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ABSTRACT
For wireless sensor networks, received signal strength (RSS)
and proximity (also known as connectivity) measurements
have been proposed as simple and inexpensive means to es-
timate range between devices and sensor location. While
RSS measurements are recognized to suffer from errors due
to the random nature of the fading channel, proximity mea-
surements, ie., knowing only whether or not two devices are
in communication range, are often discussed without con-
sidering that they are affected by the same fading channel.
Proximity measurements are actually just a binary quantiza-
tion of RSS measurements. We use the Cramér-Rao bound
(CRB) to compare the minimal attainable variances of un-
biased sensor location estimators for the cases of RSS and
proximity measurements. For completeness, we also present
the CRB for sensor localization with systems using K-level
quantized RSS (QRSS) measurements, of which proximity
measurements are the special case: K = 2. Examples are
presented for the case of one unknown-location sensor, and
for the case of a 5 by 5 grid of sensors. These examples show
that lower bounds for standard deviation in proximity-based
systems are, as a rule of thumb, about 50% higher than the
bounds for RSS-based systems. Furthermore, results are
presented which show how many bits of quantization are
necessary for a QRSS-based system to nearly achieve the
bounds of an unquantized RSS system.
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1. INTRODUCTION
Emerging applications of wireless sensor networks will de-

pend on automatic and accurate location of thousands of
sensors. In environmental sensing applications such as wa-
ter quality monitoring, precision agriculture, and indoor air
quality monitoring, “sensing data without knowing the sen-
sor location is meaningless”[22]. In addition, by helping re-
duce configuration requirements and device cost, estimation
of sensor location in wireless sensor networks may enable
applications such as inventory management [9], intrusion
detection [15], traffic monitoring, and locating emergency
workers in buildings. Finally, knowing the relative locations
of sensors allows use of location-based addressing and rout-
ing protocols, which can improve network robustness and
energy-efficiency [12].

Constrained by cost, energy, and low-configuration re-
quirements, wireless sensor networks pose new challenges for
location estimation. The literature reflects widespread inter-
est in developing the technologies needed to achieve location
estimation in wireless sensor networks [1][24][30][27][8][15]
[17][21].

Location accuracy requirements vary with the application.
For applications as diverse as mentioned above, many dif-
ferent requirements exist. For high accuracy sensor loca-
tion, measuring time-of-arrival (TOA) and angle-of-arrival
are preferred. Ranging via TOA has been implemented with
UWB [9], wideband CDMA [13], acoustics [16], and a com-
bination of RF and ultrasound [10][26]. Range accuracy on
the order of centimeters has been reported. However, TOA
and AOA methods typically add to the size, cost and energy
requirements of each device.

When low cost takes precedence in priority over accu-
racy, localization using RSS and proximity measurements
are popular. Many receivers are equipt to measure the RSS
of incoming packets for other purposes, such as automatic
gain control or transmit power control. Proximity is just
a binary variable which is one if a packet transmitted by
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one device can be received by another device, and zero if
not. Since messages necessarily pass between neighbors,
there is no additional bandwidth required to measure RSS
or proximity. In RSS, the measured received power and the
known transmit power are used to determine the channel
path loss. Although the path loss is also affected by un-
predictable shadowing and frequency-selective fading, path
loss is highly correlated with path length. Location esti-
mation using RSS has been researched and simulated for
wireless sensor networks in [18][28][3][14] and demonstrated
in [21][20][2].

Proximity measurements simply report whether or not
two devices are ‘connected’ or ‘in-range’. However, the term
‘in-range’ may mislead readers to believe that proximity is
purely a function of geometry - whether or not two devices
are separated by less than a particular distance. In real-
ity, proximity is determined by whether or not a receiver
can demodulate and decode a packet sent by a transmitter.
Given the received signal and noise powers, the successful
reception of a packet is a random variable. Furthermore,
the received signal power is a random variable due to the
same channel fading effects mentioned for RSS above. Yet
proximity carries considerable information regarding sensor
location in a binary variable. Proximity has been used by
numerous researchers for localization in ad hoc networks and
wireless sensor networks [29][8][17][18][5][6].

Much past research has used simulation and experimen-
tation to quantify how accurately location can be estimated
using proximity measurements. Yet, to our knowledge, the-
oretical lower bounds on location estimation error have not
been presented. In this paper, we derive the Cramér-Rao
bound (CRB), which provides a lower bound on the vari-
ance for any unbiased location estimator. The CRB has been
widely used to provide bounds for location estimation in sen-
sor networks when the measurements are TOA and AOA
[16][25], and when measurements are either TOA or RSS
[19][20]. In this paper, we present the CRB for both prox-
imity and K-level quantized received signal strength (QRSS)
measurements. Comparing proximity and RSS bounds al-
lows us to determine the performance loss associated with
proximity as compared to the performance of RSS. Further-
more, since proximity measurements are just a binary quan-
tization of RSS, we can use the K-level QRSS result to see
how the performance improves as K is increased beyond 2.
Finally, we can judge how many quantization levels in QRSS
are needed to approach the performance of localization using
RSS measurements.

2. MEASUREMENT MODELS
Wireless sensor networks are made up of peer-to-peer links

between devices. Pair-wise measurements can be made from
any of these links, but only a small fraction of devices have a
priori coordinate knowledge. Thus measurements are made
primarily between pairs of devices of which neither has known
coordinates. We call devices with a priori coordinate knowl-
edge ‘reference devices’ and those without ‘blindfolded de-
vices’ since they cannot ‘see’ their location. Specifically,
consider a network of m reference and n blindfolded devices.
The device parameters are γ = [z1, . . . , zm+n] where, for a
2-D system, zi = [xi, yi]

T . The relative location problem
corresponds to the estimation of blindfolded device coordi-

nates, θ = [θx, θy],

θx = [x1, . . . , xn], θy = [y1, . . . , yn] (1)

given the known reference coordinates [xn+1, . . ., xn+m,
yn+1, . . ., yn+m], and pair-wise measurements {Xi,j}, where
Xi,j is a measurement between devices i and j.

To be general, we allow for the case when devices make
incomplete observations, since the network may have lim-
ited link capacity. For example, the pairwise measurements
might be made using a slotted ALOHA protocol. A cen-
tralized device which knows the packet transmission times
of each device might decide not to use certain pairwise mea-
surements which could have been tainted by multi-user in-
terference (MUI). Let H(i) = {j : device j makes pair-wise
observations with device i}. By convention, a device cannot
make a pair-wise observation with itself, so that i /∈ H(i).
By symmetry, if j ∈ H(i) then i ∈ H(j).

2.1 Channel Fading Models
All of the types of measurements considered in this pa-

per - RSS, K-level QRSS, and proximity - are subject to
the deleterious effects of a fading channel. Received signal
strength is attenuated by large scale path losses, frequency
selective (a.k.a. small-scale) fading, and shadowing losses
[11]. Large-scale path loss is the effect that we wish to mea-
sure - it is the deterministic reduction in power as a function
of distance between the transmitter and receiver. Frequency
selective fading is due to multipath - the multiple attenuated
and time-delayed signals that add together at the receiver.
At a particular frequency, each signal’s time delay translates
into a phase shift, and the sum of the multiple signals as a
result adds either constructively or destructively. This fad-
ing is correlated over frequency. However, if RSS measure-
ments are made at multiple frequencies spaced further than
the correlation bandwidth of the channel, the correlation be-
tween the measurements is small, allowing the variance of
the average RSS to be reduced. Note that many wireless
sensors will be spread-spectrum, either direct-sequence or
frequency-hopping spread-spectrum (DS-SS or FH-SS), and
thus will be capable of averaging out frequency-selective fad-
ing.

Shadowing is the loss incurred as a signal passes through
permanent obstructions (eg. buildings, walls, windows, and
furniture) which are in the environment between the trans-
mitter and receiver. For mostly stationary devices such as
wireless sensors, shadowing losses cannot be countered by
averaging over frequency. Some movement (eg. people,
doors, chairs) can change the channel over time, allowing
time-averaging to help reduce fading, but the majority of
shadowing effects are constant over time. There is both
experimental and theoretical evidence that these shadow-
ing losses are well-modeled as log-normal random variables
[7][11][23]. Although frequency-selective fading effects are
typically not modeled as log-normal, we assume that the
system designer has averaged enough so that their impact
on the overall distribution of fading is not significant. Since
this goal of this paper is to present the best performance
possible, it is reasonable to make this assumption about the
system design. As will be discussed in the next section, mea-
surements of RSS in peer-to-peer networks in [21] and [20]
do not violate the log-normal assumption.

Note that shadowing is not assumed to be an ergodic ran-
dom variables – in fact, obstructions in the measured envi-
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ronment that cause shadowing do not usually change over
time. The CRB presented in this paper provides a lower
bound on the ensemble variance over different random shad-
owing environments. If networks with the same relative de-
vice coordinates are implemented in many different places,
the variances of any unbiased coordinate estimator will be
lower bounded by the CRB presented in this paper.

2.2 RSS Measurements
In the RSS case, Xi,j = Pi,j is the measured received

power at device i transmitted by device j (in mW). We
assume that Pi,j is log-normal, thus the random variable
Pi,j(dBm) = 10 log10 Pi,j is Gaussian,

Pi,j(dBm) ∼ N (P̄i,j(dBm), σ2
dB) (2)

P̄ij(dBm) = Π0(dBm)− 10np log10(di,j/∆0)

where P̄i,j(dBm) is the mean power in dBm, σ2
dB is the vari-

ance of the shadowing, and Π0(dBm) is the received power
at the reference distance ∆0. Typically ∆0 = 1 meter, and
Π0 is calculated from the free space path loss formula [23].
The path loss exponent np is a function of the environment.
For particular environments, np may be known from prior
measurements. Although we derive the CRB assuming np

is known, the CRB could just as well be derived assuming
that np is an unknown ‘nuisance’ parameter.

In [20], we verified the log-normal distribution assump-
tion by making RSS measurements with a DS-SS transmit-
ter and receiver in a network of 44 device locations (for a
total of 946 pair-wise RSS measurements). We considered
Pi,j(dBm) − P̄ij(dBm), ie., the attenuation of the channel
that is attributable to frequency-selective fading and shad-
owing. The distribution of Pi,j(dBm) − P̄ij(dBm) is com-
pared to the Gaussian distribution in a quantile-quantile
plot in Fig. 1, which it matches well.
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Figure 1: Quantile-quantile plot of Pi,j(dBm) −
P̄i,j(dBm) for RSS data (· · · ) measured in [20],com-
pared with a Gaussian N (0, 1) distribution. If data
were perfectly Gaussian, they would match the solid
line.

When discussing RSS measurements in this paper, we do
not consider that there is a lower detection threshold for
received power. This is done to distinguish RSS and prox-
imity, which does have a detection threshold. For the exam-
ples presented in this paper, we assume that the distances

between devices (or the transmit powers) are such that RSS
can be measured between any pair of devices. A hybrid
system was considered in [21], in which RSS measurements
can fall below a detection threshold, and the out-of-range
information is used in a location estimator.

2.3 Proximity Measurements
In the case of proximity measurements, Xi,j = Qi,j is

equal to 1 if devices i and j are in range, and is 0 if not. As
discussed in the introduction, ‘in range’ and ‘out-of-range’
are ambiguous, so we must define proximity clearly. In this
paper, we define device i to be in-range of device j if the
received power at j transmitted by i, Pi,j , falls below a
power threshold P1. Thus,

Qi,j =

{
1, Pi,j ≥ P1

0, Pi,j < P1
(3)

In reality, being in-range of another device is not a step
function of received power. In a real system, two devices
are considered in-range if one can correctly decode a packet
transmitted by the other. An additional source of variation
in proximity measurements is the randomness of packet er-
rors given the received power level. Thus in reality, given
received power Pi,j , proximity Qi,j ∈ {0, 1} is a binary ran-
dom variable, such that

P [Qi,j = 1|Pi,j ] = P [No Packet Error|Pi,j ] (4)

where the probability of a packet error is a function of
the type of signalling and forward error correction (FEC)
used, packet length, and whether the receiver is coherent
or non-coherent. If we used (4) to define proximity, all of
these details of the transceiver implementation would be re-
quired in order to calculate the CRB. Instead, by using (3)
we can present a bound that is independent of signaling,
packet length, and receiver implementation. Since (3) re-
moves some variability from the measurement model, the
calculated CRB is conservative: it does in fact provide a
lower bound for a proximity system.

Finally, we note that the assumption in (3) will not loosen
the bound significantly for digital receivers in typical fading
channels. For digital receivers, there is a large range of re-
ceived powers for which the probability of packet error is
very close to zero, and a large range of power for which the
probability is very close to one. The range of power for
which P (E) is neither close to one or zero is small in com-
parison. Fig. 2 plots P [No Packet Error|Pi,j ] from (4) for
a packet of 200 bits and a coherent BPSK receiver without
FEC. For comparison, Fig. 2 also plots the CDF of received
power under a log-normal model with standard deviation of
8 dB, which is a typical value for indoor channels [23]. We
can see that the variation caused by the fading channel is
significantly more severe than that caused by the random-
ness of packet errors given the received power level.

Given the definition of proximity in (3) and the model
for Pi,j in (2), it can be shown that the probability mass
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Figure 2: Two plots relating to the variation in prox-
imity measurements: (- - - -) the CDF of Pi,j in dB
above P̄i,j , and (——) the probability of no packet
error given Pi,j in dB above Pthr (for a packet of 200
bits and a coherent BPSK receiver without FEC).

function of Qi,j given the coordinates of devices i and j is

P [Qi,j = s|zi, zj ] = s + (−1)sΦ [gi,j(1)] , (5)

gi,j(s) =
√

b ln
‖zi − zj‖

ds
(6)

b =

(
10np

σdB log 10

)2

, (7)

‖zi − zj‖ =
√

(xi − xj)2 + (yi − yj)2, (8)

where s ∈ {0, 1}, and ds is the path length at which the
mean received power is Ps, ie., the communication ‘range’.
Specifically, from (2),

ds = ∆010
Π0(dBm)−Ps(dBm)

10np . (9)

The function Φ(x) is the CDF of a univariate zero-mean
unit-variance Normal distribution.

2.4 Quantized RSS Measurements
As noted in the introduction, proximity measurements are

just a binary quantization of RSS measurements. For more
generality, we consider an arbitrary K-level quantized re-
ceived signal strength (QRSS) system. For example, con-
sider a transmitter which has the option of using a power
amplifier (PA). The transmitter could send a packet twice
- once using the PA, and once without. Assuming a sta-
tionary channel during the two measurements, one of three
results are possible, essentially resulting in a single 3-level
QRSS measurement.

Also, consider that real-world RSS measurements are al-
ways going to be quantized. If there are very many levels,
then the effect of the quantization is minimal. However, if
an A/D converter is used to quantize an analog measure
of received power, the complexity of the A/D increases lin-
early with the number of levels. Determining the acceptable
granularity of measured RSS will be valuable in minimizing
receiver complexity.

Expanding on the model for proximity measurements, we
define K levels numbered 0 through K − 1. For a particular

system, we define the threshold powers Ps, s ∈ {1, . . . , K−1}
to be the minimum power in level s. Similarly, we define ds

to be the path length at which the mean received power is
equal to Ps, as in (9). Thus, a measurement of Qi,j = s
would occur if Pi,j ∈ [Ps, Ps+1). Similarly, Qi,j = s would

occur if d̃i,j ∈ (ds+1, ds], where

d̃i,j = ∆010
Π0(dBm)−Pi,j (dBm)

10np (10)

Since there is no lower bound for ‘out-of-range’ power (the
lower bound of level s = 0), we define P0 = −∞(dBm).
Similarly, since we would prefer not to define a maximum
measured power (the upper bound of level s = K − 1), we
define PK = ∞(dBm). Using (9), this implies that d0 =
∞ and dK = 0. Note Ps are increasing in s, but ds are
decreasing in s.

Now we can write the probability mass function of QRSS
measurements,

P [Qi,j = s|zi, zj ] = Φ [gi,j(s + 1)]− Φ [gi,j(s)] , (11)

where gi,j(k) is given in (6) and we use the convention that
for 0 < d < ∞, ln d

0
= ∞ and that ln d

∞ = −∞.

3. CRB FOR LOCATION ESTIMATION
Let x̂i and ŷi be unbiased estimators of the coordinates of

the ith device, xi and yi, and define the vector ẑi = [x̂i, ŷi]
T .

We define the location variance of these estimators to be σ2
i ,

σ2
i � tr {covθ(ẑi)} = Varθ(x̂i) + Varθ(ŷi). (12)

Then the Cramér-Rao bound asserts that,

σ2
i ≥

([
Fxx − FxyF

−1
yy FT

xy

]−1
)

i,i
+([

Fyy −FxyF
−1
xx FT

xy

]−1
)

i,i

, (13)

where the Fisher information matrix F is divided into sub-
blocks due to the partition of the parameter vector θ into
θx and θy ,

F =

[
Fxx Fxy

FT
xy Fyy

]
. (14)

The specific form of each sub-block of F is shown below
for the cases when measurements are QRSS or proximity
measurements. For comparison, the CRB using RSS mea-
surements was presented in [19][20].

3.1 CRB for QRSS Measurements
Using the framework presented in [20] and the models

presented in Section 2, we derive in the Appendix that when
measurements are K-level QRSS, the elements of the sub-
blocks of F are given by,

[
Fxx

]
k,l

=

{
b

2π

∑
i∈H(k) hk,i

(xk−xi)
2

‖zk−zi‖4 k = l

− b
2π

IH(k)(l)hk,l
(xk−xl)

2

‖zk−zl‖4 k �= l[
Fxy

]
k,l

=

{
b
2π

∑
i∈H(k) hk,i

(xk−xi)(yk−yi)

‖zk−zi‖4 k = l

− b
2π

IH(k)(l)hk,l
(xk−xl)(yk−yl)

‖zk−zl‖4 k �= l

[
Fyy

]
k,l

=

{
b

2π

∑
i∈H(k) hk,i

(yk−yi)
2

‖zk−zi‖4 k = l

− b
2π

IH(k)(l)hk,l
(yk−yl)

2

‖zk−zl‖4 k �= l
,

(15)
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where b is given in (7), IH(k)(l) is the indicator function, 1
if l ∈ H(k), or 0 if not, and {hi,j} are defined as,

hi,j =
K−1∑
s=0

[
exp

(− 1
2
g2

i,j(s + 1)
) − exp

(− 1
2
g2

i,j(s)
)]2

Φ(−gi,j(s + 1))− Φ(−gi,j(s))
. (16)

Here, g2
i,j(s) = [gi,j(s)]

2 is defined in (6). Compared to the
CRB for RSS measurements presented in [19][20], the terms
of the Fisher information matrix are the same except for the
the term hi,j .

3.2 CRB for Proximity Measurements
Consider the particular case of K = 2, ie., proximity mea-

surements. The CRB for the case of proximity measure-
ments is the same as given in (13) through (15), but now,
hi,j simplifies considerably. The resulting expression is given
by,

hi,j =
exp[−g2

i,j(1)]

Φ [−gi,j(1)] {1− Φ [−gi,j(1)]} . (17)

The term hi,j has a maximum when gi,j(1) = 0, which
happens when devices are separated by approximately the
threshold distance d1. The selection of the threshold dis-
tances {ds} is explored further in the examples in the fol-
lowing sections.

4. EXAMPLE: SINGLE BLINDFOLDED DE-
VICE

Consider the network having blindfolded device 1 and ref-
erence devices 2 . . . m + 1. This example has a single pair
of unknowns (x1, y1), and is equivalent to the system model
presented in [5] for proximity measurements. In addition,
for RSS measurements, this example is equivalent to exist-
ing location systems [4].

For a simple example, consider the case when m = 4 ref-
erence devices are located in the corners of a 1 meter by 1
meter square area. We assume that the blindfolded device
makes measurements with all four reference devices. Fur-
ther, we assume the value of the parameter ratio, σdB/np =
1.7, which was calculated from measurements in [20]. For
the case of RSS measurements, the lower bound for σ1 is
calculated from [20] and plotted as a function of blindfolded
device location in Fig. 3(a). The minimum of the CRB for
σ1 for the case of RSS measurements is 0.27 m, and the
average bound within the square is 0.305 m.

For proximity or QRSS measurements, the bound is a
function of the threshold distances {ds}. For a system using
proximity measurements, designers can select the threshold
distance d1 by changing either the sensitivity of the receiver,
or the transmit power level. A QRSS system additionally
must set ds for s = 2 . . . K − 1, which can be done either
by design of the A/D in the receiver, or by design of the
power amplifier transmit power levels. Other system con-
siderations, for example, network connectivity and energy
efficiency, must also be considered when setting these pa-
rameters. In this paper, in order to present a universal lower
bound, we set d1 and d2 . . . dK−1 as the distances that min-
imize the lower bound σ1. Specifically, we minimize this
bound for the case when the blindfolded device is located in
the center of the square area, ie., z1 = [0.5, 0.5]T m.

4.1 Proximity
Since the blindfolded device is located equidistant from

all of the reference devices, the analytical expression for the
CRB simplifies considerably. In particular, the CRB is min-
imized when d1 is equal to the distance between the blind-
folded device and any of the reference devices, ie., d1 = 1/

√
2

m. In this case, the CRB is given by,

σ2
i ≥ π

4

(
σdB log 10

10np

)2

. (18)

For σdB/np = 1.7, the bound on the standard deviation σi

is 0.3477 m. This is verified graphically in Fig. 3(b), which
plots the bound on the standard deviation of unbiased lo-
cation estimates as a function of the location of the blind-
folded device, while the design parameter d1 = 1/

√
2 m is

kept constant. Furthermore, the average standard deviation
bound within the square is 0.45 m. Note that the average
standard deviation bound using proximity measurements is
48% worse as compared to the bound obtained using RSS
measurements.

4.2 Three-Level QRSS
Next we consider the performance of the system in the

case of K = 3 QRSS measurements. Again, we optimize the
system to minimize the CRB when the blindfolded device is
located at z1 = [0.5, 0.5]T m. It can be shown that the CRB
as a function of the two threshold distances, d1 and d2, is
given by,

σ2
i ≥ 2

f1,1
(19)

f1,1 =
2b

π




exp
[
−b ln2 da

d1

]
Φ
(
−√

b ln da
d1

) +
exp

[
−b ln2 da

d2

]
Φ
(
−√

b ln da
d2

)+

[
exp

(
− b

2
ln2 da

d2

)
− exp

(
− b

2
ln2 da

d1

)]2
Φ
(
−√

b ln da
d2

)
−Φ

(
−√

b ln da
d1

)



where da is the distance between the blindfolded device
and any reference device, ie., da = 1/

√
2 m. The term

f1,1 is equal to FQxx, ie., the Fisher information for the
x-coordinate. Note the notation ln2 x is used to indicate
(ln x)2. As a result of (19), we must select d1 and d2 to
maximize f1,1. For a range of d1 and d2, the Fisher infor-
mation f1,1 is plotted in Fig. 4.

For three cases, the three-level QRSS Fisher information
f1,1 reverts to the two-level proximity Fisher information.
These cases are (1) when d1 = d2, (2) when d1 is very large,
and (3) when d2 is very small. Intuitively, we understand in
any of these three cases, we effectively have only two levels,
and the system reverts to a proximity system. Fig. 4 shows
this graphically. The value of f1,1 along the diagonal d1 = d2

can be seen to be the same as f1,1 along the horizontal line
at the lowest d2, and along the vertical line at the highest
d1.

The maximum of f1,1 occurs for d1 = 0.90 m and d2 =
0.56 m. For these two parameters, the bound on the stan-
dard deviation σi is 0.3076 m when the blindfolded device
is at z1 = [0.5, 0.5]T m. The CRB as a function of blind-
folded device location is plotted in Fig. 3(c). Furthermore,
the average standard deviation bound within the square is
0.37 m.
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Figure 3: Lower bound for σ1 (m) for the single
blindfolded device system vs. the coordinates of the
blindfolded device, in a channel with σdB/n = 1.7,
for (a) RSS, (b) proximity with d1 = 1/

√
2 m and (c)

3-level QRSS with d1 = 0.90 m and d2 = 0.56 m.

0.1 0.4 0.7 1 1.3 1.6
0.1

0.4

0.7

1

1.3

1.6

d , greater threshold distance

d
, s

m
al

le
r 

th
re

sh
ol

d 
di

st
an

ce

Figure 4: The Fisher information f1,1 for the case
of 3-level QRSS when a single blindfolded device
is located in the center of a 1m by 1m square with
reference devices in each corner. The FIM is plotted
as a function of the two thresholds, d2 and d1, which
separate the three QRSS regions. The maximum of
f1,1 (x) is at d1 = 0.90 m and d2 = 0.56 m. Since
d2 ≤ d1, only half of the plot is shown.

Note that in any of the three cases presented in this sec-
tion, the CRB scales with the size of the system. If instead
the square area had sides of length r, and the threshold dis-
tances ds were scaled by r, then the bound on σi would also
be scaled by r.

5. EXAMPLE: DEVICES IN A 5 BY 5 GRID
The previous single-blindfolded device example only tells

part of the story, since most localization research in wire-
less networks has considered networks comprised of many
blindfolded devices [17][18][29][8][26]. As more blindfolded
devices in a network make peer-to-peer measurements with
other devices (either blindfolded or reference), the location
variance bounds decrease across the entire network, regard-
less of the type of measurements [20]. We will show the
relative performance of RSS, QRSS, and proximity measure-
ments in a dense sensor network in the following example.

In this example, devices form a 5 device by 5 device grid in
a 1 by 1 meter square area. As before, there are 4 reference
devices, one at each corner. The spacing between adjacent
devices is 0.25 meters. There are a total of 5 ·5 = 25 devices,
with 25 − 4 = 21 blindfolded devices. The channel is again
assumed to have σdB/n = 1.7, and each device is assumed
to make measurements with all other devices.

Here, we chose to optimize the proximity and QRSS thresh-
olds in order to optimize σ̄, the average standard deviation
of the 21 blindfolded devices,

σ̄ =
1

21

∑
i

σi (20)

5.1 Proximity and 3-Level QRSS
For proximity measurements with this geometry of de-

vices, we find by testing a range of d1 that the lowest av-
erage standard deviation bound across the 21 blindfolded
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Figure 5: The lower bound on the 1-σ uncertainty ellipses in the 5 by 5 grid example when measurements
are RSS (——), 3-level QRSS (- - - -), or proximity (· · · · · · ). Blindfolded devices (•) and reference devices
(×) are located in a 1 by 1 m area.
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Figure 6: The lower bound on average standard de-
viation across all 21 blindfolded devices, as a func-
tion of the threshold distances d1 and d2, for the case
of 3-level QRSS in the grid example. The minimum
bound (X) is 0.1154 m, at the values d1 = 0.63 m and
d2 = 0.29 m.

devices occurs at d1 = 0.38 m. This threshold is used to cal-
culate and plot the proximity location variance bound for
each device in Fig. 5.

For 3-level QRSS, we calculate the CRB for a range of
0.25 ≤ d1 ≤ 1 m and 0 ≤ d2 ≤ 0.5 m (at increments of 0.01
m), as shown in Fig. 6. The minimum bound for σ̄, given by
(20), is found at the values d1 = 0.63 m and d2 = 0.29 m.
These thresholds are used to calculate and plot the 3-level
QRSS location variance bound for each device in Fig. 5.

Using these optimum threshold parameters, the lower bound
for σ̄ (20) is 0.115 m and 0.146 m, in the case of 3-level
QRSS and proximity measurements, respectively. For RSS
measurements, for comparison, σ̄ =0.093 m. The bound for
the proximity case is about 57% higher than the bound for
the RSS case. The results for individual blindfolded devices
are shown graphically by plotting the 1-standard-deviation
uncertainty ellipse for each device in Fig. 5, for the cases of
RSS, 3-level QRSS, and proximity measurements.

5.2 Quantized RSS Beyond 3 Levels
In this section we present results which quantify the de-

crease in the CRB as the number of quantization levels K
increases. For this analysis, we continue to use the 5 by 5
grid of devices in a 1 by 1 m square area. From the previous
section, we know the results for the cases of K = 2 (prox-
imity measurements), K = 3 QRSS measurements, and the
case of RSS measurements, which should match the asymp-
totic performance of QRSS as K → ∞.

For a particular K, we should ideally find the K−1 thresh-
olds {Ps}s=1...K−1 which minimize the bound on σ̄. How-
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ever, as K becomes large, finding a minimum in this K − 1
dimensional space becomes more and more difficult. In ad-
dition, in a real low-cost implementation, the quantization
of RSS is unlikely to be non-uniform. Specifically, RSS is
often quantized on a log scale with a constant granularity in
(dB). Thus it is reasonable to limit the search space to two

parameters: the mean of Ps, ie. P̄ = 1
K−1

∑K−1
s=1 Ps, and

∆P � Ps+1 −Ps,∀s = 1 . . . K − 2. Equivalently, we can use
the geometric mean of ds, ie. d̄ � (

∏K−1
s=1 ds)

1/(K−1), and
the parameter dratio, defined as ds/ds+1,∀s = 1 . . . K − 2.

For these two parameters over wide ranges, we calculate
the CRB for K-level QRSS. At each K, we find the d̄ and
dratio which minimize the bound for σ̄. We repeat this
search for each K, for K = 4 . . . 10. The minimum bound
for σ̄ is plotted as a function of K in Fig. 7. Also shown in
Fig. 7 is the RSS result for the same example, which gives
the asymptotic limit for QRSS. The results show that for
K ≥ 5, the QRSS bound is within 10% of the bound for
RSS. Thus, K-level QRSS rapidly approaches the limits of
RSS as K increases. Interestingly, the value of d̄ which min-
imizes the bound is approximately constant between 0.44
and 0.45 m for K > 3. Thus for a particular geometry of
devices, there may be a rule-of-thumb for the selection of d̄
(or equivalently P̄ ) regardless of the value of K.
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Figure 7: The lower bound on average standard de-
viation across all 21 blindfolded devices, as a func-
tion of the number of quantization levels K, for K-
level QRSS in the 5 by 5 grid example.

6. SIMULATION: ACHIEVING THE BOUND
While the CRB does in fact provide a lower bound, we

have not proven that it is tight. That is, we do not know if
it is possible for any unbiased location estimator achieve the
lower bound with equality. Further analytical research will
be valuable in this regard. However, if we consider particular
location estimators, we can determine their performance via
simulation, and then compare the results to the CRB. In this
section, we consider the performance of the bias-corrected
MLE in the case when measurements are RSS [19][20],

θ̂R = arg min
{zi}

m+n∑
i=1

∑
j∈H(i),j<i

(
ln

d̃2
i,j/C2

‖zi − zj‖2

)2

(21)

where d̃i,j is given in (10), and the factor C is used to counter

the tendency of d̃i,j to overestimate the range between de-
vices i and j. The value of C is given by

C = exp

[
1

2

(
ln 10

10

σdB

np

)2
]

. (22)

For this simulation, we use the 5 by 5 grid of devices, as
described in the previous section. We run 500 trials. In each
trial, we first generate the RSS between each pair of devices,
based on the distribution of (2). Here, we use the parame-
ters n = 2.30 and σdB = 3.92 dB, which were reported from
measurements in [20]. Next, a conjugate gradient algorithm
finds the minimum in (21), and the coordinate estimates are
saved. After all trials are complete, we calculate the mean
and covariance of the saved coordinate estimates. The one
standard deviation (1-σ) uncertainty ellipses are calculating
using the covariance of the vector [x̂i, ŷi]

T , for all i = 1 . . . 21.
The means and the 1-σ uncertainty ellipses are plotted in
Fig. 8 with triangles and solid lines, respectively. For com-
parison, the true device locations and the Cramér-Rao lower
bounds on the 1-σ uncertainty ellipses are plotted in Fig. 8
with circles and dotted lines, respectively.
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Figure 8: The simulated mean (�) and 1-σ uncer-
tainty ellipses (——) of the bias-reduced MLE in
Eq. 21, and the true device locations (•) and CRB
for the 1-σ uncertainty ellipses (- - - -), in the case of
RSS measurements and the 5 by 5 grid of devices.

The simulation results show that the estimator is in fact
biased, but that the estimator variances are very close to the
bound. The bias of the estimator was implied by previous
results [20] which showed that the bias-reduced MLE in the
case of RSS measurements tended to pull estimates closer
to the center of the square. However, the devices close to
the center show very little bias. For these devices, the sim-
ulation shows uncertainty ellipses that are indistinguishable
from the bounds. In addition, we note the similarity in the
orientations of the minor and major axes of the uncertainty
ellipses. Furthermore, if many of these 1m by 1m square
areas were placed next to each other in a larger-scale im-
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plementation, we would expect the biases at the edges to
cancel. In that case, we expect that the estimator in (21)
will be nearly unbiased, and thus the CRB will in fact pro-
vide its lower bound.

Comparison of particular proximity and QRSS location
estimators to the CRB is beyond the scope of this paper.
We note that initial results show that the MLE in the case
of proximity measurements has a likelihood function which
suffers from multiple local maxima, making global maxi-
mization difficult.

7. CONCLUSION
This paper has presented a variety of analytical results

to aid in the design of sensor localization systems based on
RSS, quantized RSS, or proximity measurements between
sensors. Since low-cost is a key objective in the design of
these wireless sensors, it is important to meet the design
goals with the least device complexity. We have shown that
variance bounds for unbiased location estimators using prox-
imity measurements are significantly higher than for those
using RSS measurements. In the single blindfolded device
example, averaged over device location, the standard de-
viation bound for proximity measurements was 48% worse
than that for RSS measurements. In a grid of devices, the
proximity measurements had an average standard deviation
bound about 57% worse than that of RSS measurements.
Furthermore, since the area of uncertainty is proportional
to the variance, rather than standard deviation, these dif-
ferences are even more significant. However, we have shown
that K-level QRSS can perform approximately as well as
RSS for even low values of K. A system with just 3 bits of
quantization (K = 8) may be enough in cases.

In order to deploy localization systems based on proxim-
ity or QRSS, future work must be done to explore the per-
formance of particular location estimators which use quan-
tized RSS or proximity measurements. Since perfectly unbi-
ased location estimators seem unlikely when using proximity
or QRSS measurements, it will likely require significant re-
search to develop estimators with minimal bias for a wide
variety of device geometries. These nearly unbiased estima-
tors can then be compared to the bounds presented here in
order to determine how much they might be improved, or if
they do not need to be improved. Furthermore, it will be im-
portant to determine the sensitivity of location estimation
to imperfect knowledge of the channel and threshold pa-
rameters. Finally, these bounds can, and should, be verified
using multiple sets of channel measurements from networks
of wireless sensors deployed in various environments.
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APPENDIX

A. DERIVATION OF CRB
In [20], the CRB for any self-calibration estimator was

shown to be a function of the expected value of the second
partial derivatives of the terms {li,j},

li,j = logP [Qi,j |zi, zj ]. (23)

The first partial derivatives of li,j with respect to xi are

∂

∂xi
li,j =

∂
∂xi

P [Qi,j |zi, zj ]

P [Qi,j |zi, zj ]
.

Similarly,

∂2

∂x2
i

li,j =

∂2

∂x2
i
P [Qi,j |zi, zj ]

P [Qi,j |zi, zj ]
−
(

∂
∂xi

P [Qi,j |zi, zj ]

P [Qi,j |zi, zj ]

)2

.

Thus,

−E

[
∂2

∂x2
i

li,j

]
= −

K−1∑
s=0

∂2

∂x2
i

P [Qi,j = s|zi, zj ]

+

K−1∑
s=0

(
∂

∂xi
P [Qi,j = s|zi, zj ]

)2

P [Qi,j = s|zi, zj ]
.(24)

The first sum is a telescoping sum of ∂2

∂x2
i
Φ[·] terms,

K−1∑
s=0

∂2

∂x2
i

P [Qi,j = s|zi, zj ] = (25)

=

K−1∑
s=0

∂2

∂x2
i

Φ [gi,j(s + 1)]−
K−1∑
s=0

∂2

∂x2
i

Φ [gi,j(s)]

=
∂2

∂x2
i

Φ [gi,j(K)]− ∂2

∂x2
i

Φ [gi,j(0)] = 0.

To further evaluate (24), we note that

∂

∂xi
P [Qi,j = s|zi, zj ] =

√
b√
2π

xi − xj

‖zi − zj‖2
(26)[

exp

(
− b

2
ln2 ‖zi − zj‖

ds+1

)
− exp

(
− b

2
ln2 ‖zi − zj‖

ds+1

)]
.

As a result of (25) and (26), (24) simplifies to

−E

[
∂2

∂x2
i

li,j

]
=

b

2π

(xi − xj)
2

‖zi − zj‖4
hi,j , (27)

where hi,j takes the form of (16). The terms depending on
other second partial derivatives are very similar to (27).
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