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Fig. 1. The coeicient of restitution is not constant! Numerically computed coeficients of restitution (blue =0→ r ed =1) are shown for these leters

(with botom view) and reveal significant spatial variations arising from micro-collision phenomena. Using a fast restitution analysis preprocess, we encode

restitution values in Bounce Maps for fast runtime lookup during rigid-body simulation, thereby capturing natural variability in contact responses (see

Figure 2). (All objects have the same physical material parameters (łsteelž), and use #modes=45.)

We present a novel method to enrich standard rigid-body impact models

with a spatially varying coeicient of restitution map, or Bounce Map. Even

state-of-the art methods in computer graphics assume that for a single

rigid body, post- and pre-impact dynamics are related with a single global,

constant, namely the coeicient of restitution. We irst demonstrate that this

assumption is highly inaccurate, even for simple objects. We then present a

technique to eiciently and automatically generate a function which maps

locations on the object’s surface along with impact normals, to a scalar

coeicient of restitution value. Furthermore, we propose a method for two-

body restitution analysis, and, based on numerical experiments, estimate a

practical model for combining one-body Bounce Map values to approximate

the two-body coeicient of restitution. We show that our method not only

improves accuracy, but also enables visually richer rigid-body simulations.
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1 INTRODUCTION

Rigid-body impact and contact are of great importance to computer

graphics. As in [Smith et al. 2012], we deine contact to include rest-

ing or sliding contact, whereas impact captures instantaneous and

transient collisions. Much work has been done in computer graphics

to model contact and impact scenarios, as well as to develop eicient

and robust techniques to handle complex collision scenarios; see

Sec. 2 for a brief review.

Almost all previous work in graphics and mechanics has focused

on algebraic collision laws, which assume a scalar coeicient of

restitution, often treated as a material or object property. Indeed,

most use the simplest and oldest model, Newton’s Law of Restitu-

tion. Newton introduced this concept in his Principia, arguing that

collision dynamics follow a simple law: the post-impact relative

normal velocity v+n of two objects is proportional to the pre-impact

relative normal velocity v−n , where the ratio

ε := −v
+

n

v−n
∈ [0, 1], (1)

is a measurable and material-dependent constant known as the

coeicient of restitution. Thanks, in part, to Baraf’s [1997] inluential

course notes that used ε to determine the contact impulse, this model

is widely used in computer graphics.

The biggest attraction of a restitution model is, of course, its utter

simplicity and eiciency. However, it has long been recognized that

łrigid bodyž and łimpactž are essentially contradictory, a meeting of

an undeformable object with an impenetrable one. Such a modeling

assumption would be ok (after all, many of the governing equations

of classical mechanics are centuries old) if it incurred only a small or

localized error, but the errors can be huge. For instance, Stoianovici
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Constant ε =0.6 (global average) Bounce-Mapped ε

Fig. 2. łBOUNCE Dropž animation frames ater the leters bounce of the floor and rebound. (Let) Constant ε leters lack variety and excitement, whereas

(Right) a greater variety of behaviors result from Bounce-Mapped leters, with far bouncier łB,ž łOž and łEž botom impacts.
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Fig. 3. Steel rod dropped at diferent angles (20 cm, steel rod): Bounce

mapping reveals a flat ε response (in blue) at shallow angles, then a dramatic

dip at steep angles (frictionless contact, undamped rod,m = 140 modes),

similar to experiments performed by [Stoianovici andHurmuzlu 1996]. These

abrupt changes are oten related to contact duration (in red).

and Hurmuzlu [1996] dropped steel bars on a foundation, and found

that for a single bar, ε could vary between 0.1 and 0.9 as the drop-

angle changes (80% of the valid range [0, 1])!

Therefore, we argue that the standard practice of using a single

parameter to model rigid-body impact is a fundamental limitation.

Consequently we propose to extend the desiderata of [Smith et al.

2012] to include: (COR) Coeicient of Restitution, which states

that simulated solids should bounce like their physical counterparts.

Before proposing a solution, however, it is important to inspect why

exactly this limitation arises.

Why does the coeicient of restitution vary? When measured in

physical experiments, ε has been shown to vary with a body’s shape,

material properties, as well as the velocity, location and contact nor-

mal of impact. There are several contributing factors, including phe-

nomena such as plasticity and local conforming (non-rigid) contact;

however, we argue that the most important factor is the variation

in energy loss to elastic vibrations. This was previously observed by

[Goldsmith 1960] and conirmed by the analysis of [Stoianovici and

Hurmuzlu 1996]. They modeled the rod using only a handful of (less

than 10) visco-elastically-linked segments and were able to match

the signiicant variation in the coeicient of restitution apparent

in the experimental data. They concluded that łthe mechanism that

leads to the signiicant variations in the coeicient of restitution is

mainly due to the residual energy that remains internally in the bar

when the contact is lost.ž Explicitly modeling stif elastodynamics,

therefore, provides greater accuracy, but, unfortunately, it is not

well suited to the complex shapes and real-time constraints of many

graphics applications.

In some scenarios, the detailed variation of ε over the surface of

an object may not be perceptible [O’Sullivan et al. 2003], and it may

be possible to get away with a constant COR or even with using

stochastic models. Typical examples are background simulations,

such as destruction of buildings. Indeed, there is a long tradition in

computer animation of slightly perturbing contact impulses to add

visually interesting variability to otherwise dull constant-ε anima-

tions [Barzel et al. 1996], and to enable simulation control [Chenney

and Forsyth 2000; Popović et al. 2000; Twigg and James 2007]. How-

ever, there aremany other scenarios inwhich capturing the variation

is essential. When observing a single łherož object over multiple

bounces, e.g., a baseball bat bouncing of the loor (see accompany-

ing video), the diference between the bouncy knob and the duller

barrel is very obvious. Representing variation of ε is also essential

when the simulation has to be realistic and not just plausible. For

example, to train for a sport such as hockey using a VR simulation,

eiciently capturing phenomena such as the well known łsweet

spotž is essential (see Figure 15).

Contributions: We propose to achieve (COR) by precomputing

the dynamics that arise when we model a rigid object as an ex-

tremely stif deformable object. We propose a fast precomputation

pipeline to estimate the efective coeicient of restitution using

modal analysis. We store the spatially (and sometimes directionally)

varying coeicient of restitution in a Bounce Map (see Figure 1). This

precomputation account for both the energy loss due to residual

vibrations and multiple micro-collisions known to occur within

a single contact event. Our spatially varying Bounce Map can be

easily integrated with existing rigid-body simulators, with negligi-

ble run-time costs. As Bounce Maps are inherently a single-body

response, we devise extensions for the two-body case, including a

contact solver, and experimentally justiied methods for combining
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one-body Bounce Map coeicients for cheap runtime approxima-

tions. Thus we achieve the simplicity and eiciency of a restitution

model, while achieving the accuracy of solving the full elastic impact

problem. See Figures 1, 2, 3, 4 and 5 for illustrative examples.

2 RELATED WORK

Rigid-body models are widely used in computer graphics; see [Ben-

der et al. 2014] for a recent survey. The smooth motion of a rigid

body is easy to simulate; the biggest challenge has been dealing

with collisions. This requires both collision detection and collision

response. Our focus is collision response; collision detection is a

large and active research area which is orthogonal to our focus.

Following Newton’s law of restitution, diferent variants have

been proposed to address some of its limitations. Poisson’s hypoth-

esis posits that impact events are comprised of a compression and

restitution phase, and that the ratio of the impulses accumulated

during these phases is constant. Stronge’s more recent hypothesis

argues that (the square root of) the ratio of kinetic energies re-

covered and released in the restitution and compression phases is

constant. Though these three models each have their own beneits

and drawbacks, they all assume that impact dynamics are captured

by a single scalar parameter (the three models are equivalent in

certain circumstances [Stronge 2004]). Furthermore, there is no

well-accepted set of values for various materials, and there is no

clear or simple method to experimentally measure this value. Ulti-

mately, the coeicient of restitution, in any of its forms, is a gross

simpliication of the complex dynamics that occur when two objects

collide.

Fig. 4. A bounce-mapped spring

bounces highest on the (dark red) end

faces, where it can store and recover

spring energy during longer impacts. In

contrast, side impacts (in green) tend

to bounce much less, losing energy to

vibrations. In fact, the simulated range of

ε for this example is efectively [0, 1].

There has been much recent progress towards making rigid-body

impact at least consistent with known physical laws, such as linear

and angular momentum conservation (e.g., see the monographs

[Brogliato 2012; Goldsmith 1960; Pfeifer and Glocker 2008; Stewart

2011; Stronge 2004]). For instance, Chatterjee and Ruina [1998]

derived constraints on reasonable coeients of restitution. The use

of measure diferential inclusions tomodel impact has clariiedmany

of the paradoxes of rigid-body impact [Brogliato 2012; Stewart 2011].

Other important avenues include simultaneous impact (e.g., [Smith

et al. 2012]), and friction (which has a rich history [Painlevé 1895])

and recent progress (e.g., [Mirtich and Canny 1995;Wang andMason

1987] and the work cited above).

Despite this progress on rigid-body impact, it has also been well

known that basic conservation laws are not suicient to determine

the value of ε . The energy losses (and hence ε) depend on many

factors, but the main factor for moderate speed impacts (without

plastic work and conforming contact) appears to be the energy loss

due to residual vibrations upon separation. This was observed by

[Goldsmith 1960] who examined the energy transferred to vibrations

using the analytical methods available at that time. Elastic vibrations

also result in multiple micro-collisions within a single macrospcopic

impact event, calling into question the usual analysis based on

locating the maximum compression. These phenomena were also

documented in the seminal work of [Stoianovici and Hurmuzlu

1996] described above.

In early work, Ullrich and Pai [1998; 1999] proposed precomput-

ing a łcontact response mapž on the surface of an object, but chose

to represent the time-domain force response due to vibration at

each location. This is both hard to compute reliably and requires

high-resolution convolution to obtain the post-impact behavior. By

contrast, our Bounce Maps directly represent the widely used co-

eicient of restitution, can be computed eiciently using modal

models, and bake-in the efects of residual vibrations and multiple

micro-collisions. Bounce Maps can be dropped in to work with exist-

ing rigid-body simulation code, replacing a scalar with an eicient

function call (essentially a table lookup).

3 FAST RESTITUTION ANALYSIS

Wedescribe a fastmodal contact solver for a single point-like contact,

and show how it can be used to eiciently estimate COR at a speciic

contact point and normal.

3.1 Background: Modal dynamics model

We simulate a rigid-body model augmented with linear vibration

modes, as in commonly done in multibody dynamics simulation

(e.g., [Shabana 2012, 2013]), and in computer animation and sound

synthesis (e.g., [Kaufman et al. 2008; Zheng and James 2011]); please

see these references for implementation details. For contact resti-

tution modeling, modal vibration models have two major beneits:

(1) they provide an eicient way to model the vibrational energy

loss during impact events using a small number of dominant eigen-

modes, and (2) their smooth spatial response permits a simpliied

point-like contact analysis.

Regarding notation, let q represent the generalized coordinates

of the body, including its center of mass c , orientation R, and modal

coordinates, q ∈ Rm , so that q= (cT ,RT ,qT )T . Let the generalized

velocity be q̇= (ċT ,wT , q̇T )T ∈ Rm+6. In body coordinates, let the

center of mass be located at the origin; let X denote an undeformed

material point, and N an undeformed surface normal. In world

coordinates, the corresponding deformed point is

x = ϕ (X , q(t )) = c (t ) + R (t ) (X +U (X )q(t )), (2)

and its velocity is

v = ċ + R[w]× (X +Uq) + RUq̇ (3)

= ċ − R[X +Uq]×w + RUq̇ (4)

= [ I3 -R[X +Uq]× RU ] q̇ = J q̇, (5)
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Fig. 5. Springs of comparison: (Let) Four springs are dropped from a similar height, in vertical and horizontal orientations. The two on the right are Bounce

Mapped, and the let two springs have constant ε =0.6 (the average map) values. (Middle) Springs immediately ater impact. (Right) Near their maximum

heights, the let springs exhibit similar bounce, whereas the two right Bounce-Mapped springs have far more dramatic responses: the vertical spring rebounds

to nearly the same height, whereas the horizontal barely gets of the ground.

where the Jacobian is J = J (X , q) ∈R3×(m+6) , and [v]× denotes the
skew-symmetric cross-product matrix for łv×.ž Let

M =



Mtot I3 0 0

0 I 0

0 0 Im


∈ R(m+6)×(m+6) , (6)

denote the diagonal mass matrix in body coordinates1. We simu-

late the body without gravity, and will neglect internal damping

forces initially. Therefore, in the absence of contact forces, we only

integrate the internal forces, fint (q, q̇): the quadratic velocity vec-

tor [Shabana 2013], and the modal oscillator force, q̈i = −ω2
i qi .

3.2 Proxy Contact Problem

For eiciency and general evaluation, we analyze restitution re-

sponse using a proxy point-plane contact model (see Figure 6). We

can assume that the world and body frames are initially aligned,

and that the body has no initial deformation, q− = (0, I , 0)T . Given

an input surface point and normal, (X ,N ), in body coordinates, we

deine a virtual contact plane (ixed in world space) passing through

X with unit normal n=−N , such that the deformed point x must

always satisfy

C (x ) = nT (x −X ) ≥ 0. (7)

n

X

N

n

x
x

x

Fig. 6. Proxy contact problem: (Let) Initial undeformed configuration for

a planar restitution analysis at (X , N ) with body translating into contact at

velocity v−nN ; (Right) During simulation with collisions resolved between

the deformed contact point x and the planar constraint C (x ) ≥ 0.

1Here the inertia tensor I is diagonal (due to body-frame alignment with the principal
axes of inertia), of-diagonalM terms disappear for small deformations and center-of-
mass c at origin, and mass-normalized eigenmodesU make the modal mass matrix
the identity, Im .

Without loss of generality, we initialize the impact analysis with

a velocity compatible with v−n =−1m/s , and choose a pure transla-

tional velocity, q̇−= (v−nn, 0, 0)
T . We then consider the multibody

contact dynamics problem involving the deformable model and the

perfectly rigid plane constraint, C (x )≥ 0, where only the point x (t )

is checked for collisions. This allows us to ensure that collision

events are local, and also separates the object’s geometry from the

contact problem, something that is an issue for classical analyses

that consider sphere or plane contact. Frictionless point-plane con-

tacts are resolved using impulses, the details of which are described

in ğ3.3.

Stoianovici andHurmuzlu [1996] note thatmultiplemicro-collision

events can happen over the course of a single impact (due to elastic

waves) and that such micro-collisions play a fundamental role in

the variation of ε . We also observed this phenomenon in our simu-

lation experiments. Therefore, we timestep the simulation until we

can ensure that no more point-plane contacts can occur, which we

achieve using a spherical deformation bound (in ğ3.4).

Finally, to estimate the coeicient of restitution of this sequence

of impact events, we consider the state of the body at the time of the

last micro-collision, after which x is guaranteed to separate from

the plane and the contact event is over. To estimate the post-impact

normal velocity,v+n for use in the restitution formula, we can not use

the contact point’s valuev ·n directly, since it is polluted with high-

frequency modal oscillations. Therefore, we deine its rigid velocity

component q̇r iдid by projecting out the deformation part, q̇r iдid =

Rq̇= (ċT ,wT , 0T )T . Our point’s rigid post-impact velocity can then

be robustly estimated as vr iдid = J q̇r iдid , and therefore our post-

impact normal velocity estimate is v+n = n
T J q̇r iдid immediately

following the inal contact event. The total contact time, τ , and the

number of contiguous contact events can also be computed.

3.3 Frictionless Point-Contact Solver

Regarding the single-point frictionless contact problem, we use the

predictor-corrector scheme of [Kaufman et al. 2008] to advance the

velocity from q̇t to q̇t+1. The predictor simply integrates the internal

forces ignoring contact, q̇p = q̇t +∆tM−1fint . Next, if the point is in
contact (C (x )≤ 0) and not separating (vTn<0) we apply an inelastic
impulse λn to resolve contact. The inal generalized velocity is

q̇t+1= q̇p +λM−1nwhere n= JTn is the generalized contact normal.

The Signorini-Fischera condition requires that 0 ≤ nT q̇t+1 ⊥ λ ≥ 0,

from which it follows that, when the point is not already separating
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the contact impulse is λ=−nT q̇p/nTM−1n. Since the mass matrix is

diagonal, this frictionless contact solve/integration step takes O (m)

lops form modes.

3.4 Collision bounds for estimating contact duration

Given the possibility of multiple vibration-induced contact events,

we need a way to conservatively estimate the minimum integration

time for each contact simulation. When the proxy point is not in

contact with the plane, we estimate whether or not the rigidly trans-

forming and vibrating point can still return to contact as follows.

Given the instantaneous value of eachmode’s energy, we can conser-

vatively bound the point’s future vibrations using a spherical defor-

mation bound, analogous to [James and Pai 2004]. Speciically, given

the ith mode’s position qi and velocity q̇i coordinates, we compute

the mode’s instantaneous energy, Ei =
1
2 (q̇

2
i + ω

2
i q

2
i ). Since energy

is conserved in the absence of contact, we can bound the absolute

amplitude at future contact-free times by maxt |qi (t ) | =
√
2Ei/ωi .

We can then estimate a conservative bounding sphere radius by

R (q, q̇) =

m
∑

i=1

∥Ui ∥
√
2Ei
ωi
=

m
∑

i=1

∆Ri
√

Ei (8)

(where ∆Ri ≡
√
2∥Ui ∥/ωi are cached values). This bound ensures

that the body-frame vertex displacement u =Uq satisies ∥u∥ =
∥x − xr iдid ∥ ≤ R (q, q̇) forward in time, where xr iдid = c + RX

is the rigidly transformed point. Then given the bounding sphere

aixed to the body’s underlying rigid-body frame at X , we can

terminate simulation when the bounding sphere is no longer in

contact, C (xr iдid )>Rbound (see Figure 7).

n

R
bound

x

Fig. 7. Bounded deformation collisionmodel:We conservatively bound

the future oscillations of the point x (t ) about xr iдid (t ), and integrate

dynamics until the rigidly transforming spherical bound no longer touches

the plane, C (xr iдid )>Rbound .

Discussion: While it is possible for the rigid-body trajectory to

produce future point-plane contacts, e.g., it may spin around and

hit again, we do not consider these subsequent impacts following

large motions to be part of the restitution analysis. Another issue

is that modal energy loss/gain due to numerical integration can

lead to violation of our energy bound, and thus produce collision

bound inaccuracies. However, these are minimized by our use of

small timesteps and the symplectic Euler integrator, not to mention

the highly conservative nature of the collision bound.

3.5 Fast Restitution Analysis Algorithm

Our method for eiciently estimating the COR for a given (X ,N )

is summarized in Algorithm 1. Note that quantities such as x , v ,

J , q̇r iдid , Ei , are always evaluated using the current (q, q̇) state.
The timestep size ∆t is selected to adequately resolve the highest-

frequency modal oscillation. A representative restitution analysis

time-series of C (x ) point-plane distance values, and v
r iдid
n normal

velocities are shown in Figure 8.

Algorithm 1: Fast Restitution Analysis

1 Function computeEpsilon()
Input: X , N ,U , ω,M
/* Initialize in contact: */

2 v−n =−1 m
s , v

+

n =0, n=−N , q=
*.
,

0

I

0

+/
-
, q̇=

*.
,

v−nn
0

0

+/
-

3 Rbound =1, ∆Ri =
√
2∥Ui ∥2/ωi , i=1 . . .m.

/* Time-step collisions while BD-bound overlaps: */

4 while C (xr iдid )<Rbound do /* potentially in contact */

5 q̇ += ∆t M−1 fint (q, q̇)
6 if C (x ) ≤ 0 then /* in contact */

7 if v ·n < 0 then /* not separating */

8 λ =−v ·n / nTM−1n /* Compute impulse */

9 q̇ += λM−1n /* Apply contact impulse */

10 v+n =n
T J q̇r iдid /* Cache post-impact speed */

11 Rbound =
∑m
i=1 ∆Ri

√
Ei /* Update BD bound */

12 q←updatePosition(q, q̇, ∆t )

13 return ε=−v+n /v−n
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Fig. 8. Restitution analysis time-series reveal micro-collision events:

(Top) C (x ) normal distance; (Botom) v
r iдid
n rigid-component normal ve-

locities. Dynamics are integrated until the bounded-deformation separation

distance is achieved.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 150. Publication date: July 2017.



150:6 • J-H Wang et al.

4 SAMPLING AND RUNTIME EVALUATION

Now that we can perform one-body restitution analyses to evaluate,

ε (X ,N ), for a speciied contact point X and normal N , we briely

consider how to sample ε over an object’s surface.

Smooth surfaces: When the normal is uniquely deined every-

where as a function ofX , so thatN = N (X ), we can simply tabulate

restitution as a spatially varying function on the surface, ε = ε (X ).

Far from being a global constant, ε (X ) is spatially varying, and we

ind that it exhibits highly nonsmooth behavior even on lat surfaces

(see Figure 9).

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08

Centerline position (m)

0.1

0.2
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0.9

C
O

R

Fig. 9. BounceMaps are not smooth: A high-res sampling of ε (X ) values

on the side (N = const ) of a 20 cm steel rod (shown inset) reveals a

highly nonsmooth function due to complexmicro-collisions in the restitution

analysis (m=140 modes).

Without loss of generality, we densely sample ε at a suitably

ine mesh resolution, sampling X at triangle centroids with N the

triangle normal. At runtime, we use the piecewise constant ε value

on the contact triangle, or locally interpolate to a vertex. Even

smooth surfaces can exhibit signiicant ε variations due to highly

varying normals (see Figure 10).

Fig. 10. Strong normal dependence of restitution values are demon-

strated by bounce-mapped Dragon and Buddha models.

Non-smooth surfaces, such as a cube, complicate sampling because

potential contact normals are not uniquely deined everywhere, and

ε is strongly dependent on the direction of the contact normal (see

Figure 11). The possible contact normals at a point X lie in a cone,

N (X ) ∈ N (X ) that deines a family of possible contact planes. For

non-smooth surfaces, we must therefore parameterize restitution

using both contact position and normal variables, ε = ε (X ,N ). We

generate samples of this function on triangle meshes by sampling

three separate subspaces (illustrated in Figure 12)

(1) Faces are sampled using the single normal (as with smooth

surfaces),

(2) Edges are sampled at multiple directions by interpolating

edge-lap normals,

(3) Vertices are sampled at multiple directions that lie inside

the cone of possible contact normals.

In our examples, we interpolated edge samples at 9 degree intervals,

and vertex samples were selected from 2562 uniformly sampled

spherical directions restricted to the contact cone.

Fig. 11. Sampling normal variations: Restitution values can be strongly

dependent on N , and vary rapidly at sharp features, as demonstrated here

for two steel bars (20 cm long) with diferent end caps. Normal-dependent

ε variations occur (Let) spatially along the smooth spherical end cap, and

(Right) at diferent normals for a single nonsmooth-edge vertex on the

rectangular bar. Notice the pronounced (blue) dip in ε values in both cases.

Fig. 12. Sampling nonsmooth mesh features: (Let) faces are sampled

using a single normal, (Middle) sharp edges are sampled using interpolated

edge-flap normals, and (Right) sharp vertices are sampled using normals

inside the cone of possible contact normals.

Runtime Lookup: Given a runtime query for ε (X ,N ) on a non-

smooth mesh, we require a way to identify, and potentially combine,

nearby samples. We use a simple Euclidean distance metric between

normals by exploiting the fact that unit normals difering by an

angle θ satisfy

∥N − N ′∥2 = 2 sin(θ/2)
θ→0≈ θ , (9)
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and so provides a useful measure of angular variation for nearby

normals. We measure joint position/normal distance using

dist2 ((X ,N ), (X ′,N ′)) = ∥X −X ′∥22 + γ
2∥N − N ′∥22 , (10)

where γ = hx /hθ , and hx is the sampling length scale compatible

with the angular length scale, hθ , used during sampling. Then, given

a runtime query for ε (X ,N ) on a nonsmooth mesh, we irst identify

all samples near X (in a geodesic sense) using the mesh data struc-

ture. We can then generate a piecewise constant approximation to

ε using the value associated with the nearest neighbor using (10).

Alternately we can generate a linear-degree moving least squares

(MLS) approximation [Jin et al. 2009] to more smoothly interpolate

ε values in (X ,N ) space.

5 TWO-BODY RESTITUTION MODEL

We have considered an idealized one-body contact scenario, and

nowwe address the problem of estimating restitution coeicients for

the more complex two-body vibro-impact problem. In this section,

we describe how to compute two-body restitution values (EPS2)

in ğ5.1, and, justiied by numerical experiments, we show in ğ5.2

how to approximate EPS2 values using one-body restitution values

(EPS1) available in Bounce Maps.

5.1 Two-body Point-Contact Solver

It is straightforward to generalize the single-point plane contact

solver from ğ3 to the two-body case. Given two bodies, A and B,

and two proxy contact points, xA and xB , we replace the one-body

unilateral contact condition (7) by

C (xA,xB ) = n
T (xA − xB ) ≥ 0, (11)

where n is the ixed contact normal, and the bodies are oriented to

be in contact, e.g., with opposing contact point normals. Following

standard notation for the lexible multibody problem [Kaufman et al.

2008], the same equations from before apply with suitable substi-

tutions, e.g., the generalized velocity vector is the concatenation

of each body’s velocity vector, q̇ = (q̇A, q̇B ) ∈ R(mA+mB+12) , the

Jacobian matrix is J = [JA −JB ] ∈ R3×(mA+mB+12) , the mass ma-

trix is the block-diagonal extension, the generalized normal is still

n = JTn, etc. The BD bound is now the sum of each body’s Rbound
value.

Discussion: The two-body contact solver (direct generalization

of Algorithm 1) can used to compute restitution values between

any pair of points, and we use it to explore this interesting function.

However, for precomputation strategies, since EPS2 mapping would

have to be performed pairwise, between each pair of points, on each

pair objects, it has an undesirable quadratic precomputation cost

and runtime storage. Furthermore, it requires all object pairs be

processed ahead of time, which can be expensive for many objects.

We therefore propose two practical alternatives:

• On-the-ly COR evaluation using fast two-body restitu-

tion analysis can provide accurate estimates, but requires

special runtime data structures and is not real time.

• EPS Combiners: Approximate EPS2 values can be ob-

tained by combining EPS1 values, as is common practice;

some possibilities include max, min, arithmetic mean, har-

monic mean, etc. In the following section, we investigate

how Bounce-Mapped EPS1 values should be combined for

best results.

5.2 EPS-Combiner Investigation

In this section, we explore mathematical models for combining two

one-body EPS1 values, εi and εj , to approximate the true two-body

EPS2 value,

εi j ≈ F (εi , εj ), (12)

where we refer to the function, F , as an łEPS combiner.ž Such a

model is a huge simpliication of the underlying contact dynamics,

but is useful in practice because it enables real-time evaluation using

precomputed Bounce Maps.

Candidate EPS combiners: We consider all combiners satisfying

the following design criteria:
Unity: F : [0, 1] × [0, 1]→ [0, 1]

Symmetry: F (εi , εj ) = F (εj , εi )

Monotonicity: ∂iF ≥ 0, ∂jF ≥ 0

Identity: ε = F (ε, ε ),
where the last Identity follows by considering mirror contact prob-

lems (see Figure 13). In addition, we only consider non-parametric

models, so as to not introduce additional object-speciic parameters

that must be determined. We consider seven candidate models: max,

min, means (arithmetic, geometric, harmonic), and łlippedž com-

biners 1 − F (ε̄i , ε̄j ) (where ε̄ ≡ 1 − ε) which yield lipped geometric

and harmonic means (see equations in Table 1).

Fig. 13. Mirrored restitution problems: Our one-body restitution analy-

sis with a rigid planar surface can be interpreted as a two-body problem for

a perfectly symmetric configuration. Both the virtual (Let) and real (Right)

objects see one-body EPS1 values of ε , and the simultaneous two-body EPS2

simulation will also result in ε . Consequently, EPS combiners should satisfy

the Identity relationship, ε = F (ε, ε ).

EPS2 Dataset: Using the two-body point-contact solver from ğ5.1,

we numerically investigate the candidate EPS combiners for several

models. Speciically, we computed self-collisions between an object

and a copy of itself. For each object, we generated 200 sample loca-

tions that provided an approximately uniform sampling of Bounce

Map ε values. For each pair of selected contact points, i and j, we

perform a two-body restitution analysis to obtain εi j (exploiting

symmetry); in our dataset, we compute 40000 two-body COR values

per object. We plot εi j as a function of εi and εj in Figure 14.
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Fig. 14. Two-body restitution coeicients, εi j , ploted as a function of εi and εj values, reveal complicated distributions (ε jet colormap identical to

previous plots). Each two-body restitution coeficient was computed by colliding each object with a copy of itself at 40000 (i, j ) vertex pairs, with known εi
and εj values spanning the available range.

Model Name F (εi , εj ) Dragon Buddha RectBar Rod FrenchCurve Bunny <Error>

Arithmetic mean (εi + εj )/2 0.096 0.106 0.114 0.108 0.092 0.174 0.115

GeometricFlipped 1 −
√

ε̄i ε̄j 0.067 0.109 0.124 0.119 0.084 0.221 0.121

Geometric mean
√
εiεj 0.121 0.127 0.117 0.112 0.103 0.166 0.124

HarmonicFlipped 1 − 2/(1/ε̄i + 1/ε̄j ) 0.077 0.123 0.136 0.136 0.090 0.239 0.133

Harmonic mean 2/(1/εi + 1/εj ) 0.144 0.148 0.128 0.124 0.115 0.161 0.137

Min min(εi , εj ) 0.208 0.196 0.152 0.158 0.154 0.152 0.170

Max max(εi , εj ) 0.128 0.176 0.190 0.198 0.143 0.276 0.185

Table 1. EPS-Combiner ℓ1 itting error for two-body experiments sorted by average ℓ1 error (far right column). Bold values indicate the lowest error for

each column. The arithmetic mean is the best model for this dataset of 240000 (=6*40000) two-body contact simulations.

Tip Impact “Sweet spot” Heel Impact

Fig. 15. Hockey passes reveal an interesting two-body restitution phenomena: the bouncy blade łtipž and łheelž locations (indicated) cause a fast-moving

puck (ε =0.12) to rebound far more than when impacting the less bouncy łsweet spotž at the center of the blade. Pucks are shown at impact locations, and

rebound locations at a fixed time later, for each scenario. Two-body restitution values are computed using an arithmetic average EPS-combiner.

And the best combiner is... For each object and candidate combiner

model, we compute the average ℓ1 itting error over all samples (see

Table 1). Interestingly the arithmetic average is the best predictor

for the nearly quarter million εi j values considered, with an average

εi j error of about 0.1, or approximately 10% impulse error, which

is at the limits of human perception for collisions [O’Sullivan et al.

2003]. An illustrative łhockeyž example is shown in Figure 15.

6 EXTENSIONS

Damping and Plasticity: The estimated restitution values essen-

tially represent the maximum values we might expect in the absence

of other dissipative factors, such as internal damping, plasticity, and

friction. While the last two phenomena are beyond the scope of

this paper, we can easily add internal damping to our simulations

by modifying the modal oscillator’s internal force accordingly. For

example, adding stifness-proportional Rayleigh damping leads to

q̈i = −ω2
i (qi − βq̇i ). The dependence of ε on β is illustrated in

Figure 16, and is itself quite complex. One practical alternative to

modeling plasticity and damping efects for graphics practitioners

is to precompute the undamped ε (X ,N ) map, so as to capture in-

teresting spatial variation due to the shape, then simply scale the

map values as αε , where α ∈ [0, 1], to achieve the desired level of

attenuation.

Friction: It is straightforward to incorporate a Coulomb friction

model into the point-plane contact problem, and thus compute

ε (X ,N , µ ) values using an appropriate solver, e.g., [Kaufman et al.

2008]. Since normal impulses will excite tangential velocity compo-

nents in the modal vibrations, adding friction can result in increased

dissipation, and tend to produce smaller restitution values. Unfor-

tunately, since µ is a pairwise property of two contacting surfaces,

it leads to complications similar to those of eiciently computing

EPS2. This problem is likely to be more complicated since object

features that lead to surface friction are less well understood. We

leave this for future work.
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Fig. 16. Restitution versus stifness-proportional damping: Using the

classic rod impact example from [Stoianovici and Hurmuzlu 1996], we

demonstrate the dependence of ε on internal elastic damping by vary-

ing the stifness-proportional damping, β . For extremely large values of β

we see noticeable drops in ε . Notice increasing damping generally tends to

reduce ε , there are some points where it actually increases. (m=90 modes)

Symmetry: Preserving symmetry is an important desideratum

for rigid-body simulation (SYM from [Smith et al. 2012]). Tabulated

bounce maps for symmetric objects may or may not be symmetric

due to surface or volume meshing diferences, interpolation error,

etc. However, we can preserve symmetry and reduce the precompu-

tation costs by exploiting symmetry in our preprocess and runtime

lookup. Prior to restitution analysis, we compute the object’s symme-

try groups (n-way, mirror, cylindrical) using the moment-function of

[Martinet et al. 2006], then, similar to [Langlois et al. 2014], we iden-

tify a minimal symmetry patch of the surface. We then sample the

representative patch using appropriate smooth or nonsmooth sam-

pling methods. At runtime, Bounce Map evaluation is done by irst

transforming (X ,N ) to a representative patch location (X ′,N ′),
and then returning the interpolated value ε (X ′,N ′). In this way, we

can reduce analysis costs, and enforce joint ε/object symmetry.

7 RESULTS

Model and sampling statistics are given in Table 2 for all examples.

Bounce Maps for various geometric models were shown previously

in the paper for the letters (Fig 1), spring (Fig 4), and the Bud-

dha and Dragon (Fig 10). Additional Bounce Maps are shown for

rod-like objects in Figure 17, and in Figure 19 for various objects.

Smoothness properties, and spatial and angular structure of ε (X ,N )

were demonstrated earlier in Figures 3 and 9. One-body restitution

ground-impact examples are shown in the supplemental video for

a ruler (with α attenuation) and a baseball bat, and demonstrate

dramatic variations due to bounce mapping. Nontrivial two-body

EPS-combiner examples are shown for (a) ruler-table impacts in Fig-

ure 24, (b) interesting puck rebounds from a hockey stick depending

on impact location (see Figure 15), and (c) dropping BOUNCE letters

in Figure 2. Please see our accompanying video for animated results

and additional footage.

Implementation: In our C++ implementation, the fast restitution

analysis method is pleasantly parallel and allows rapid evaluation of

Fig. 17. Bats and bars: (Let) We observe that long rod-like objects tend

to have more bounce (orange/red) near their middle, and characteristic

łdead zonesž (in blue) toward their ends. The baseball bat has some notable

responses, including a very bouncy end cap (see video for demonstration).

In addition, while baseball bat and ball contact interactions can involve

complicated conforming contact, it is interesting to see that the CORminima

(dark blue) in the much-simplified single-body bounce-map analysis roughly

land in the region of a bat’s actual łsweet spot.ž (Right) Strong angular

variations can be observed on the end caps of each rod, with the highest

value at the center (corresponding to θ =90o for the smooth rod).
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Fig. 18. Convergence of restitution analysis versus the number of

modes,m is shown for diferent models. Observe that restitution values

for low-mode-count models tend to underestimate ε .

Bowl French curve Femur bone

Cup Wrench Hammer

Fig. 19. Bounce maps for smooth geometry: The sharp rims of the sym-

metric bowl and cup models have additional nonsmooth edge samples (not

shown). The bone, wrench and hammer examples have similarities to other

rod examples (see Figure 17).

ε samples. Since each ε (X ,N ) computation only requiresO (m) data

to compute the object’s dynamics independently at O (m) lops per

timestep, it each be trivially parallelized. We computed millions of ε

values on a single workstation (dual Intel Xeon E5-2690V3 2.6GHz
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Surface Mesh Tetrahedral Volume Mesh ε Samples ε Statistics

Name Vertices Triangles Vertices Tetrahedra Vertex Edge Face min(ε) max(ε) avg(ε)

Bunny 112912 225820 30464 130503 0 0 225820 0.149891 1 0.650141

French Curve 87826 175652 58184 247490 11084 127956 175652 0.057375 0.91785 0.579018

Dragon 156836 313672 97004 415903 0 0 313672 0.000424 1 0.573

Flat Spring 50642 101280 208673 855037 0 0 101280 0 1 0.671125

Buddha 99934 199896 365644 1596938 0 0 199896 0.081336 0.994896 0.533583

Baseball Bat 127746 255488 9665 37600 0 0 255488 0.069281 0.956061 0.636968

Rod 151170 302336 49342 205353 0 0 302336 0.109042 0.8551 0.576428

Rectangular Bar 24802 49600 44321 240000 2696 19200 49600 0.11027 0.849087 0.560266

Bowl 247990 495976 118740 423879 0 0 495976 0.185017 1 0.755548

Bowling Pin 8962 17920 9390 39666 0 0 17920 0.176574 0.911379 0.62008

Femur Bone 79066 158128 2903 10836 0 0 158128 0.054912 0.912503 0.593628

Cup 59341 118678 89962 374780 4933 22760 118678 0.318098 0.967689 0.730247

Wrench 193492 386984 8317 30718 11060 1078738 386984 0.039464 0.920994 0.613731

Hammer 80384 160760 82904 350381 15321 414051 160760 0.000001 1 0.502898

"B" 9357 18718 19276 82366 0 0 18718 0.352972 0.944619 0.745858

"O" 8303 16606 16870 71923 0 0 16606 0.258659 0.927492 0.776712

"U" 7229 14454 14596 61374 0 0 14454 0.093109 0.909523 0.579912

"N" 8414 16824 17443 74712 0 0 16824 0.088812 0.949161 0.568093

"C" 7096 14188 14371 61134 0 0 14188 0.107234 0.940146 0.567126

"E" 8406 16808 16839 70868 0 0 16808 0.12469 0.955651 0.573654

Ruler 10974 21944 13509 41408 0 0 21944 0.124216 0.912349 0.553389

Table 28996 57988 48842 188592 1293 2404 3773 0 1 0.559098

Hockey Stick 56506 113008 106610 439458 57307 141332 113008 0.028524 0.982618 0.587974

Table 2. Model statistics including surface triangle mesh used for contact sampling; volumetric mesh used for modal analysis; number of ε samples on faces,

edges and vertices; and basic ε statistics. All examples were processed with mass density ρ = 2000 kд/m3, Young’s modulus E = 7.0 × 1010, Poisson’s ratio
ν = 0.3, andm = 45 modes.

12-core processors). Unless stated otherwise, we interpolated vibra-

tion modes of the volumetric model onto uniform triangle meshes,

then evaluated ε values at face centroids, and (if nonsmooth) at

vertex and edges; processed models used at leastm=45 modes (see

the discussion of convergence against mode count below), unless

otherwise stated.

Performance of fast restitution analysis: Quoting for the bunny

model (m=45 modes) we observe 254s / 10000 samples in serial, and

12s / 10000 samples in parallel (48 threads). For any speciic contact

sample, the number of timesteps taken (with ∆t =0.1µs) varied over

a large range, from 400 to 14000 timesteps, and thus the contact

duration varied from 40µs to 1.4ms . We observe that long contact

times are also correlated with high ε values (see Figure 20). Non-

smooth models can take longer due to angular sampling, and were

not processed in the majority of our examples. Runtime lookup costs

for Bounce Map values are negligible for smooth models, whereas

nonsmooth surfaces depend on the cost of local interpolation and

the density of sampling.

Comparison to SH96: Our simulation produces qualitatively simi-

lar results to [Stoianovici and Hurmuzlu 1996] for a 20mm steel rod

without (Fig 3) and with damping (Fig 16). However, their particular

setup had slightly diferent settings, such as rod-slab friction, which

may make the curves difer slightly.

Fig. 20. Contact duration, τ , (Let) ranged from 40µs to 1.4ms for this steel

bunny (ploted here as log10 (τ )). (Right) We observe that high restitution

values are correlated with longer contact durations (225k samples shown),

and tend to occur at more compliant features of the model. For example,

the bunny’s ears are very compliant and also have the highest ε values,

suggesting that their long contact periods allow vibrational energy to be

converted back into rigid-body motion efectively.

Convergence of the restitution analysis: Convergence as a function

of modes, m, has been explored for diferent models. All models

converged quickly (see Figure 18). We found that using m ≈ 50

results in a good trade-of between preprocessing speed (∼ O (m))

and bouncemap accuracy (e.g. error inmean ε between usingm = 50

andm = 300 are 0.037 for the letter ’B’, 0.022 for the rod, and 0.103

for the bunny).
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Convergence (Conservative vs breaking contact impulses): Our resti-

tution analysis generates inelastic breaking impulses (λ) and will

thus generate ε=0 values form=0 modes, then generally increase

with increasingm. However, to model an energy-conserving system,

one could use an elastic impulse (2λ) instead, which will produce

ε =1 form=0 modes, then generally decrease asm increases. We

compare these two approaches in Figure 23, and note that breaking

impulses are preferrable.

Parameter Dependence: We demonstrate the weak dependence of

estimated restitution values on several parameters used in the pre-

process: (a) the elasticity material parameters ρ and E (see Figure 21),

and (b) the initial normal impact velocity, v−n (see Figure 22). We

acknowledge that changes in Poisson’s ratio ν can lead to changes

in mode shape, that can afect restitution values.

Baseline
-0.01

0.01

Fig. 21. Weak dependence on material parameters is demonstrated for

mass density, ρ , and Young’s modulus, E . We observe less than 1% change

in ε while varying the parameters over an order of magnitude around the

default łsteelž-like material. More extreme variations, e.g., very low E or

very high ρ , could lead to violation of the rigidity assumption. (#modes=50)
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Fig. 22. Weak dependence on impact velocity,v−n : In Algorithm 1, recall

that we set the pre-impact normal velocity to be v−n =−1 m
s . However, we

demonstrate that restitution values generated by our model have very weak

dependence on v−n over a wide range of relevant speeds, as shown ploted

here for six contact locations on the bunny object. (#modes=45)

8 CONCLUSION

We have proposed an eicient method for sampling the coeicient

of restitution ε over the surface of an object, and enabling cheap

runtime evaluation for impact events in commodity rigid-body sim-

ulators. The key insight is that signiicant variation in ε is due to
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Fig. 23. Convergence of restitution analysis using elastic vs inelastic

impulses: Both methods approach similar ε values asm → ∞, but start
from ε =1 and 0 (whenm=0), respectively. However, the conservative case

has noisier convergence, and requires much smaller time-steps for compa-

rable accuracy, e.g., 100x-1000x smaller, and so we use breaking impulses.

vibration loss during rapid but complex micro-collision events, and

that these processes can be eiciently simulated in parallel to map

the surface’s bounciness. We believe that such techniques provide a

simple and practical way to improve the realism of rigid-body ani-

mations in computer graphics. Beyond graphics, the development

of more accurate restitution models will be of wide use in scientiic

and engineering contact analysis.

Limitations and Future Work: Classical rigid-body impact with

restitution is an enormous simpliication of the highly complex in-

teractions that occur between impacting stif bodies. Despite our

contributions, our problem is also an over simpliication of a truly

messy problem. Our analysis is based purely on elastic vibrations,

possibly with damping, and can recover interesting spatial varia-

tions. However, the accurate estimation of restitution for a speciic

model would require detailed modeling of the material properties,

and friction. We have proposed a single-body preprocess to ap-

proximate ε and thereby enable a practical precomputation-based

solution, however it is inherently a complex two-body impact prob-

lem, and single-body EPS combiners provide only an approximate

solution. Friction is important in vibrational impact, and further

complicates eicient preprocessing methods. Plasticity (and ma-

terial nonlinearity) is an important source of energy loss during

hard impacts, as is dependence on normal velocity magnitude. We

have assumed that v−n arises only due to translational velocity, how-

ever nonzero angular velocity contributions do introduce a slight

additional variation. We have considered stif materials, such as

steel, in our precomputation, however the restitution model and

analysis become less applicable for softer objects, e.g., due to large

deformations. Bounce maps have highly unpredictable spatial and

angular structure, and it is diicult to know a priori what resolu-

tion is suicient for the functions. We have used a simple uniform

mesh sampling scheme, but more attention should be provided to

adaptive sampling schemes. The method is highly parallel with a

low memory footprint, and is an ideal candidate for GPU accel-

eration. Finally, recent work in granular matter has explored the
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Initial Condition First Contact Clatter Highest Bounce

Fig. 24. Two-body impact animation (let to right) between bounce-mapped ruler and table models, computed using EPS-combiner restitution coeficients.

Two very diferent responses occur for ruler impacts near (Top) the very bouncy table center versus (Botom) an of-center location. The highest rebound

height (far-right frames) is clearly greater for the table center case.

tangled connection between normal COR, tangential COR, and fric-

tion [Doménech-Carbó 2014], which remain to be explored in the

setting of vibrational restitution analysis.
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