Version 5 Real-Time Shading Language Description

Kekoa Proudfoot

October 26, 2000

Language version history

The version 1 language had lisp-like parenthetical constructs and shaders expressions of fixed colors, textures, and lit materials. The only data type was a [0,1] clamped color, and the allowed operators were add, multiply, and blend (over).

The version 2 language replaced the lisp-like constructs of the version 1 language with ones more like C. The underlying expressions, operators, and data types did not change.

The version 3 language was discussed but never implemented. The intent was to extend the version 2 language to remove the restriction that colors, textures, and lit materials be fixed by making these data types configurable through parameters to shaders. This language version was also to introduce a separation between light shaders and surface shaders.

The version 4 language allowed shaders to be configured using shader parameters and provided a light/surface shader abstraction. It also introduced the concept of multiple computation frequnecies, making use of types to manage when and how computations are performed. New vertex and primitive-group processing capabilities were exposed to complement a set of fragment processing capabilities similar to those available in previous language versions.

The version 5 language is described in this document. It is an extension of the version 4 language intended to allow us to explore compilation to advanced fragment processing pipelines. The new features include three-component vectors, three-by-three matrices, three-vector operations, more fragment operations, operators to assist with compiling to fragment pipelines, and conditional compilation.

Basics

The general format of our language, as well as our language’s declaration and expression syntax, is similar to C. Our language does, however, have a number of notable differences. These include a different set of data types, a number of specialized type modifiers, a slightly different set of operators, and different semantics with regards to function calls and global variables. These differences will become clearer as you proceed through this document.

As with C, our language relies on white space and indenting only to the extent that they separate tokens in the language. White space and indenting are otherwise ignored.

Comments are allowed in our language. These may be denoted using either the C /* */ syntax or the C++ // comment syntax. Identifiers, integers, and floats are all specified as they are in C. Identifiers are case-sensitive.

Base data types

We begin the discussion of our language with a description of its data types.

In our language, data types are composed of a base data type preceeded by an optional list of type modifiers. In this section, we describe the base data types. We leave the discussion of type modifiers for later sections.

Our language supports ten base data types. They are:

 bool boolean value

 clampf1 scalar [0,1]-clamped floating-point value

 clampf3 3-component [0,1]-clamped floating-point vector

 clampf4 4-component [0,1]-clamped floating-point vector

 float1 scalar unclamped floating-point value

 float3 3-component unclamped floating-point vector

 float4 4-component unclamped floating-point vector

 matrix3 3x3 floating point matrix

 matrix4 4x4 floating point matrix

 texref texture reference

Two of these types need further explanation.

The bool type is either true or false. It has no numerical value.

The texref type stores a reference to a texture. Its value corresponds to an OpenGL texture name as specified to glBindTexture.

Additionally, note that although the clamped float types are described as floating point, because their ranges are limited to [0,1], they may be implemented using either fixed- or floating-point.

In addition to the ten base types, we support some additional type names for compatibility with the previous version of the language:

 clampf same as clampf1

 clampfv same as clampf4

 float same as float1

 floatv same as float4

 matrix same as matrix4

Expressions, operators, and builtin functions

The expression syntax of our language is much like that of C, except that we provide a different set of operators and also a core set of builtin functions. In this section, we introduce and describe these operators and functions.

Most operators that we provide have both float and clampf versions, where the clampf versions are defined to clamp their results (but not their intermediate values) to [0,1]. We make special note of operators which either do not have clampf versions or do not operate on float or clampf values at all.

We begin with operators for manipulating scalars and vectors.

The join operator {} assembles scalars into vectors. It comes in three versions:

 { x, y, z } // make a 3-vector from scalars x, y, and z

 { x, y, z, w } // make a 4-vector from scalars x, y, z, and w

 { xyz, w } // make a 4-vector from 3-vector xyz and scalar w

The index operator [] extracts a scalar from a 3- or 4-component vector. Indexing is zero-based:

 { x, y, z }[0] // extract x

 { x, y, z }[2] // extract z

 { x, y, z, w }[3] // extract w

The rgb(), alpha(), and blue() operators help make compilation to fragment pipelines efficient. Their various forms are shown here:

 rgb({ r, g, b, a }) // extract 3-vector { r, g, b } from 4-vector

 alpha({ r, g, b, a }) // extract scalar a from 3-vector

 blue({ r, g, b, a }) // extract scalar b from 3-vector

 blue({ r, g, b }) // extract scalar b from 3-vector

 rgb(c) // construct 3-vector { c, c, c } from scalar c

We provide scalar and vector versions of add, multiply, subtract, and divide. For multiply and divide, we also provide versions that operate on one scalar and one vector in either order. Some examples:

 a + b

 a - b

 a * b

 a / b

 { ax, ay, az } + { bx, by, bz }

 { ax, ay, az } - { bx, by, bz }

 { ax, ay, az } * { bx, by, bz }

 { ax, ay, az } / { bx, by, bz }

 a * { bx, by, bz }

 a / { bx, by, bz }

 { ax, ay, az } * b

 { ax, ay, az } / b

 etc.

Multiplication of two matrices and multiplication of one matrix (on the left) and one vector (on the right) are also supported. Since we do not support clamped matrices, there are no clampf matrix-matrix or matrix-vector multiply operations.

We provide an unclamped floating-point negate operator:

 - a

We do not provide a clampf version of the negate operator, since its result would always be zero.

We provide a generic blend operator that operates on clamped and unclamped 4-vectors only. The blend operator is based on the OpenGL blend function and takes the following form:

 blend (src_factor, dst_factor)

Note this the blend operator is a binary infix operator. The value to the left of the blend is called the source (src) and the value to the right of the blend is called the destination (dst):

 src blend(src_factor,dst_factor) dst

Such an expression computes:

 src_factor * src + dst_factor * dst

Both src_factor and dst_factor are placeholders for names chosen from the following list. Each has the value indicated:

 Factor Name Factor Value

 ZERO { 0, 0, 0, 0 }

 ONE { 1, 1, 1, 1 }

 SRC_COLOR src

 SRC_ALPHA { src[3], src[3], src[3], src[3] }

 DST_COLOR dst

 DST_ALPHA { dst[3], dst[3], dst[3], dst[3] }

 ONE_MINUS_SRC_COLOR { 1, 1, 1, 1 } - src

 ONE_MINUS_SRC_ALPHA { 1, 1, 1, 1 } - { src[3], src[3], src[3], src[3] }

 ONE_MINUS_DST_COLOR { 1, 1, 1, 1 } - dst

 ONE_MINUS_DST_ALPHA { 1, 1, 1, 1 } - { dst[3], dst[3], dst[3], dst[3] }

We provide two additional blend operators to simplify the specification of common blend operations. The ‘over’ operator composites two values with premultiplied alpha, and is equivalent to blend(ONE,ONE_MINUS_SRC_ALPHA). The ‘blend_over’ operator composites two values where only second value has premultiplied alpha. The first value has non-premultiplied alpha. It is equivalent to blend(SRC_ALPHA,ONE_MINUS_SRC_ALPHA).

We provide a standard set of comparison operators (==, !=, >, =, <=) for computing boolean values. We also provide a lthalf() operator to assist with fragment compilation. The lthalf() operator returns true if its operand is less than one half.

Boolean expressions are used with the conditional select operator. The select operator takes three parameters: a boolean, a value to return if the boolean is true, and a value to return if the boolean is false. Some examples:

 select(0 == 0, t, f) // value is t

 select(0 > 1, t, f) // value is f

 select(lthalf(0), t, f) // value is t

 select(lthalf(0.5), t, f) // value if f

We provide a number of additional operations, including: scalar and vector clamp, min, and max operations; vector dot, length, and normalize operations; a 3-vector reflect and cross operations; sin, cos, pow, and sqrt. Some examples:

 clamp(0.5, 0, 1) // value is 0.5

 clamp({ -1, 0, 1, 2 }, 0, 1) // value is { 0, 0, 1, 1 }

 clamp({ -1, 1, 3 }, { 0, 0, 1 }, { 1, 2, 2}) // value is { 0, 1, 2 }

 min({ -1, 1, 2, 3 }, { 1, 0, 1, 4 }) // value is { -1, 0, 1, 4 }

 dot({ 0, 1, 2, 3 }, { 4, 5, 6, 7 }) // value is 38

 length({ 3, 4, 0 }) // value is 5

 length({ 1, 1, 1 }) // value is 1.7320...

 length({ 1, 1, 1, 1 }) // value is 2

 normalize({ 0, 0, 2 }) // value is { 0, 0, 1 }

 reflect({ 1, 1, 1 }, { 0, 0, 1 }) // value is { -1, -1, 1 }

 reflect({ 1, 0, 0 }, { 0, 1, 0 }) // value is { 0, 0, 1 }

 sin(3.14159) // value is 0

 cos(3.14159) // value is -1

 pow(10,2) // value is 100

 sqrt(2) // value is 1.4142...

We also provide a number of matrix operations:

 affine extracts the upper-left 3x3 matrix from a 4x4 matrix

 frustum generates a 4x4 frustum projection matrix

 identity generates a 4x4 identity matrix

 invert inverts a 3x3 or a 4x4 matrix

 lookat generates a 4x4 lookat matrix

 ortho generates a 4x4 orthographic projection matrix

 rotate generates a 4x4 rotation matrix of an angle about an axis

 scale generates a 4x4 scale matrix

 translate generates a 4x4 translation matrix

 transpose transposes a 3x3 or 4x4 matrix

 identity3 generates a 3x3 identity matrix

 rotate3 generates a 3x3 rotation matrix

 scale3 generates a 3x3 scale matrix

The exact parameters needed for each matrix operation are discussed in the operator appendix.

A number of texturing and lookup operations are also available:

 cubemap perform a cubemap lookup given a texref and a 3-vector

 cubenorm perform a 3-vector normalization given a 3-vector

 lut perform a component-wise fragment clamp4 table lookup

 texture perform a 2d texture lookup given a texref and a 3- or 4-vector

 texture3d perform a 3d texture lookup given a texref and a 3- or 4-vector

 bumpdiff perform a diffuse bumpmap operation

 bumpspec perform a specular bumpmap operation (requires bumpdiff)

The exact parameters needed for each texture/lookup operation are discussed in the operator appendix.

The lut operator performs a component-wise table lookup of fragment value. It uses the OpenGL color lookup table defined using glPixelMap. Our intent is to eventually abstract lookup table specification to allow multiple lookup tables, but currently we only support one color lookup table at a time.

The bumpdiff and bumpspec operators implement bumpmapping as described for NVIDIA hardware by Mark Kilgard. The bumpdiff operator computes the diffuse reflection coefficient given a tangent-space normal map, texture coordinates, and a tangent-space light vector. The bumpspec operator computes the specular reflection coefficient given the same normal map and texture coordinates plus the tangent-space half-angle vector. The bumpdiff operator leaves a self-shadowing term in alpha which must be used to modulate the bumpspec result. The blend operator, configured as blend(ONE,SRC_ALPHA), is used to accomplish this.

As with C, we support parentheses () for grouping expressions to override the default operator precedences.

Two special operators are the assignment and cast operators. Both are used as they typically are in C. Assignment implies a cast to the type of the value being set. Type conversion is discussed in greater detail in a later section describing type conversion.

An important note about the assignment operator. We currently do not support assignment to an indexed vector element:

 v[3] = 0; // forbidden

Use something like this instead:

 v = { v[0], v[1], v[2], 0 }; // use something like this instead

Finally, we mention the integrate() operator, which we discuss in more detail in a later section on surface and light shaders.

Operator precedence

We define the following binary operator precedences, by group from lowest precedence to highest precedence:

 =

 == !=

 > < >= <=

 + -

 blend over blend_over

 * /

All of the binary operators are left associative, except for =, which is right associative.

Statements

Our language supports three kinds of statements: variable declarations, expression statements, return statements. Empty statements are permitted; these are ignored.

A variable declaration is similar to C, and consists of a type followed by an identifier followed by an optional initializer followed by a semicolon.

 float1 f1; // declare f1

 float1 f2 = 1; // declare and initialize f2

 float4 v1 = { 1, 2, 3, 4 }; // declare and initialize v1

 float4 v2 = f1 * v1; // declare and initialize v2

As with C++, variables may be declared anywhere in a basic block.

Expression statements are simply an expression followed by a semicolon:

 1; // valid but useless, eventually optimized away

 N = normalize(N); // normalize N

 NdotL = dot(N,L); // compute dot product of N and L

A return statement is used to indicate the final value of a shader or function:

 return color;

Functions

Our language allows functions to be defined and called mostly like they are in C, with a few exceptions. First, there is no such thing as a ‘void’ function, and therefore all functions must return a value. Second, there is (currently) no such thing as a function declaration for user-defined functions. All user-defined functions must be defined before they may be used. Finally, recursion is forbidden.

All of these differences are due to the way function calls are implemented. All function calls are inlined.

Here are some examples:

float4 lerp (float4 a, float4 b, float afrac)

{

 return afrac * a + (1 - afrac) * b

}

float4 bilerp (float4 v00, float4 v01, float4 v10 float4 v11,

 float frac0, float frac1)

{

 float v0 = lerp(v00, v01, frac0);

 float v1 = lerp(v10, v11, frac0);

 return lerp(v0, v1, frac1);

}

Surface shaders, light shaders, and the integrate() operator

Our language borrows the RenderMan concept of separate surface and light shaders to provide orthogonality between these shading operations. Light shaders compute how much light is incident on a surface, while surface shaders compute the amount of light reflected toward the viewer, possibly querying lights to determing and account for the amount of light arriving from each light source.

Surface and light shaders are written as functions are, except that their return types are preceeded by the ‘shader’ modifier plus also either the ‘surface’ or the ‘light’ modifier. In addition, shaders must return a float4 or a clamp4 type:

 float func () { return ...; } // an ordinary function

 surface shader float4 surf () { return ...; } // a surface shader

 light shader float4 light () { return ...; } // a light shader

The surface and light modifiers may also be applied to functions. When this is done, such a function may access special features (variables and such) available only to surface and light shaders. In addition, the function becomes accessible only to other surface or light functions and shaders, as appropriate. More examples:

 surface float surffunc () { return ...; } // a surface function

 surface float lightfunc () { return ...; } // a light function

To query light sources, surface shaders (and functions) use the integrate() operator. This operator takes an expression and loops over all active light sources, evaluating the expression once per light source. The operator returns the sum of the expression evaluations.

The integrate() operator evaluates special ‘per-light’ expressions, which are expressions that depend directly on special built-in per-light values (in particular the light vector, the half-angle vector, and the light intensity) and/or other per-light expressions. In evaluating a per-light expression once per light, the integrate() operator removes the per-light attribute of the integrated expression.

We use a type modifier scheme to track per-light expressions. Just as every value in our system has a type, every value also has a type modifier that specifies whether or not the value changes with every light. In our system, the keyword ‘perlight’ is used to indicate such a value. We require all variables and return values that hold per-light values to be declared with the perlight modifier. We impose this requirement to make user code more readable. Our compiler separately infers which values are perlight, and it uses this information to report an error when a perlight value is stored to a non-perlight variable.

Here are some examples of perlight values and the integrate() operator. Assume L, H, and Cl are per-light values:

 float4 Kd = ...; // compute diffuse surface color

 perlight float NdotL = max(dot(N,L),0); // max(dot(N,L),0) is perlight

 perlight float intensity = Cl * NdotL; // Cl * NdotL is perlight

 float color = Kd * integrate(intensity); // integrate light and modulate

 perlight float NdotH = dot(N,H); // dot(N,H) is perlight

 float NdotH = dot(N,H); // error: missing perlight modifier

As we will see in a later section on builtin global values, Cl in

particular references the amount of light incident on the surface from each light. By referencing Cl, surface shaders indirectly reference the active light shaders.

Values that have been integrated once cannot be integrated again. This is something of an artificial restriction that was imposed because it really doesn’t make a lot of sense to integrate a value that has already been integrated.

Computation frequencies and computation frequency type modifiers

A key aspect of our system is its support for computations at a variety of different rates, or computation frequencies. We support four different computation frequencies: once at compile time, once per group of primitives, once per vertex, and once per fragment. In our system every shading computation occurs at one of the rates.

Note that we do not provide a frequency that corresponds to once per primitive. Ideally we would support such a frequency, in particular for flat shading, but do not because OpenGL only provides limited support for that computation frequency. Specifically, OpenGL does not provide support for per-primitive texture coordinates.

As with our treatment of per-light expressions, we use a type modifier system to control the frequencies at which computations occur. This modifier specifies how often that value is computed (or specified, if the value is a parameter).

There is one type modifier for each computation frequency. The modifiers are: ‘constant’, ‘vertex’, ‘primitive group’, and ‘fragment’. We provide an additional modifier, ‘perbegin’, for compatibility with the previous language version. This additional modifier is equivalent to the primitive group modifier.

Three base types, namely the two matrix types and the texref type, have a maximum computation frequency of primitive group. This restriction effectively limits how often matrices and texrefs may be computed or specified. This is somewhat of an arbitrary restriction for the matrix types, since there is no reason matrices cannot be computed per-vertex or per-fragment; however, we impose this restriction to simplify our compiler somewhat. The restriction on texrefs reflects the fact that in OpenGL, textures are specified for entire primitive groups and never more often (such as per-vertex).

Our language defines a set of rules to allow compilers to infer how often a particular value is computed. Such a set of rules is important both because it removes the need for the user to explicitly manage computation frequencies and because it allows for efficient generation of code when the user does not know the computation frequencies of certain values, in particular the intensity of light arriving at a surface, which can reasonably have any computation frequency. In the latter case, a compiler that can infer computation frequencies can properly choose, for example, vertex operations or fragment operations to integrate vertex and fragment lights, respectively.

Two rules are used to infer computation frequencies. The first deals with the default computation frequencies of shader parameters, while the second deals with the propagation of computation frequencies across operators. By applying these rules, a compiler can always infer the computation frequency of a given operation.

All shader parameters have a well-defined default computation frequency that indicates how often the parameter may be specified. This frequency depends on the parameter’s base type and the corresponding shader’s type (surface or light):

 Type Default for surfaces Default for lights

 bool vertex primitive group

 clampf1 vertex primitive group

 clampf3 vertex primitive group

 clampf4 vertex primitive group

 float1 vertex primitive group

 float3 vertex primitive group

 float4 vertex primitive group

 matrix3 primitive group primitive group

 matrix4 primitive group primitive group

 texref primitive group primitive group

Note that the defaults are different for surfaces and lights. This reflects the fact that typically light properties do not change more often than per-primitive-group.

The default shader parameter computation frequencies take effect when no computation frequency is specified with the parameter. An explicitly-specified computation frequency overrides the default.

Some examples:

 surface shader float4 surf1 (float1 f) { ... } // f is vertex

 surface shader float4 surf2 (matrix3 m) { ... } // m is primitive group

 light shader float light1 (float1 f) { ... } // f is primitive group

 light shader float light2 (vertex float1 f) { ... } // f is vertex

 light shader float light3 (matrix3 m) { ... } // m is primitive group

Note that the rules for default computation frequencies do not apply to functions. They only apply to shaders:

 surface surffunc1 (float1 f) { ... } // no default computation frequency

In this case, the computation frequency of f is determined by the value passed to f when surffunc1 is called.

The computation frequencies of computed values are determined by applying a second rule that propagates computation frequencies across operators. For the most part, we try to compute things as infrequently as possible. Specifically, the computation frequency of a computed value is the least frequent computation frequency possible given the constraint that a value must be computed at least as often as the most frequent value it depends on. For example, the result of adding a vertex value to another vertex value is a vertex value, but adding a vertex value to a fragment value results in a fragment value, both because of the rule previously mentioned and because really it doesn’t make any sense to try to obtain vertex values from fragment ones.

A number of operations can only be evaluated at certain computation frequencies. For example, texturing can only be computed per-fragment, while matrix-matrix multiplication can be computed at most per-primitive-group. We place additional constraints on computation frequencies to satisfy the limitations of each operation. We describe the details of these per-operator constraints in the operator appendix.

While the computation frequencies of computed values are inferred using the rules just described, they may be controlled by explicitly specifying computation frequencies. For example, if two vertex values N and L are to be used to compute dot(N,L), the result of the dot product will normally be per-vertex. However, a per-fragment dot product can be achieved by first casting N or L (or both) to a fragment value:

 float3 Nf = (fragment float3) N; // cast N, fragment Nf inferred

 float3 Lf = (fragment float3) L; // cast L, fragment Lf inferred

 // compute and use dot(Nf,Lf)...

 fragment float3 Nf = N; // use implicit cast from assign

 fragment float3 Lf = L; // use implicit cast from assign

 // compute and use dot(Nf,Lf)...

 dot(N, (fragment float3)L)... // cast L only

In all three cases, once a fragment version of N or L is computed, the resulting dot product is inferred to be evaluated per-fragment.

Type conversion

A number of type conversions are permitted, including conversion of clamped values to float values, conversion of float values to clamped values, conversion from one computation frequency to a more-frequency computation frequency, and conversion of non-per-light values to per-light values.

Converting clamped values to float values has no effect except perhaps one of number representation (specifically, floating point or fixed point). Also, since floating-point values are more general than clamped floating-point values, this conversion is considered a promotion. Before performing an operation that involves both clamped and unclamped values, clamped values are automatically promoted to unclamped values.

Converting a float value to a clamped value clamps the float value to [0,1]. The number representation possibly changes also. This conversion may be performed explicitly using a type cast, or implicitly when assigning a float value to a clampf variable.

Conversion from one computation frequency to another is only possible if the new computation frequency is more frequent than the old one. In most cases, such a conversion simply replicates the old value at the new computation frequency; however, the conversion from vertex to fragment is special. In this case, vertex values are interpolated between vertices to obtain a fragment value. The exact nature of the interpolation is currently being left unspecified. Our compiler follows what OpenGL specifies, i.e. texture coordinates are perspective-correct while color values are not necessarily that way.

The conversion of the computation frequencies of operands to an operator is performed automatically as necessary for each operator. This process follows the rules for operator overloading and the function prototypes for operators discussed in later sections.

A non-per-light value may be converted into a per-light value. Performing this conversion has the effect of replicating the non-per-light value for every light.

Unlike in C, there is no way to interpret the value of a comparison numerically.

Global variables

Our system supports user-defined global variables as long as they are constant and their values are specified. Globals must be explicitly declared as constant:

 constant float4 Red = { 1, 0, 0, 1 }; // valid

 constant float4 Red; // error: missing definition

 float4 Red = { 1, 0, 0, 1 }; // error: missing constant keyword

 constant float4 DarkRed = 0.5 * Red; // functions of constants are valid

Predefined globals

A number of global values are predefined and initialized on demand before a shader executes, or, in the case of predefined perlight globals, before each evaluation of the expression integrated by the corresponding integrate() operator. The predefined light shader global variables are:

vertex float3 S; // light-space surface vector, normalized

vertex float Sdist; // distance to surface point

The predefined surface shader globals are:

vertex float3 N; // eye-space normal vector, normalized

vertex float3 T; // eye-space tangent vector, normalized

vertex float3 B; // eye-space binormal vector, normalized

vertex float3 E; // eye-space eye vector, normalized

vertex float4 P; // eye-space surface position, w=1

vertex float4 Pobj; // object-space surface position, w=1

vertex float4 Ca; // color of global ambient light

vertex float4 Cprev; // previous framebuffer color

vertex perlight float3 L; // eye-space light vector, normalized

vertex perlight float3 H; // eye-space halfangle vector, normalized

vertex perlight float4 Cl; // color of light (from a light shader)

Note that the definitions of the various globals currently cause light shaders to be evaluated in light space and surface shaders to be evaluated in eye space. Light space is defined by the light’s position and orientation, while eye space is defined by the viewer’s position and orientation.

The use of builtin parameters implicitly makes a shader dependent on one or more implicit shader parameters which are used to evaluate the builtin parameters. It is important to recognize these implicit shader parameters even though they are not a formal part of the language, since ultimately the user must set these parameters in addition to all those explicitly required by the active surface and light shaders. The implicit parameters are:

perbegin float4 __ambient; // color of global ambient light

perbegin matrix4 __modelview; // modelview matrix

perbegin matrix4 __projection; // projection matrix

vertex float3 __normal; // object-space normal vector

vertex float3 __tangent; // object-space tangent vector

vertex float3 __binormal; // object-space binormal vector

vertex float4 __position; // object-space surface position

perbegin perlight float4 __lightpos; // homogeneous position of light

perbegin perlight float3 __lightdir; // unnormalized eye-space light direction

perbegin perlight float3 __lightup; // unnormalized eye-space light up vector

Perlight builtin parameters must be specified once per active light shader.

Note that all shaders depend on __modelview, __projection, and __position.

Function overloading

Our language allows functions to be overloaded in a manner similar to C++. Overloading allows for many functions to be available when a function is called. Availability is defines as a function with the same name and number of parameters. We define a set of rules to select which function to select when more than one choice is available. The rules examine the base types of the parameters used in the call to form groups of matching functions.

The first group consists of functions whose parameter base types match the base types of the parameters in the call exactly.

The second group consists of functions whose parameter base types match the base types of the parameters in the call through the possible use of promotion. In particular, we consider the promotion of clamped floats to floats to form matches.

The third group consists of functions whose parameter base types match the base types of the parameters in the call through the use of both promotion and demotion.

The first group is checked first. If empty, the second group is checked, and likewise for the third group. If all three groups are empty, there is no match, and an error is generated. If any group being checked has more than one choice available, the call is ambiguous, and an error is generated. A match is found only if exactly one match is available in the first non-empty group.

This overloading mechanism is used for user-defined functions as well as builtin functions and builtin operators. Builtin functions and operators are defined using function prototypes in the operator appendix, below.

[Note: The above description is how things are supposed to work. Currently, function calls to builtin and user-defined functions are matched using the rules from the previous language version.]

Conditional compilation

Today’s hardware platforms offer differing sets of functionality. Some operators are not available on all hardware. To solve this problem, our language supports conditional compilation using a very-limited subset of C preprocessor directives. We support:

 #if

 #ifdef

 #ifndef

 #else

 #endif

Our compiler defines a number of identifiers based on whether or not certain hardware features are available. These identifiers are:

 HAVE_FRAGMENT_SUBTRACT

 HAVE_TEXTURE_3D

 HAVE_CUBEMAP

 HAVE_BUMPOPS

 HAVE_REGISTER_COMBINERS

 HAVE_FRAGMENT_INDEX

 HAVE_FRAGMENT_COMPARES

The HAVE_FRAGMENT_SUBTRACT, HAVE_TEXTURE_3D, and HAVE_CUBEMAP identifiers indicate whether or not the subtract operator is available per-fragment, whether or not the texture3d operator is available, and whether or not the cubemap operator is available, respectively. The HAVE_BUMPOPS identifier indicates whether or not the bumpdiff and bumpspec operators are available.

The HAVE_REGISTER_COMBINERS identifier covers the availability of the following operators per-fragment: dot, select, rgb, blue, alpha, lthalf, cubenorm. The HAVE_FRAGMENT_INDEX identifier indicates whether or not the [] operator is available per-fragment. The HAVE_FRAGMENT_COMPARES identifier indicates whether or not the ==, !=, >, =, and <= operators are available per-fragment.

Appendices

Builtin operators and functions

In this appendix, we describe the enumerate the builtin operators and functions made available by our language. Except for the syntax by which they are referred to, builtin operators and functions behave identically.

Every builtin operator and function has a range of computation frequencies at which it may be evaluated; the range specifies both a minimum and a maximum frequency.

As described earlier, values are evaluated as infrequently as possible. We define this computation frequency precisely as the maximum frequency among all of an operator’s operands and the operator’s miminum computation frequency.

Minimum and maximum computation frequencies limit the kinds of operations available at each computation frequency. For example, they restrict many matrix manipulation operations to a maximum computation frequency of per-primitive-group, and they force texture mapping to be per-fragment.

An error is generated if an operator’s evaluation computation frequency exceeds the operator’s maximum computation frequency.

In addition to each operator having a range of computation frequencies, every operand of every operator also has an associated range of computation frequencies. In most cases, this range has a minimum frequency of constant and a maximum frequency equal to the maximum frequency of the operator itself, but in a few cases, the range is more restrictive. For example, current hardware does not support the use of per-fragment texture coordinates. We therefore limit the maximum computation frequency of texture coordinates to vertex values.

In cases where the minimum frequency of an operand is not met, the value passed to the operand is automatically cast to an appropriate computation frequency. In cases where the maximum frequency of an operand is exceeded, an error is generated.

We now list all of the available operators. In the listings below, ranges are specified using a [min:]max syntax. For operators, if the min is unspecified, it defaults to constant. For operands, if the min and max are unspecified, the range defaults to the range of the corresponding operator, otherwise if only the min is unspecified, the min defaults to the max.

fragment float1 operator+ (float1, float1)

fragment float3 operator+ (float3, float3)

fragment float4 operator+ (float4, float4)

fragment clampf1 operator+ (clampf1, clampf1)

fragment clampf3 operator+ (clampf3, clampf3)

fragment clampf4 operator+ (clampf4, clampf4)

fragment float1 operator- (float1, float1)

fragment float3 operator- (float3, float3)

fragment float4 operator- (float4, float4)

fragment clampf1 operator- (clampf1, clampf1)

fragment clampf3 operator- (clampf3, clampf3)

fragment clampf4 operator- (clampf4, clampf4)

fragment float1 operator* (float1, float1)

fragment float3 operator* (float3, float3)

fragment float3 operator* (float1, float3)

fragment float3 operator* (float3, float1)

fragment float4 operator* (float4, float4)

fragment float4 operator* (float1, float4)

fragment float4 operator* (float4, float1)

fragment clampf1 operator* (clampf1, clampf1)

fragment clampf3 operator* (clampf3, clampf3)

fragment clampf3 operator* (clampf1, clampf3)

fragment clampf3 operator* (clampf3, clampf1)

fragment clampf4 operator* (clampf4, clampf4)

fragment clampf4 operator* (clampf1, clampf4)

fragment clampf4 operator* (clampf4, clampf1)

perbegin matrix3 operator* (matrix3, matrix3)

perbegin matrix4 operator* (matrix4, matrix4)

vertex float3 operator* (matrix3, float3)

vertex float4 operator* (matrix4, float4)

vertex float1 operator/ (float1, float1)

vertex float3 operator/ (float3, float3)

vertex float3 operator/ (float1, float3)

vertex float3 operator/ (float3, float1)

vertex float4 operator/ (float4, float4)

vertex float4 operator/ (float1, float4)

vertex float4 operator/ (float4, float1)

vertex clampf1 operator/ (clampf1, clampf1)

vertex clampf3 operator/ (clampf3, clampf3)

vertex clampf3 operator/ (clampf1, clampf3)

vertex clampf3 operator/ (clampf3, clampf1)

vertex clampf4 operator/ (clampf4, clampf4)

vertex clampf4 operator/ (clampf1, clampf4)

vertex clampf4 operator/ (clampf4, clampf1)

fragment float1 operator- (float1)

fragment float3 operator- (float3)

fragment float4 operator- (float4)

fragment float1 operator[] (float3)

fragment float1 operator[] (float4)

fragment clampf1 operator[] (clampf3)

fragment clampf1 operator[] (clampf4)

vertex float3 operator{} (float, float, float)

vertex float4 operator{} (float, float, float, float)

vertex clampf3 operator{} (clampf, clampf, clampf)

vertex clampf4 operator{} (clampf, clampf, clampf, clampf)

fragment float4 operator{} (float3 rgb, float1 alpha)

fragment clampf4 operator{} (clampf3 rgb, clampf1 alpha)

fragment bool operator== (float, float)

fragment bool operator!= (float, float)

fragment bool operator> (float, float)

fragment bool operator< (float, float)

fragment bool operator>= (float, float)

fragment bool operator<= (float, float)

fragment bool operator== (clampf, clampf)

fragment bool operator!= (clampf, clampf)

fragment bool operator> (clampf, clampf)

fragment bool operator< (clampf, clampf)

fragment bool operator>= (clampf, clampf)

fragment bool operator<= (clampf, clampf)

fragment float4 operator blend (float4, float4)

fragment clampf4 operator blend (clampf4, clampf4)

fragment float4 operator over (float4, float4)

fragment clampf4 operator over (clampf4, clampf4)

fragment float4 operator blend_over (float4, float4)

fragment clampf4 operator blend_over (clampf4, clampf4)

surface fragment float1 operator integrate (float1)

surface fragment float3 operator integrate (float3)

surface fragment float4 operator integrate (float4)

surface fragment clampf1 operator integrate (clampf1)

surface fragment clampf3 operator integrate (clampf3)

surface fragment clampf4 operator integrate (clampf4)

vertex bool operator () (bool)

fragment float operator () (float)

fragment float3 operator () (float3)

fragment float4 operator () (float4)

fragment clampf operator () (clampf)

fragment clampf3 operator () (clampf3)

fragment clampf4 operator () (clampf4)

perbegin matrix3 operator () (matrix4)

perbegin matrix4 operator () (matrix4)

perbegin texref operator () (texref)

constant matrix3 identity3 ()

constant matrix4 identity ()

perbegin float cos (float)

perbegin float sin (float)

perbegin float3 cross (float3, float3)

perbegin matrix3 affine (matrix4)

perbegin matrix3 invert (matrix3)

perbegin matrix3 rotate3 (float angle, float x, float y, float z)

perbegin matrix3 scale3 (float x, float y, float z)

perbegin matrix3 transpose (matrix3)

perbegin matrix4 frustum (float l, float r, float b, float t, float n, float f)

perbegin matrix4 invert (matrix4)

perbegin matrix4 lookat (float ex, float ey, float ez, float cx, float cy,

 float cz, float ux, float uy, float uz)

perbegin matrix4 ortho (float l, float r, float b, float t, float n, float f)

perbegin matrix4 rotate (float angle, float x, float y, float z)

perbegin matrix4 scale (float x, float y, float z)

perbegin matrix4 translate (float x, float y, float z)

perbegin matrix4 transpose (matrix4)

vertex float clamp (float val, float lo, float hi)

vertex float3 clamp (float3 val, float lo, float hi)

vertex float3 clamp (float3 val, float3 lo, float3 hi)

vertex float4 clamp (float4 val, float lo, float hi)

vertex float4 clamp (float4 val, float4 lo, float4 hi)

vertex float dot (float4, float4)

vertex float length (float3)

vertex float length (float4)

vertex float max (float, float)

vertex float3 max (float3, float3)

vertex float4 max (float4, float4)

vertex float min (float, float)

vertex float3 min (float3, float3)

vertex float4 min (float4, float4)

vertex float3 normalize (float3)

vertex float4 normalize (float4)

vertex float pow (float val, float exp)

vertex float3 reflect (float3 vec, float3 norm)

vertex float sqrt (float)

vertex float ceil (float)

vertex float floor (float)

vertex float mod (float, float)

vertex float trunc (float)

fragment float dot (float3, float3)

fragment float1 select (bool, float1, float1)

fragment float3 select (bool, float3, float3)

fragment float4 select (bool, float4, float4)

fragment clampf1 select (bool, clampf1, clampf1)

fragment clampf3 select (bool, clampf3, clampf3)

fragment clampf4 select (bool, clampf4, clampf4)

fragment float3 rgb (float1)

fragment float3 rgb (float4)

fragment clampf3 rgb (clampf1)

fragment clampf3 rgb (clampf4)

fragment float1 blue (float3)

fragment float1 blue (float4)

fragment clampf1 blue (clampf3)

fragment clampf1 blue (clampf4)

fragment float1 alpha (float4)

fragment clampf1 alpha (clampf4)

fragment bool lthalf (float1)

fragment bool lthalf (clampf1)

fragment:fragment clampf4 lut (fragment clampf4)

fragment:fragment clampf4 texture (texref tex, constant:vertex float3 coord)

fragment:fragment clampf4 texture (texref tex, constant:vertex float4 coord)

fragment:fragment clampf4 texture3d (texref tex, constant:vertex float3 coord)

fragment:fragment clampf4 texture3d (texref tex, constant:vertex float4 coord)

fragment:fragment clampf4 cubemap (texref ref, constant:vertex float3 coord)

fragment:fragment clampf4 cubemap (texref ref, constant:vertex float4 coord)

fragment:fragment clampf3 cubenorm (constant:vertex float3 vec)

fragment:fragment clampf4 bumpdiff (texref ref, constant:vertex float4 coord,

 constant:vertex float3 Ltan)

fragment:fragment clampf4 bumpspec (texref ref, constant:vertex float4 coord,

 constant:vertex float3 Htan)

Not all operations are supported by all hardware at all computation frequencies. The compiler is allowed to generate an error when an unsupported operation is used. The section regarding conditional compilation enumerates the most important sets of operators that fall into this category.

Grammar

The following grammar describes the overall organization of the language.

PROGRAM : DECL_LISTopt

DECL_LIST : DECL_LISTopt DECL

DECL : TYPE IDENT ;

 | TYPE IDENT = EXPR ;

 | TYPE IDENT (PARAM_LISTopt) { STMT_LIST }

TYPE : MOD_LISTopt BASE_TYPE

MOD_LIST : MOD_LISTopt MOD

MOD : constant | primitive group | vertex | fragment | light | surface |

 shader | perlight | perbegin

BASE_TYPE : bool | clampf | clampf1 | clampf3 | clampf4 | clampfv |

 float | float1 | float3 | float4 | floatv | matrix3 | matrix4 |

 matrix | texref

PARAM_LIST : PARAM

 | PARAM_LIST ',' PARAM

PARAM : TYPE IDENT

STMT_LIST : STMT_LISTopt STMT

STMT : TYPE IDENT ;

 | TYPE IDENT = EXPR ;

 | EXPR ;

 | return EXPR ;

 | ;

EXPR : UNARY = EXPR

 | EXPR BINOP EXPR

 | UNARY

BINOP : == | != | > | < | >= | <= | + | - | blend | over | blend_over | * | /

UNARY : - UNARY

 | (TYPE) UNARY

 | PRIMARY

PRIMARY : (EXPR)

 | { EXPR_LIST }

 | IDENT

 | PRIMARY [INTEGER]

 | integrate (EXPR)

 | IDENT (EXPR_LISTopt)

 | INTEGER

 | FLOAT

EXPR_LIST : EXPR

 | EXPR_LIST , EXPR

The following non-terminals are described by regular expressions:

IDENT : [_a-zA-Z][_a-zA-Z0-9]*

INTEGER : [0-9]+

FLOAT : (([0-9]+(\.[0-9]*)?)|(\.[0-9]+))([eE][-+]?[0-9]+)?f?

Sample shaders

The following example shaders serve to illustrate how the shading language might be used to implement a number of interesting shading effects.

// Useful constants

constant float4 Zero = { 0, 0, 0, 0 };

constant float4 Black = { 0, 0, 0, 1 };

constant float4 White = { 1, 1, 1, 1 };

constant float pi = 3.14159;

// Light shaders

light float

atten (float ac, float al, float aq)

{

 return 1.0 / ((aq * Sdist + al) * Sdist + ac);

}

light shader float4

simple_light (float4 color, float ac, float al, float aq)

{

 return color * atten(ac, al, aq);

}

float

smoothstep (float value, float min, float max)

{

 float t = clamp((value - min) / (max - min), 0, 1);

 return t * t * (3 - 2 * t);

}

float

smoothspot (float spot_cos, float inner_edge_angle, float outer_edge_angle)

{

 float inner_cos = cos(inner_edge_angle * pi / 180);

 float outer_cos = cos(outer_edge_angle * pi / 180);

 return smoothstep(spot_cos, outer_cos, inner_cos);

}

light shader float4

spotlight (float4 color, float ac, float al, float aq)

{

 float4 Cl = smoothspot(-S[2], 15, 30) * color * atten(ac, al, aq);

 return Cl;

}

light float4

star_projector_f (float4 color, float ac, float al, float aq, texref stars,

 float time)

{

 float4 Cl = smoothspot(-S[2], 15, 30) * color * atten(ac, al, aq);

 float4 uv = { S[0], S[1], 0, -S[2] }; // project

 matrix4 t_rot = rotate(time * 15, 0, 0, 1);

 return Cl * texture(stars, t_rot * scale(1.5, 1.5, 1) * uv);

}

light shader float4

star_projector (float4 color, float ac, float al, float aq, texref stars)

{

 return star_projector_f(color, ac, al, aq, stars, 0);

}

light shader float4

star_projector_anim (float4 color, float ac, float al, float aq, texref stars,

 float time)

{

 return star_projector_f(color, ac, al, aq, stars, time);

}

// Reflection models

surface float4

lightmodel (float4 a, float4 d, float4 s, float4 e, float sh)

{

 perlight float diffuse = dot(N,L);

 perlight float specular = pow(max(dot(N,H),0),sh);

 perlight float4 fr = select(diffuse > 0, d * diffuse + s * specular, Zero);

 return a * Ca + integrate(fr * Cl) + e;

}

surface float4

lightmodel_diffuse (float4 a, float4 d)

{

 perlight float diffuse = dot(N,L);

 perlight float4 fr = select(diffuse > 0, d * diffuse, Zero);

 return a * Ca + integrate(fr * Cl);

}

surface float4

lightmodel_specular (float4 s, float4 e, float sh)

{

 perlight float diffuse = dot(N,L);

 perlight float specular = pow(max(dot(N,H),0),sh);

 perlight float4 fr = select(diffuse > 0, s * specular, Zero);

 return integrate(fr * Cl) + e;

}

surface float4

lightmodel_anisotropic_u (float4 a, float4 d, float4 s, float4 e, float sh)

{

 float EdotT = dot(E,T);

 perlight float LdotT = dot(L,T);

 perlight float diff = sqrt(1 - LdotT * LdotT);

 perlight float spec = max(diff * sqrt(1 - EdotT*EdotT) - LdotT*EdotT, 0);

 perlight float4 fr = max(dot(N,L),0) * (d * diff + s * pow(spec,sh));

 return a * Ca + integrate(fr * Cl) + e;

}

surface float4

lightmodel_anisotropic_v (float4 a, float4 d, float4 s, float4 e, float sh)

{

 float EdotB = dot(E,B);

 perlight float LdotB = dot(L,B);

 perlight float diff = sqrt(1 - LdotB*LdotB);

 perlight float spec = max(diff * sqrt(1 - EdotB*EdotB) - LdotB*EdotB, 0);

 perlight float4 fr = max(dot(N,L),0) * (d * diff + s * pow(spec,sh));

 return a * Ca + integrate(fr * Cl) + e;

}

float center (float value) { return 0.5 * value + 0.5; }

surface float4

lightmodel_textured_anisotropic_u (texref anisotex, float4 a, float4 e)

{

 perlight float4 uv = { center(dot(T,E)), center(dot(T,L)), 0, 1 };

 // moving Cl helps group vertex/fragment computations

 //perlight float4 fr = max(dot(N,L),0) * texture(anisotex, uv);

 //return a * Ca + integrate(Cl * fr) + e;

 perlight float4 clfr = Cl * max(dot(N,L),0) * texture(anisotex, uv);

 return a * Ca + integrate(clfr) + e;

}

surface float4

lightmodel_textured_anisotropic_v (texref anisotex, float4 a, float4 e)

{

 perlight float4 uv = { center(dot(B,E)), center(dot(B,L)), 0, 1 };

 // moving Cl helps group vertex/fragment computations

 //perlight float4 fr = max(dot(N,L),0) * texture(anisotex, uv);

 //return a * Ca + integrate(Cl * fr) + e;

 perlight float4 clfr = Cl * max(dot(N,L),0) * texture(anisotex, uv);

 return a * Ca + integrate(clfr) + e;

}

surface float4

lightmodel_cartoon (texref cartoon, float4 a, float4 d)

{

 perlight float fr = max(dot(N,L),0);

 // clamp upper end to avoid texture border color

 float4 uv = { min(integrate(fr) + 0.2, 0.75), 0, 0, 1 };

 return a * Ca + d * texture(cartoon, uv);

}

// Standard material properties

constant float4 Ma = { 0.35, 0.35, 0.35, 1.00 };

constant float4 Md = { 0.50, 0.50, 0.50, 1.00 };

constant float4 Ms = { 1.00, 1.00, 1.00, 1.00 };

constant float4 Me = { 0.00, 0.00, 0.00, 0.00 };

constant float Msh = 300;

surface shader float4

default ()

{

 return lightmodel(Ma, Md, Ms, Me, Msh);

}

surface shader float4

cartoontest (texref cartoon)

{

 return lightmodel_cartoon(cartoon, {.4, .4, .8, 1}, {.4, .4, .8, 1});

}

surface shader float4

bowling_pin (texref pinbase, texref bruns, texref circle, texref coated,

 texref marks, float4 uv)

{

 float4 uv_wrap = { uv[0], 10 * Pobj[1], 0, 1 };

 float4 uv_label = { 10 * Pobj[0], 10 * Pobj[1], 0, 1 };

 matrix4 t_base = invert(translate(0, -7.5, 0) * scale(0.667, 15, 1));

 matrix4 t_bruns = invert(translate(-2.6, -2.8, 0) * scale(5.2, 5.2, 1));

 matrix4 t_circle = invert(translate(-0.8, -1.15, 0) * scale(1.4, 1.4, 1));

 matrix4 t_coated = invert(translate(2.6, -2.8, 0) * scale(-5.2, 5.2, 1));

 matrix4 t_marks = invert(translate(2.0, 7.5, 0) * scale (4, -15, 1));

 float front = select(Pobj[2] >= 0, 1, 0);

 float back = select(Pobj[2] <= 0, 1, 0);

 float4 Base = texture(pinbase, t_base * uv_wrap);

 float4 Bruns = front * texture(bruns, t_bruns * uv_label);

 float4 Circle = front * texture(circle, t_circle * uv_label);

 float4 Coated = back * texture(coated, t_coated * uv_label);

 float4 Marks = texture(marks, t_marks * uv_wrap);

 float4 Cd = lightmodel_diffuse({ 0.4, 0.4, 0.4, 1 }, { 0.5, 0.5, 0.5, 1 });

 float4 Cs = lightmodel_specular({ 0.35, 0.35, 0.35, 1 }, Zero, 20);

 return (Circle over (Bruns over (Coated over Base))) * (Marks * Cd) + Cs;

}

surface shader float4

glossy_moons (texref gloss, float4 uv)

{

 float4 base_a = { 0.1, 0.1, 0.1, 1.00 };

 float4 base_d = { 0.70, 0.40, 0.10, 1.00 };

 float4 base_s = { 0.07, 0.04, 0.01, 1.00 };

 float4 base_e = { 0.00, 0.00, 0.00, 1.00 };

 float base_sh = 15;

 float4 gloss_a = { 0.07, 0.04, 0.01, 1.00 };

 float4 gloss_d = { 0.07, 0.04, 0.01, 1.00 };

 float4 gloss_s = { 1.00, 0.90, 0.60, 1.00 };

 float4 gloss_e = { 0.00, 0.00, 0.00, 1.00 };

 float gloss_sh = 25;

 float4 Cbase = lightmodel(base_a, base_d, base_s, base_e, base_sh);

 float4 Cgloss = lightmodel(gloss_a, gloss_d, gloss_s, gloss_e, gloss_sh);

 float4 uv_gloss = invert(scale(.335,.335,1)) * uv;

 return Cbase + Cgloss * texture(gloss, uv_gloss);

}

surface shader float4

anisotropic_ball_vertex (texref star)

{

 float4 Ma = { 0.1, 0.1, 0.1, 1.0 };

 float4 Md = { 0.3, 0.3, 0.3, 1.0 };

 float4 Ms = { 0.7, 0.7, 0.7, 1.0 };

 float4 Me = { 0.0, 0.0, 0.0, 0.0 };

 float Msh = 15;

 float4 base = texture(star, { center(Pobj[2]), center(Pobj[0]), 0, 1 });

 return base * lightmodel_anisotropic_v(Ma, Md, Ms, Me, Msh);

}

surface shader float4

anisotropic_ball_texture (texref star, texref anisotex)

{

 float4 Ma = { 0.1, 0.1, 0.1, 1.0 };

 float4 Me = { 0.0, 0.0, 0.0, 0.0 };

 float4 base = texture(star, { center(Pobj[2]), center(Pobj[0]), 0, 1 });

 return base * lightmodel_textured_anisotropic_v(anisotex, Ma, Me);

}

surface float4

spheremap (texref env)

{

 float3 R = normalize(reflect(E,N) + { 0, 0, 1 });

 float4 uv = { center(R[0]), center(R[1]), 0, 1 };

 return texture(env, uv);

}

surface shader float4

sphere_map_env (texref env)

{

 return spheremap(env);

}

surface shader float4

poolball (texref one, float4 uv)

{

 float4 Ma = { 0.35, 0.35, 0.35, 1.00 };

 float4 Md = { 0.50, 0.50, 0.50, 1.00 };

 float4 Ms = { 1.00, 1.00, 1.00, 1.00 };

 float4 Me = { 0.00, 0.00, 0.00, 1.00 };

 float Msh = 127;

 float4 Cd = lightmodel_diffuse(Ma, Md);

 float4 Cs = lightmodel_specular(Ms, Me, Msh);

 matrix4 tm = invert(translate(0.35, 0.2, 0.0) * scale(0.3, 0.6, 1.0));

 return Cd * texture(one, tm * uv) + Cs;

}

surface shader float4

poolball_with_env (texref one, texref env, float4 uv)

{

 float4 Ma = { 0.35, 0.35, 0.35, 1.00 };

 float4 Md = { 0.50, 0.50, 0.50, 1.00 };

 float4 Ms = { 1.00, 1.00, 1.00, 1.00 };

 float4 Me = { 0.00, 0.00, 0.00, 1.00 };

 float Msh = 127;

 float4 Cd = lightmodel_diffuse(Ma, Md);

 float4 Cs = lightmodel_specular(Ms, Me, Msh);

 matrix4 tm = invert(translate(0.35, 0.2, 0.0) * scale(0.3, 0.6, 1.0));

 return Cd * texture(one, tm * uv) + (Cs + spheremap(env));

}

float4

turb (texref noise, float4 uv)

{

 float4 uv_0 = invert(rotate(30.2, 0, 0, 1) * scale(4, 4, 1)) * uv;

 float4 uv_1 = invert(rotate(-35.5, 0, 0, 1) * scale(2, 2, 1)) * uv;

 float4 uv_2 = invert(rotate(274.1, 0, 0, 1) * scale(1, 1, 1)) * uv;

 float4 N_0 = 0.57 * texture(noise, uv_0);

 float4 N_1 = 0.29 * texture(noise, uv_1);

 float4 N_2 = 0.14 * texture(noise, uv_2);

 return N_0 + N_1 + N_2;

}

surface shader float4

noise_2d_multipass (texref noise, float4 uv)

{

 return turb(noise, uv);

}

surface shader float4

noise_2d_multipass_specular_modulate (texref noise, float4 uv)

{

 float4 Cl = lightmodel(Ma, Md, Ms, Me, Msh);

 return Cl * turb(noise, uv);

}

surface shader float4

noise_2d_multipass_specular_separate (texref noise, float4 uv)

{

 float4 Cd = lightmodel_diffuse(Ma, Md);

 float4 Cs = lightmodel_specular(Ms, Me, Msh);

 return Cd * turb(noise, uv) + Cs;

}

float4

skymap (texref clouds, float4 dir, float time)

{

 dir = normalize(dir);

 dir = { dir[0], dir[1], 4 * (dir[2] + 0.707), 0 };

 dir = normalize(dir);

 float4 uv_lo = dir * { 2, 2, 0, 0 } + { time / 15 , time / 15, 0, 1 };

 float4 uv_hi = dir * { 3, 3, 0, 0 } + { time / 15 , time / 15, 0, 1 };

 float4 Lo = texture(clouds, uv_lo);

 float4 Hi = texture(clouds, rotate(125, 0, 0, 1) * uv_hi);

 // for now, do not use Lo over (Hi over { 0.6, 0.5, 1.0, 1.0 })

 // texture_env_combine does not do over correctly

 return Lo over Hi over { 0.6, 0.5, 1.0, 1.0 };

}

surface shader float4

quake_sky (texref clouds, float time)

{

 return skymap(clouds, { Pobj[0], -Pobj[2], Pobj[1], 0 }, time);

}

surface shader float4

bowling_pin_with_sky (texref pinbase, texref bruns, texref circle,

 texref coated, texref marks, float4 uv,

 texref clouds, float time)

{

 float4 uv_wrap = { uv[0], 10 * Pobj[1], 0, 1 };

 float4 uv_label = { 10 * Pobj[0], 10 * Pobj[1], 0, 1 };

 matrix4 t_base = invert(translate(0, -7.5, 0) * scale(0.667, 15, 1));

 matrix4 t_bruns = invert(translate(-2.6, -2.8, 0) * scale(5.2, 5.2, 1));

 matrix4 t_circle = invert(translate(-0.8, -1.15, 0) * scale(1.4, 1.4, 1));

 matrix4 t_coated = invert(translate(2.6, -2.8, 0) * scale(-5.2, 5.2, 1));

 matrix4 t_marks = invert(translate(2.0, 7.5, 0) * scale (4, -15, 1));

 float front = select(Pobj[2] >= 0, 1, 0);

 float back = select(Pobj[2] <= 0, 1, 0);

 float4 Base = texture(pinbase, t_base * uv_wrap);

 float4 Bruns = front * texture(bruns, t_bruns * uv_label);

 float4 Circle = front * texture(circle, t_circle * uv_label);

 float4 Coated = back * texture(coated, t_coated * uv_label);

 float4 Marks = texture(marks, t_marks * uv_wrap);

 float Lscale = 0.5;

 float4 Cd = lightmodel_diffuse({ 0.4, 0.4, 0.4, 1 }, { 0.5, 0.5, 0.5, 1 });

 Cd = Cd * Lscale;

 float4 Cs = lightmodel_specular({ 0.35, 0.35, 0.35, 1 }, Zero, 20);

 Cs = Cs * Lscale;

 float3 R = reflect(E,N);

 return (Circle over (Bruns over (Coated over Base))) * (Marks * Cd) + Cs +

 0.5 * skymap(clouds, { R[0], -R[2], R[1], 0 }, time);

}

#ifdef HAVE_BUMPOPS

surface shader float4

bowling_pin_bump (texref pinbase, texref bruns, texref circle, texref coated,

 texref marks, texref marksbump, float4 uv)

{

 float4 uv_wrap = { uv[0], 10 * Pobj[1], 0, 1 };

 float4 uv_label = { 10 * Pobj[0], 10 * Pobj[1], 0, 1 };

 matrix4 t_base = invert(translate(0, -7.5, 0) * scale(0.667, 15, 1));

 matrix4 t_bruns = invert(translate(-2.6, -2.8, 0) * scale(5.2, 5.2, 1));

 matrix4 t_circle = invert(translate(-0.8, -1.15, 0) * scale(1.4, 1.4, 1));

 matrix4 t_coated = invert(translate(2.6, -2.8, 0) * scale(-5.2, 5.2, 1));

 matrix4 t_marks = invert(translate(2.0, 7.5, 0) * scale (4, -15, 1));

 float front = select(Pobj[2] >= 0, 1, 0);

 float back = select(Pobj[2] <= 0, 1, 0);

 float4 Base = texture(pinbase, t_base * uv_wrap);

 float4 Bruns = front * texture(bruns, t_bruns * uv_label);

 float4 Circle = front * texture(circle, t_circle * uv_label);

 float4 Coated = back * texture(coated, t_coated * uv_label);

 float4 uv_marks = t_marks * uv_wrap;

 float4 Marks = texture(marks, uv_marks);

 perlight float3 Lt = { dot(T,L), dot(B,L), dot(N,L) };

 perlight float3 Ht = { dot(T,H), dot(B,H), dot(N,H) };

 float4 Ma = {.4,.4,.4,1};

 float4 Md = {.5,.5,.5,1};

 float4 Ms = {.3,.3,.3,1};

 float4 Kd = (Circle over (Bruns over (Coated over Base))) * Marks;

 return Kd * Ma +

 integrate(Cl * (Kd * Md * bumpdiff(marksbump, uv_marks, Lt)

 blend(ONE,SRC_ALPHA)

 Ms * bumpspec(marksbump, uv_marks, Ht)));

}

#endif /* HAVE_BUMPOPS */

#ifdef HAVE_CUBEMAP

surface shader float4

cube_from_obj_normal (texref cube) {

 return cubemap(cube, {-1,-1,1}*__normal);

}

surface shader float4

poolball_with_cube (texref one, float4 uv, texref cube)

{

 float4 Ma = .5 * { 0.35, 0.35, 0.35, 1.00 };

 float4 Md = .5 * { 0.50, 0.50, 0.50, 1.00 };

 float4 Ms = .5 * { 1.00, 1.00, 1.00, 1.00 };

 float4 Me = .5 * { 0.00, 0.00, 0.00, 1.00 };

 float Msh = 127;

 float4 Cd = lightmodel_diffuse(Ma, Md);

 float4 Cs = lightmodel_specular(Ms, Me, Msh);

 matrix4 tm = invert(translate(0.35, 0.2, 0.0) * scale(0.3, 0.6, 1.0));

 float3 R = reflect(E,N);

 return Cd * texture(one, tm * uv) + Cs + 0.4 * cubemap(cube, {-1,-1,1}*R);

}

#endif /* HAVE_CUBEMAP */

