kobilarov,

J. Lehmann, and J. Schüppel. http://dbpedia.org/.
[8] A. Balmin, V. Hristidis, N. Koudas, Y. Papakonstantinou, D. Srivastava,

and T. Wang. A system for keyword search on xml databases. In VLDB
(demo), pages 1069–1072, 2003.

[9] J. Bertin. The Semiology of Graphics. Univ. of Wisconsin Press, 1984.
[10] A. Buja, D. Cook, and D. F. Swayne. Interactive high-dimensional data

visualization. Computational and Graphical Statistics, 5(1):78–99, 1996.
[11] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and

H. T. Vo. VisTrails: Visualization meets data management. In Sigmod,
pages 745–747, 2006.

[12] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query sys-
tems for databases: a survey. Journal of Visual Languages and Comput-
ing, 8(2):215–260, 1997.

[13] J. Chen, L. Sun, O. R. Zaiane, and R. Goebel. Visualizing and discovering
web navigational patterns. In WebDB, pages 13–18, 2004.

[14] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scat-
ter/Gather: A cluster-based approach to browsing large document collec-
tions. In SIGIR, pages 318–329, 1992.

[15] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan, and
A. Tomkins. Visualizing tags over time. In WWW, pages 193–202, 2006.

[16] M. Franklin, A. Halevy, and D. Maier. From databases to dataspaces: A
new abstraction for information management. Sigmod Record, 34(4):27–
33, 2005.

[17] G. W. Furnas and S. J. Rauch. Considerations for information environ-
ments and the NaviQue workspace. INEX Workshop, pages 79–88, 2003.

[18] R. Goldman and J. Widom. Interactive query and search in semistructured
databases. In WebDB, pages 52–62, 1998.

[19] GoogleBase. http://base.google.com/, 2005.
[20] P. Hanrahan. VizQL: A language for query, analysis and visualization. In

Sigmod, page 721, 2006.
[21] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive

information visualization. In CHI ’05: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 421–430, 2005.

[22] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity
search on xml graphs. In International Conference on Data Engineering,
pages 367–378, 2003.

[23] D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha. Haystack: A
general-purpose information management tool for end users of semistruc-
tured data. In CIDR, pages 13–26, 2005.

[24] D. A. Keim. Information visualization and visual data mining. IEEE
Transactions on Visualization and Computer Graphics, 7(1):1–8, 2002.

[25] D. A. Keim and H.-P. Kriegel. VisDB: Database exploration using mul-
tidimensional visualization. IEEE Computer Graphics and Applications,
14(5):40–49, 1994.

[26] Y. Li, C. Yu, and H. V. Jagadish. Schema-free xquery. In VLDB, pages
72–83, 2004.

[27] M. Livny, R. Ramakrishnan, K. S. Beyer, G. Chen, D. Donjerkovic,
S. Lawande, J. Myllymaki, and R. K. Wenger. DEVise: Integrated query-
ing and visualization of large datasets. In Sigmod, pages 301–312, 1997.

[28] J. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Trans. Graph., 5(2):110–141, 1986.

[29] J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy. Corpus-based
schema matching. In ICDE, pages 57–68, 2005.

[30] C. Olston, M. Stonebraker, A. Aiken, and J. M. Hellerstein. VIQING:
Visual interactive querying. In VL, pages 162–169, 1998.

[31] M. Petropoulos, A. Deutsch, and Y. Papakonstantinou. Interactive query
formulation over web service-accessed sources. In Sigmod, pages 253–
264, 2006.

[32] S. Polyviou, G. Samaras, and P. Evripidou. A relationally complete visual
query language for heterogeneous data sources and pervasive querying. In
ICDE, pages 471–482, 2005.

[33] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4):334–350, 2001.

[34] S. F. Roth, J. Kolojejchick, J. Mattis, and J. Goldstein. Interactive graphic
design using automatic presentation knowledge. In CHI ’94: Proceedings
of the SIGCHI conference on Human factors in computing systems, pages
112–117, New York, NY, USA, 1994. ACM Press.

[35] S. F. Roth, P. Lucas, J. A. Senn, C. C. Gomberg, M. B. Burks, P. J. Strof-
folino, J. A. Kolojejchick, and C. Dunmire. Visage: A user interface en-
vironment for exploring information. In Information Visualization, pages
3–16, 1996.

[36] G. Salton, editor. The SMART Retrieval System—Experiments in Auto-
matic Document Retrieval. Prentice Hall, Englewood Cliffs, NJ, 1971.

[37] V. Sinha and D. R. Karger. Magnet: Supporting navigation in semistruc-
tured data environments. In Sigmod, pages 97–106, 2005.

[38] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis
and visualization of multidimensional relational databases. IEEE Trans-
action on Visualization and Computer Graphics, 8(1):52–65, 2002.

[39] M. Stonebraker. Visionary: A next generation visualization system for
data bases. In Sigmod, page 635, 2003.

[40] A. Trigoni. Interactive query formulation in semistructured databases. In
FQAS, pages 356–369, 2002.

[41] S. Wang, Z. Peng, J. Zhang, L. Qin, S. Wang, J. X. Yu, and B. Ding. NU-
ITS: A novel user interface for efficient keyword search over databases.
In VLDB, pages 1143–1146, 2006.

[42] M. O. Ward. XmdvTool: Integrating multiple methods for visualzing
multivariate data. In Visualization, pages 326–333, 1994.

[43] L. Wilkinson and G. Wills. The Grammar of Graphics. Springer, 2005.
[44] J. Wong and J. I. Hong. Making mashups with marmite: Towards end-

user programming for the web. In CHI ’07: Proceedings of the SIGCHI
conference on Human Factors in computing systems, pages 1435–1444.
ACM Press, 2007.

[45] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for
image search and browsing. In CHI, pages 401–408, 2003.

http://dojotoolkit.org/
http://www.maya.com/infocommons/
http://www.mayaviz.com/web/concepts/downloads/viz_comotion_overview.pdf
http://www.mayaviz.com/web/concepts/downloads/viz_comotion_overview.pdf
http://www.programmableweb.com/
http://www.w3.org/RDF/
http://simile.mit.edu/timeline/
http://dbpedia.org/
http://base.google.com/

	Introduction
	Overview
	Heterogeneous Data

	Formalism
	Data Model
	Visualization Specification
	Satisfying Visualization Requirements

	Technique
	Path Indexing
	Path Enumeration
	Path Ranking

	Instance Matching
	Ranking Function
	Instance Matching Algorithm

	Experimental Results
	Data and Test Cases
	Match Quality
	Execution Time

	Related Work
	Conclusions and Future Work

