#! /bin/sh # This is a shell archive. Remove anything before this line, then unpack # it by saving it into a file and typing "sh file". To overwrite existing # files, type "sh file -c". You can also feed this as standard input via # unshar, or by typing "sh 'Doc/Guide/surfaces.tex' <<'END_OF_FILE' X\chapter{Surfaces and Atmospheric Effects} X XSurfaces are used to control the interaction between light sources and Xobjects. A surface specification consists of information Xabout how the light interacts with both the exterior and Xinterior of an object . XFor non-closed objects, such as polygons, Xthe ``interior'' of an object is the ``other side'' of the object's surface Xrelative to the origin of a ray. X XRayshade usually ensures that a primitive's surface normal is pointing Xtowards the origin of the incident ray when performing shading Xcalculations. Exceptions to this rule are transparent primitives, for Xwhich rayshade uses the direction of the surface normal to determine if Xthe incident ray is entering or exiting the object. XAll non-transparent primitives will, in effect, be double-sided. X X\section{Surface Description} X XA surface definition consists of a number of component keywords, each Xof which is usually followed by either a single number or a red-green-blue Xcolor triple. Each of the values in the color triple are normalized, Xwith zero indicating zero intensity, and one indicating full intensity. X XIf any surface component is left unspecified, its value defaults to zero, Xwith the exception of the index of refraction, which is assigned the Xdefault index of refraction (normally 1.0). X XSurface descriptions are used in rayshade to compute the color of a ray Xthat strikes the surface at a point \evec{P}. The normal to the surface Xat \evec{P}, \evec{N}, is also computed. X X\begin{defkey}{ambient}{\evec{color}} X Use the given {\em color} to approximate those surface-surface X interactions (e.g., diffuse interreflection) not modeled by the X ray tracing process. X\end{defkey} XA surface's ambient color is always applied to a ray. The color Xapplied is computed by multiplying the ambient color by the intensity Xof the ambient light source. X XIf \evec{P} is in shadow with respect to a given light source, Xthat light source makes no contribution to the shading of \evec{P}. X X\begin{defkey}{diffuse}{\evec{color}} X Specifies the diffuse color. X\end{defkey} XThe diffuse contribution from each non-shadowed light source at \evec{P} Xis equal to the diffuse color of the surface scaled by the cosine of Xthe angle between \evec{N} Xand the vector from \evec{P} to the light source. X X\begin{defkey}{specular}{\evec{color}} X Specifies the base color of specular reflections. X\end{defkey} X X\begin{defkey}{specpow}{{\em exponent}} X Specifies the specular highlight) exponent. X\end{defkey} XThe intensity of specular highlights from light sources are Xscaled by the specular color of the surface. X X\begin{defkey}{reflect}{{\em reflectivity}} X Specifies the specular reflectivity of the surface. If non-zero, X reflected rays will be spawned. X\end{defkey} XThe intensity of specularly reflected rays will be proportional to Xthe specular color of the surface scaled by the reflectivity. X X\begin{defkey}{transp}{{\em transparency}} X Specifies the specular transmissivity of the surface. If X non-zero, X transmitted (refracted) rays will be spawned. X\end{defkey} X X\begin{defkey}{body}{\evec{color}} X Specifies the body color of the object. The body color X affects the color of rays that are transmitted through the X object. X\end{defkey} X X\begin{defkey}{extinct}{{\em coefficient}} X Specifies the extinction coefficient of the interior X of the object. X\end{defkey} XThe extinction coefficient is raised to a power equal to the distance Xthe transmitted ray travels through the object. XThe overall intensity of specularly transmitted rays will be proportional to Xthis factor multiplied by the surface's body color Xmultiplied by the transparency of the object. X X\begin{defkey}{index}{{\em N}} X Specifies the index of refraction. The default value is equal X to the index of refraction of the atmosphere surrounding the eye. X\end{defkey} X X\begin{defkey}{translucency}{{\em translu} \evec{color} {\em stexp}} X Specifies the translucency, diffusely transmitted color, X and Phong exponent for transmitted specular highlights. X\end{defkey} XIf a light source illuminates a translucent surface from the side opposite Xthat from which a ray approaches, illumination computations are performed, Xusing the given color as the surface's diffuse color, and the given Xexponent as the Phong highlight exponent. The resulting color is then Xscaled by the surface's translucency. X X\section{Atmospheric Effects} X XAny number of atmospheric effects may also be associated with a surface. XThese effects will be applied to those rays that are transmitted through Xthe surface. Applying atmospheric effects to opaque objects is a waste Xof input file. X X\begin{defkey}{fog}{\evec{color} \evec{thinness}} XAdd exponential fog with the specified {\em thinness} and {\em color}. X\end{defkey} XFog is simulated by blending the color of the fog with the color of Xeach ray. The amount of fog color blended into a ray color is an exponential Xfunction of the distance from the ray origin to the point of intersection Xdivided by the specified {\em thinness} for each color channel. XIf the distance is equal to {\em thinness}, Xa ray's new color will be half of the fog color plus half its Xoriginal color. X X\begin{defkey}{mist}{\evec{color} \evec{thinness} {\em zero scale}} XAdd global low-altitude mist of the specified color. The color of Xa ray is modulated by a fog with density that varies linearly with Xthe difference in $z$ coordinate (altitude) between the ray origin and Xthe point of intersection. The thinness values specify the transmissivity Xof the fog for each color channel. XThe base altitude of the Xmist is given by {\em zero}, and the apparent height of the mist can Xbe modulated using {\em scale}, which scales the difference in Xaltitude used to compute the fog. X\end{defkey} X X\section {The Default Medium} X XThe default medium is the medium which surrounds and encompasses Xall of the objects in the scene; it is the ``air'' through which eye Xrays usually travel before hitting an object. The properties of Xthe default medium may be modified through the use of the {\tt atmosphere} Xkeyword. X X\begin{defkey}{atmosphere}{[{\em N\/}] [{\em atmospheric effects}]} XIf given, {\em N} specifies the index of refraction of the default Xmedium. The default is 1.0. Any atmospheric effects listed are applied Xto rays that are exterior to every object in the scene (e.g., rays Xemanating from the camera). X\end{defkey} X X\begin{verbatim} X /* X * Red sphere on a grey plane, with fog. X */ X eyep 0. -10. 2. X atmosphere fog .8 .8 .8 14. 14. 14. X plane 0 0 0 0 0 1 X sphere diffuse 0.8 0 0 1.5 0 0 1.5 X\end{verbatim} X X\section {Surface Specification} X X{\em Rayshade} provides a number of ways to define surfaces and to Xbind these surfaces to objects. The most straight-forward method Xof surface specification is to simply list the surface properties to Xbe used. XAlternatively, one may associate a name with a given surface. XThis name may subsequently be used to refer to that surface. X X\begin{defkey}{surface}{{\em name\/} $<${\em Surface Definition}$>$} X Associate the given collection of surface attributes with the X given name. X\end{defkey} X XThe binding of a collection of surface properties to a given object Xis accomplished in a bottom-up manner; the surface that ``closest'' Xin the modeling tree to the primitive being rendered is the one that Xis used to give the primitive its appearance. X XAn object that has no surface bound to it is assigned a default surface Xthat give an object the appearance of white plastic. X XThe first Xand most direct way to bind a surface to a primitive Xis by specifying the surface to be bound to Xthe primitive when it is instantiated. XThis is accomplished Xby inserting a list of surface attributes or a surface name after Xthe primitive's type keyword and before the actual primitive data. X X\begin{verbatim} X /* X * A red 'mud' colored sphere reseting on a X * white sphere. To the right is a sphere with X * default surface attributes. X */ X surface mud ambient .03 0. 0. diffuse .7 .3 0. X sphere ambient .05 .05 .05 diffuse .7 .7 .7 1. 0 0 0 X sphere mud 1. 0 0 2 X sphere 1. 1.5 0 0 X\end{verbatim} X XHere, we define a red surface named ``mud''. We then instantiate Xa sphere, which has a diffuse white surface bound to it. The Xnext line instantiates a sphere with the defined ``mud'' surface bound Xto it. The last line instantiates a sphere with no surface bound to it; Xit is assigned the default surface by {\em rayshade}. X XThe {\tt applysurf} keyword may be used to set the default surface Xcharacteristics for the aggregate object currently being defined. X X\begin{defkey}{applysurf}{$<${\em Surface Specification}$>$} XThe specified surface is applied to all following Xinstantiated objects that do not have surfaces associated with them. XThe scope of this keyword is limited to the aggregate currently Xbeing defined. X\end{defkey} X X\begin{verbatim} X /* X * Mirrored ball and cylinder sitting on 'default' plane. X */ X surface mirror .01 .01 .01 diffuse .05 .05 .05 X specular .8 .8 .8 speccoef 20 reflect 0.95 X plane 0 0 0 0 0 1 X applysurf mirror X sphere 1 0 0 0 X cylinder 1 3 0 0 3 0 3 X\end{verbatim} X XFor convenience, the name {\tt cursurf} may be used to refer to the Xcurrent default surface. X XThe utility of bottom-up binding of surfaces lies in the fact that Xone may be as adamant or as noncommittal about Xsurface binding as one sees fit when defining objects. For example, Xone could define a king chess piece consisting of triangles that have no Xsurface bound to them, save for the cross on top, which has Xa gold-colored surface associated with it. One may then instantiate Xthe king twice, once applying a black surface, and once applying Xa white surface. The result: a black king and a white king, each Xadorned with a golden cross. X X\begin{verbatim} X surface white ... X surface black ... X surface gold ... X ... X define cross X box x y z x y z X ... X defend X define king X triangle x y z x y z x y z X ... X object gold cross X defend X X object white king translate 1. 0 0 X object black king X\end{verbatim} END_OF_FILE if test 10193 -ne `wc -c <'Doc/Guide/surfaces.tex'`; then echo shar: \"'Doc/Guide/surfaces.tex'\" unpacked with wrong size! fi # end of 'Doc/Guide/surfaces.tex' fi if test -f 'libray/libcommon/transform.c' -a "${1}" != "-c" ; then echo shar: Will not clobber existing file \"'libray/libcommon/transform.c'\" else echo shar: Extracting \"'libray/libcommon/transform.c'\" \(10691 characters\) sed "s/^X//" >'libray/libcommon/transform.c' <<'END_OF_FILE' X/* X * transform.c X * X * Copyright (C) 1989, 1991, Craig E. Kolb X * All rights reserved. X * X * This software may be freely copied, modified, and redistributed X * provided that this copyright notice is preserved on all copies. X * X * You may not distribute this software, in whole or in part, as part of X * any commercial product without the express consent of the authors. X * X * There is no warranty or other guarantee of fitness of this software X * for any purpose. It is provided solely "as is". X * X * $Id: transform.c,v 4.0 91/07/17 14:32:25 kolb Exp Locker: kolb $ X * X * $Log: transform.c,v $ X * Revision 4.0 91/07/17 14:32:25 kolb X * Initial version. X * X */ X#include "common.h" X X/* X * Matrices are indexed row-first; that is: X * matrix[ROW][COLUMN] X */ X/* X * Allocate new structure that holds both object-to-world and X * world-to-object space transformation structures. It probably X * should hold pointers to these structures. X */ XTrans * XTransCreate(tr, meth) XTransRef tr; XTransMethods *meth; X{ X Trans *res; X X res = (Trans *)share_malloc(sizeof(Trans)); X res->tr = tr; X res->methods = meth; X res->animated = FALSE; X res->assoc = (ExprAssoc *)NULL; X res->prev = res->next = (Trans *)NULL; X MatrixInit(&res->trans); X MatrixInit(&res->itrans); X return res; X} X Xvoid XTransFree(trans) XTrans *trans; X{ X if (trans->tr) X free((voidstar)trans->tr); X free((voidstar)trans); X} X Xvoid XTransAssoc(trans, ptr, expr) XTrans *trans; XFloat *ptr; XExpr *expr; X{ X ExprAssoc *assoc; X X if (expr->timevary) { X /* X * Gotta store the sucker. X */ X trans->assoc = AssocCreate(ptr, expr, trans->assoc); X trans->animated = TRUE; X } else { X *ptr = expr->value; X } X fflush(stderr); X} X X/* X * Allocate new transformation 'matrix'. X */ XRSMatrix * XMatrixCreate() X{ X RSMatrix *res; X X res = (RSMatrix *)share_malloc(sizeof(RSMatrix)); X MatrixInit(res); X return res; X} X X/* X * Multiply m1 and m2, copy result into "res". X */ Xvoid XMatrixMult(t1, t2, res) XRSMatrix *t1, *t2, *res; X{ X register int i; X RSMatrix tmp; X X for (i = 0; i < 3; i++) { X tmp.matrix[i][0] = t1->matrix[i][0] * t2->matrix[0][0] + X t1->matrix[i][1] * t2->matrix[1][0] + X t1->matrix[i][2] * t2->matrix[2][0]; X tmp.matrix[i][1] = t1->matrix[i][0] * t2->matrix[0][1] + X t1->matrix[i][1] * t2->matrix[1][1] + X t1->matrix[i][2] * t2->matrix[2][1]; X tmp.matrix[i][2] = t1->matrix[i][0] * t2->matrix[0][2] + X t1->matrix[i][1] * t2->matrix[1][2] + X t1->matrix[i][2] * t2->matrix[2][2]; X } X X tmp.translate.x = t1->translate.x * t2->matrix[0][0] + X t1->translate.y * t2->matrix[1][0] + X t1->translate.z * t2->matrix[2][0] + t2->translate.x; X tmp.translate.y = t1->translate.x * t2->matrix[0][1] + X t1->translate.y * t2->matrix[1][1] + X t1->translate.z * t2->matrix[2][1] + t2->translate.y; X tmp.translate.z = t1->translate.x * t2->matrix[0][2] + X t1->translate.y * t2->matrix[1][2] + X t1->translate.z * t2->matrix[2][2] + t2->translate.z; X MatrixCopy(&tmp, res); X} X X/* X * Return transformation information to map the "coordinate system" X * with the given origin, "up" vector, radius, and up axis lengths to X * one in which the "up" vector is the Z axis and the x/y/up axes X * have unit length. This is useful for transforming a general X * form of a primitive into a canonical, Z-axis aligned, unit size X * primitive, facilitating intersection testing. X */ Xvoid XCoordSysTransform(origin, up, r, len, trans) XVector *origin, *up; XFloat r, len; XTrans *trans; X{ X RSMatrix tmp; X Vector atmp; X X ScaleMatrix(r, r, len, &trans->trans); X if (fabs(up->z) == 1.) { X atmp.x = 1.; X atmp.y = atmp.z = 0.; X } else { X atmp.x = up->y; X atmp.y = -up->x; X atmp.z= 0.; X } X /* X * Might want to make sure that |up->z| is < 1. X */ X RotationMatrix(atmp.x, atmp.y, atmp.z, -acos(up->z), &tmp); X MatrixMult(&trans->trans, &tmp, &trans->trans); X TranslationMatrix(origin->x, origin->y, origin->z, &tmp); X MatrixMult(&trans->trans, &tmp, &trans->trans); X MatrixInvert(&trans->trans, &trans->itrans); X} X Xvoid XTransCopy(from, into) XTrans *into, *from; X{ X MatrixCopy(&from->trans, &into->trans); X MatrixCopy(&from->itrans, &into->itrans); X} X Xvoid XTransInvert(from, into) XTrans *into, *from; X{ X RSMatrix ttmp; X /* X * In case into == from... X */ X if (from == into) { X ttmp = from->trans; X into->trans = from->itrans; X into->itrans = ttmp; X } else { X into->trans = from->itrans; X into->itrans = from->trans; X } X} X X/* X * Copy a given transformation structure. X */ Xvoid XMatrixCopy(from, into) XRSMatrix *into, *from; X{ X into->matrix[0][0] = from->matrix[0][0]; X into->matrix[0][1] = from->matrix[0][1]; X into->matrix[0][2] = from->matrix[0][2]; X into->matrix[1][0] = from->matrix[1][0]; X into->matrix[1][1] = from->matrix[1][1]; X into->matrix[1][2] = from->matrix[1][2]; X into->matrix[2][0] = from->matrix[2][0]; X into->matrix[2][1] = from->matrix[2][1]; X into->matrix[2][2] = from->matrix[2][2]; X into->translate = from->translate; X} X Xvoid XTransInit(trans) XTrans *trans; X{ X MatrixInit(&trans->trans); X MatrixInit(&trans->itrans); X} X Xvoid XTransCompose(t1, t2, res) XTrans *t1, *t2, *res; X{ X MatrixMult(&t1->trans, &t2->trans, &res->trans); X MatrixMult(&t2->itrans, &t1->itrans, &res->itrans); X} X X/* X * Initialize transformation structure. X */ Xvoid XMatrixInit(trans) XRSMatrix *trans; X{ X trans->matrix[0][0] = trans->matrix[1][1] = trans->matrix[2][2] = 1.; X trans->matrix[0][1] = trans->matrix[0][2] = trans->matrix[1][0] = X trans->matrix[1][2] = trans->matrix[2][0] = trans->matrix[2][1] = 0.; X trans->translate.x = trans->translate.y = trans->translate.z = 0.; X} X X/* X * Calculate inverse of the given transformation structure. X */ Xvoid XMatrixInvert(trans, inverse) XRSMatrix *inverse, *trans; X{ X RSMatrix ttmp; X int i; X Float d; X extern int yylineno; X X ttmp.matrix[0][0] = trans->matrix[1][1]*trans->matrix[2][2] - X trans->matrix[1][2]*trans->matrix[2][1]; X ttmp.matrix[1][0] = trans->matrix[1][0]*trans->matrix[2][2] - X trans->matrix[1][2]*trans->matrix[2][0]; X ttmp.matrix[2][0] = trans->matrix[1][0]*trans->matrix[2][1] - X trans->matrix[1][1]*trans->matrix[2][0]; X X ttmp.matrix[0][1] = trans->matrix[0][1]*trans->matrix[2][2] - X trans->matrix[0][2]*trans->matrix[2][1]; X ttmp.matrix[1][1] = trans->matrix[0][0]*trans->matrix[2][2] - X trans->matrix[0][2]*trans->matrix[2][0]; X ttmp.matrix[2][1] = trans->matrix[0][0]*trans->matrix[2][1] - X trans->matrix[0][1]*trans->matrix[2][0]; X X ttmp.matrix[0][2] = trans->matrix[0][1]*trans->matrix[1][2] - X trans->matrix[0][2]*trans->matrix[1][1]; X ttmp.matrix[1][2] = trans->matrix[0][0]*trans->matrix[1][2] - X trans->matrix[0][2]*trans->matrix[1][0]; X ttmp.matrix[2][2] = trans->matrix[0][0]*trans->matrix[1][1] - X trans->matrix[0][1]*trans->matrix[1][0]; X X d = trans->matrix[0][0]*ttmp.matrix[0][0] - X trans->matrix[0][1]*ttmp.matrix[1][0] + X trans->matrix[0][2]*ttmp.matrix[2][0]; X X if (fabs(d) < EPSILON*EPSILON) X RLerror(RL_PANIC, "Singular matrix.\n",yylineno); X X ttmp.matrix[0][0] /= d; X ttmp.matrix[0][2] /= d; X ttmp.matrix[1][1] /= d; X ttmp.matrix[2][0] /= d; X ttmp.matrix[2][2] /= d; X X d = -d; X X ttmp.matrix[0][1] /= d; X ttmp.matrix[1][0] /= d; X ttmp.matrix[1][2] /= d; X ttmp.matrix[2][1] /= d; X X ttmp.translate.x = -(ttmp.matrix[0][0]*trans->translate.x + X ttmp.matrix[1][0]*trans->translate.y + X ttmp.matrix[2][0]*trans->translate.z); X ttmp.translate.y = -(ttmp.matrix[0][1]*trans->translate.x + X ttmp.matrix[1][1]*trans->translate.y + X ttmp.matrix[2][1]*trans->translate.z); X ttmp.translate.z = -(ttmp.matrix[0][2]*trans->translate.x + X ttmp.matrix[1][2]*trans->translate.y + X ttmp.matrix[2][2]*trans->translate.z); X X MatrixCopy(&ttmp, inverse); X} X X/* X * Apply a transformation to a point (translation affects the point). X */ Xvoid XPointTransform(vec, trans) XVector *vec; XRSMatrix *trans; X{ X Vector tmp; X X tmp.x = vec->x * trans->matrix[0][0] + vec->y * trans->matrix[1][0] + X vec->z * trans->matrix[2][0] + trans->translate.x; X tmp.y = vec->x * trans->matrix[0][1] + vec->y * trans->matrix[1][1] + X vec->z * trans->matrix[2][1] + trans->translate.y; X tmp.z = vec->x * trans->matrix[0][2] + vec->y * trans->matrix[1][2] + X vec->z * trans->matrix[2][2] + trans->translate.z; X *vec = tmp; X} X X/* X * 'c1x' is the X (0th) component of the first column, and so on. X */ Xvoid XArbitraryMatrix(c1x, c2x, c3x, c1y, c2y, c3y, c1z, c2z, c3z, tx, ty, tz, trans) XFloat c1x, c1y, c1z, c2x, c2y, c2z, c3x, c3y, c3z, tx, ty, tz; XRSMatrix *trans; X{ X trans->matrix[0][0] = c1x; X trans->matrix[1][0] = c1y; X trans->matrix[2][0] = c1z; X X trans->matrix[0][1] = c2x; X trans->matrix[1][1] = c2y; X trans->matrix[2][1] = c2z; X X trans->matrix[0][2] = c3x; X trans->matrix[1][2] = c3y; X trans->matrix[2][2] = c3z; X X trans->translate.x = tx; X trans->translate.y = ty; X trans->translate.z = tz; X} X X/* X * Apply transformation to a vector (translations have no effect). X */ Xvoid XVecTransform(vec, trans) XVector *vec; XRSMatrix *trans; X{ X Vector tmp; X X tmp.x = vec->x*trans->matrix[0][0] + X vec->y*trans->matrix[1][0] + vec->z*trans->matrix[2][0]; X tmp.y = vec->x*trans->matrix[0][1] + X vec->y*trans->matrix[1][1] + vec->z*trans->matrix[2][1]; X tmp.z = vec->x*trans->matrix[0][2] + X vec->y*trans->matrix[1][2] + vec->z*trans->matrix[2][2]; X X *vec = tmp; X} X X/* X * Transform normal -- multiply by the transpose of the given X * matrix (which is the inverse of the 'desired' transformation). X */ Xvoid XNormalTransform(norm, it) XVector *norm; XRSMatrix *it; X{ X Vector onorm; X X onorm = *norm; X X norm->x = onorm.x*it->matrix[0][0] + onorm.y*it->matrix[0][1] + X onorm.z*it->matrix[0][2]; X norm->y = onorm.x*it->matrix[1][0] + onorm.y*it->matrix[1][1] + X onorm.z*it->matrix[1][2]; X norm->z = onorm.x*it->matrix[2][0] + onorm.y*it->matrix[2][1] + X onorm.z*it->matrix[2][2]; X (void)VecNormalize(norm); X} X X/* X * Transform "ray" by transforming the origin point and direction vector. X */ XFloat XRayTransform(ray, trans) XRay *ray; XRSMatrix *trans; X{ X PointTransform(&ray->pos, trans); X VecTransform(&ray->dir, trans); X return VecNormalize(&ray->dir); X} X Xvoid XTransPropagate(trans) XTrans *trans; X{ X (*trans->methods->propagate)(trans->tr, &trans->trans, &trans->itrans); X} X Xvoid XTransResolveAssoc(trans) XTrans *trans; X{ X Trans *curtrans; X ExprAssoc *curassoc; X X for (curtrans = trans; curtrans; curtrans = curtrans->next) { X for (curassoc = curtrans->assoc; curassoc; curassoc = curassoc->next) { X *curassoc->lhs = ExprEval(curassoc->expr); X } X if (curtrans->assoc) X TransPropagate(curtrans); X } X} X Xvoid XTransComposeList(list, result) XTrans *list, *result; X{ X TransCopy(list, result); X for (list = list->next; list; list = list->next) X TransCompose(list, result, result); X} END_OF_FILE if test 10691 -ne `wc -c <'libray/libcommon/transform.c'`; then echo shar: \"'libray/libcommon/transform.c'\" unpacked with wrong size! fi # end of 'libray/libcommon/transform.c' fi if test -f 'libray/libobj/csg.c' -a "${1}" != "-c" ; then echo shar: Will not clobber existing file \"'libray/libobj/csg.c'\" else echo shar: Extracting \"'libray/libobj/csg.c'\" \(10585 characters\) sed "s/^X//" >'libray/libobj/csg.c' <<'END_OF_FILE' X/* X * csg.c X * X * Copyright (C) 1991, Rod G. Bogart, Craig E. Kolb X * All rights reserved. X * X * This software may be freely copied, modified, and redistributed X * provided that this copyright notice is preserved on all copies. X * X * You may not distribute this software, in whole or in part, as part of X * any commercial product without the express consent of the authors. X * X * There is no warranty or other guarantee of fitness of this software X * for any purpose. It is provided solely "as is". X * X * $Id: csg.c,v 4.0 91/07/17 14:37:00 kolb Exp Locker: kolb $ X * X * $Log: csg.c,v $ X * Revision 4.0 91/07/17 14:37:00 kolb X * Initial version. X * X */ X#include "geom.h" X#include "csg.h" X X#define csg_set_enter(l, f) ((l)->data[0].enter = (f) + 1) X Xstatic Methods *iCsgMethods = NULL; Xstatic char csgName[] = "csg"; X Xstatic int CsgUnionInt(), CsgDifferenceInt(), X CsgIntersectInt(); Xstatic void CsgHitlistCopy(), CsgSetBounds(); X XCsg * XCsgCreate(op) Xint op; X{ X Csg *csg; X X csg = (Csg *)share_malloc(sizeof(Csg)); X csg->operator = op; X csg->obj1 = csg->obj2 = (Geom *)NULL; X X X switch(op) { X case CSG_UNION: X csg->intmeth = CsgUnionInt; X break; X case CSG_INTERSECT: X csg->intmeth = CsgIntersectInt; X break; X case CSG_DIFFERENCE: X csg->intmeth = CsgDifferenceInt; X break; X default: X RLerror(RL_ABORT, "Unknown csg op type %d?\n",op); X } X return csg; X} X XMethods * XCsgMethods() X{ X if (iCsgMethods== (Methods *)NULL) { X iCsgMethods = MethodsCreate(); X iCsgMethods->create = (GeomCreateFunc *)CsgCreate; X iCsgMethods->convert = CsgConvert; X iCsgMethods->methods = CsgMethods; X iCsgMethods->name = CsgName; X iCsgMethods->intersect = CsgIntersect; X iCsgMethods->bounds = CsgBounds; X iCsgMethods->checkbounds = FALSE; X iCsgMethods->closed = TRUE; X } X return iCsgMethods; X} X Xchar * XCsgName() X{ X return csgName; X} X Xcsg_intersect_objs(csg, ray, hit1, hit2, mindist, dist1, dist2) XCsg *csg; XRay *ray; XHitList *hit1, *hit2; XFloat mindist, *dist1, *dist2; X{ X int operator; X X hit1->nodes = 0; X hit2->nodes = 0; X *dist1 = FAR_AWAY; X *dist2 = FAR_AWAY; X operator = csg->operator; X X if (!intersect(csg->obj1, ray, hit1, mindist, dist1) && X ((operator == CSG_INTERSECT) || (operator == CSG_DIFFERENCE))) { X /* X * Intersection and Difference cases: if you miss the first X * object, you missed the whole thing. X */ X return FALSE; X } X X if (!intersect(csg->obj2, ray, hit2, mindist, dist2) && X ((operator == CSG_INTERSECT) || X (hit1->nodes == 0) && (operator == CSG_UNION))) { X /* X * Intersect case: if you miss either object, you miss whole X * Union case: if you miss both object, you miss whole X */ X return FALSE; X } X X return TRUE; X} X Xint Xcsg_enter_obj(hitp) XHitList *hitp; X{ X if (hitp->data[0].enter) X return hitp->data[0].enter - 1; X X return PrimEnter(hitp->data[0].obj, &hitp->data[0].ray, X hitp->data[0].mindist, hitp->data[0].dist); X} X Xstatic int XCsgUnionInt(ray, hit1p, hit2p, dist1, dist2, hitclose, distclose) XRay *ray; XHitList *hit1p, *hit2p, **hitclose; XFloat dist1, dist2, *distclose; X{ X Float distnext; X HitList hitnext, *hittmp; X X while (TRUE) { X if (hit2p->nodes == 0 || X csg_enter_obj(hit2p)) { X /* return hit1 */ X *hitclose = hit1p; X *distclose = dist1; X csg_set_enter(hit1p, csg_enter_obj(hit1p)); X return TRUE; X } else { X distnext = FAR_AWAY; X hitnext.nodes = 0; X if (!intersect(hit1p->data[hit1p->nodes-1].obj, X ray, &hitnext, dist2+EPSILON, &distnext)) { X /* X * None of obj1 beyond, return hit2 (leaving) X */ X *hitclose = hit2p; X *distclose = dist2; X csg_set_enter(hit2p, FALSE); X return TRUE; X } else { X /* X * Since hit1 is supposed to be the close one, X * swap them and copy hitnext into hit2. X */ X hittmp = hit1p; X hit1p = hit2p; X hit2p = hittmp; X dist1 = dist2; X CsgHitlistCopy(&hitnext, hit2p); X dist2 = distnext; X /* and continue */ X } X } X } X} X Xstatic int XCsgIntersectInt(ray, hit1p, hit2p, dist1, dist2, hitclose, distclose) XRay *ray; XHitList *hit1p, *hit2p, **hitclose; XFloat dist1, dist2, *distclose; X{ X HitList *hittmp, hitnext; X Float distnext; X X while (TRUE) { X if (!csg_enter_obj(hit2p)) { X /* Ray is leaving obj2 */ X /* Return hit1 info */ X *hitclose = hit1p; X *distclose = dist1; X csg_set_enter(hit1p, csg_enter_obj(hit1p)); X return TRUE; X } else { X distnext = FAR_AWAY; X hitnext.nodes = 0; X if (!intersect(hit1p->data[hit1p->nodes-1].obj, X ray, &hitnext, dist2+EPSILON, &distnext)) { X /* X * None of obj1 beyond, so return miss X */ X return FALSE; X } else { X /* X * Since hit1 is supposed to be the X * close one, swap them and copy X * hitnext into hit2. X */ X hittmp = hit1p; X hit1p = hit2p; X hit2p = hittmp; X dist1 = dist2; X CsgHitlistCopy(&hitnext, hit2p); X dist2 = distnext; X /* and continue */ X } X } X } X} X Xstatic int XCsgDifferenceInt(ray, hit1p, hit2p, dist1, dist2, hitclose, distclose) XRay *ray; XHitList *hit1p, *hit2p, **hitclose; XFloat dist1, dist2, *distclose; X{ X Float distnext; X HitList hitnext; X X while (TRUE) { X if (dist1 < dist2) { X if (hit2p->nodes == 0 || X csg_enter_obj(hit2p)) { X /* return hit1 */ X *hitclose = hit1p; X *distclose = dist1; X csg_set_enter(hit1p, csg_enter_obj(hit1p)); X return TRUE; X } else { X distnext = FAR_AWAY; X hitnext.nodes = 0; X if (!intersect(hit1p->data[hit1p->nodes-1].obj, X ray, &hitnext, dist2+EPSILON, &distnext)) { X /* X * None of obj1 beyond, so X * return miss X */ X return FALSE; X } else { X dist1 = distnext; X CsgHitlistCopy(&hitnext, hit1p); X /* and continue */ X } X } X } else { /* dist1 <= dist2 */ X if (hit1p->nodes == 0) { X /* return a miss */ X return FALSE; X } X if (!csg_enter_obj(hit1p)) { X /* X * return hit2, but invert hit2 X * Enter/Leave flag X */ X *hitclose = hit2p; X *distclose = dist2; X csg_set_enter(hit2p, !csg_enter_obj(hit2p)); X return TRUE; X } else { X distnext = FAR_AWAY; X hitnext.nodes = 0; X if (!intersect(hit2p->data[hit2p->nodes-1].obj, X ray, &hitnext, dist1+EPSILON, &distnext)) { X /* X * None of obj2 beyond, so X * return hit1 X */ X *hitclose = hit1p; X *distclose = dist1; X /* we know we're entering obj1 */ X csg_set_enter(hit1p, TRUE); X return TRUE; X } else { X dist2 = distnext; X CsgHitlistCopy(&hitnext, hit2p); X /* and continue */ X } X } X } X } X} X Xint XCsgIntersect(csg, ray, hitlist, mindist, maxdist) XCsg *csg; XRay *ray; XHitList *hitlist; XFloat mindist, *maxdist; X{ X Float dist1, dist2, disttmp, distclose; X HitList hit1, hit2, *hit1p, *hit2p, *hitclose; X X hit1p = &hit1; X hit2p = &hit2; X if (!csg_intersect_objs(csg, ray, hit1p, hit2p, mindist, X &dist1, &dist2)) { X /* missed the csg object */ X return FALSE; X } X X if ((dist1 > dist2) && X (csg->operator == CSG_UNION || csg->operator == CSG_INTERSECT)) { X /* swap so 1 is closest (except in difference case) */ X disttmp = dist2; X dist2 = dist1; X dist1 = disttmp; X hit1p = &hit2; X hit2p = &hit1; X } X X /* X * Call appropriate intersection method. If FALSE is return, X * no hit of any kind was found. X */ X if (!(*csg->intmeth)(ray, hit1p, hit2p, dist1, dist2, X &hitclose, &distclose)) X return FALSE; X X /* X * At this time, the closest hit is in hitclose and X * distclose. X */ X if (distclose < mindist || distclose > *maxdist) X return FALSE; X X CsgHitlistCopy(hitclose, hitlist); X *maxdist = distclose; X return TRUE; X} X Xstatic void XCsgHitlistCopy(from, to) XHitList *from, *to; X{ X int i; X X to->nodes = from->nodes; X for (i = 0; i < from->nodes; i++) X to->data[i] = from->data[i]; X} X Xstatic void XCsgSetBounds(csg, bounds) XCsg *csg; XFloat bounds[2][3]; X{ X GeomComputeBounds(csg->obj1); X GeomComputeBounds(csg->obj2); X X switch (csg->operator) { X case CSG_UNION: X bounds[LOW][X] = min(csg->obj1->bounds[LOW][X], csg->obj2->bounds[LOW][X]); X bounds[HIGH][X] = max(csg->obj1->bounds[HIGH][X], csg->obj2->bounds[HIGH][X]); X bounds[LOW][Y] = min(csg->obj1->bounds[LOW][Y], csg->obj2->bounds[LOW][Y]); X bounds[HIGH][Y] = max(csg->obj1->bounds[HIGH][Y], csg->obj2->bounds[HIGH][Y]); X bounds[LOW][Z] = min(csg->obj1->bounds[LOW][Z], csg->obj2->bounds[LOW][Z]); X bounds[HIGH][Z] = max(csg->obj1->bounds[HIGH][Z], csg->obj2->bounds[HIGH][Z]); X break; X case CSG_INTERSECT: X bounds[LOW][X] = max(csg->obj1->bounds[LOW][X], csg->obj2->bounds[LOW][X]); X bounds[HIGH][X] = min(csg->obj1->bounds[HIGH][X], csg->obj2->bounds[HIGH][X]); X bounds[LOW][Y] = max(csg->obj1->bounds[LOW][Y], csg->obj2->bounds[LOW][Y]); X bounds[HIGH][Y] = min(csg->obj1->bounds[HIGH][Y], csg->obj2->bounds[HIGH][Y]); X bounds[LOW][Z] = max(csg->obj1->bounds[LOW][Z], csg->obj2->bounds[LOW][Z]); X bounds[HIGH][Z] = min(csg->obj1->bounds[HIGH][Z], csg->obj2->bounds[HIGH][Z]); X break; X case CSG_DIFFERENCE: X bounds[LOW][X] = csg->obj1->bounds[LOW][X]; X bounds[HIGH][X] = csg->obj1->bounds[HIGH][X]; X bounds[LOW][Y] = csg->obj1->bounds[LOW][Y]; X bounds[HIGH][Y] = csg->obj1->bounds[HIGH][Y]; X bounds[LOW][Z] = csg->obj1->bounds[LOW][Z]; X bounds[HIGH][Z] = csg->obj1->bounds[HIGH][Z]; X break; X default: X RLerror(RL_ABORT, "Unknown csg operator type %d?\n", X csg->operator); X } X} X X/* X * Return index of hitlist node closest to the leaf and not below any X * CSG object. X */ Xint XFirstCSGGeom(hitlist) XHitList *hitlist; X{ X int i; X X /* X * UUUUGLY -- detect if obj is a CsgGeom by comparing X * methods with iCsgMethods. X */ X for (i = hitlist->nodes -1; i; i--) X if (hitlist->data[i].obj->methods == iCsgMethods) X return i; X return 0; X} X Xvoid XCsgBounds(csg, bounds) XCsg *csg; XFloat bounds[2][3]; X{ X CsgSetBounds(csg, csg->bounds); X BoundsCopy(csg->bounds, bounds); X} X Xint XCsgConvert(csg, list) XCsg *csg; XGeom *list; X{ X static int OpenAdvised = FALSE; X /* X * Currently, this only handles two objects. X * Will be fixed in the future. X * No really we promise. X */ X if (!list || !list->next) { X RLerror(RL_WARN, "CSG needs at least two objects.\n"); X return 0; X } X if (list->next->next) { X RLerror(RL_WARN, "Currently, CSG only handles two objects.\n"); X return 0; X } X /* X * Things are put into lists backwards.... X */ X csg->obj2 = list; X csg->obj1 = list->next; X if ((!csg->obj1->methods->closed || !csg->obj2->methods->closed) && X !OpenAdvised) { X RLerror(RL_ADVISE, X "Performing CSG with non-closed object(s).\n"); X OpenAdvised = TRUE; X } X return csg->obj1->prims + csg->obj2->prims; X} X Xvoid XCsgMethodRegister(meth) XUserMethodType meth; X{ X if (iCsgMethods) X iCsgMethods->user = meth; X} END_OF_FILE if test 10585 -ne `wc -c <'libray/libobj/csg.c'`; then echo shar: \"'libray/libobj/csg.c'\" unpacked with wrong size! fi # end of 'libray/libobj/csg.c' fi if test -f 'libshade/shade.c' -a "${1}" != "-c" ; then echo shar: Will not clobber existing file \"'libshade/shade.c'\" else echo shar: Extracting \"'libshade/shade.c'\" \(10451 characters\) sed "s/^X//" >'libshade/shade.c' <<'END_OF_FILE' X/* X * shade.c X * X * Copyright (C) 1989, 1991, Craig E. Kolb X * All rights reserved. X * X * This software may be freely copied, modified, and redistributed X * provided that this copyright notice is preserved on all copies. X * X * You may not distribute this software, in whole or in part, as part of X * any commercial product without the express consent of the authors. X * X * There is no warranty or other guarantee of fitness of this software X * for any purpose. It is provided solely "as is". X * X * $Id: shade.c,v 4.0 91/07/17 14:47:36 kolb Exp Locker: kolb $ X * X * $Log: shade.c,v $ X * Revision 4.0 91/07/17 14:47:36 kolb X * Initial version. X * X */ X#include "rayshade.h" X#include "libtext/texture.h" X#include "libsurf/surface.h" X#include "liblight/light.h" X#include "libsurf/atmosphere.h" X#include "options.h" X#include "stats.h" X XMedium TopMedium; XAtmosphere *AtmosEffects; X Xstatic void shade(), LightRay(), Lighting(), ReflectRay(); Xstatic int TransmitRay(); X X/* X * Calculate color of ray. X */ Xvoid XShadeRay(hitlist, ray, dist, back, color, contrib) XHitList *hitlist; /* Information about point of intersection. */ XRay *ray; /* Direction and origin of ray. */ XFloat dist; /* Distance from origin of intersection. */ XColor *back, /* "Background" color */ X *color, /* Color to assign current ray. */ X *contrib; /* Contribution of this ray to final color */ X{ X Vector norm, gnorm, pos; /* surface normal, point of intersection */ X Surface surf, *stmp; /* surface properties */ X int enter, smooth; /* entering ?, gnorm != snorm ?*/ X X if (hitlist->nodes == 0) { X /* X * No valid intersection. Set distance for atmospheric X * effects and set color of ray to background. X */ X *color = *back; X VecAddScaled(ray->pos, FAR_AWAY, ray->dir, &pos); X if (!ray->media && AtmosEffects) X Atmospherics(AtmosEffects, ray, FAR_AWAY, &pos, color); X return; X } X X /* X * Compute normal, surface properties, etc. X */ X stmp = GetShadingSurf(hitlist); X surf = *stmp; X enter = ComputeSurfProps(hitlist, ray, &pos, &norm, &gnorm, &surf, X &smooth); X Stats.HitRays++; X X /* X * Calculate ray color. X */ X shade(&pos, ray, &norm, &gnorm, smooth, enter, &surf, back, color, X contrib); X if (!ray->media && AtmosEffects) X Atmospherics(AtmosEffects, ray, dist, &pos, color); X} X X/* X * Perform lighting calculations based on surface normal & other properties, X * incident ray direction and position, and light source properties. X * Spawn any necessary reflected and transmitted rays. X */ Xstatic void Xshade(pos, ray, nrm, gnrm, smooth, enter, surf, back, color, contrib) XVector *pos, *nrm, *gnrm; /* hit pos, shade normal, geo normal */ Xint smooth; /* true if shading norm and geo norm differ */ Xint enter; /* TRUE if entering surface */ XRay *ray; /* indicent ray */ XSurface *surf; /* properties of hit surface */ XColor *back, *color; /* background color, computed color */ XColor *contrib; /* contribution to final pixel value */ X{ X Float k; /* -ray . normal */ X Color newcontrib; X Vector refl; /* reflected direction */ X Color reflectivity, /* effective surface reflectivity */ X intens; /* reflected/transmitted intensity */ X Light *lp; /* current light source */ X extern Light *Lights; /* list of defined sources */ X X /* X * Ambient color is always included. X */ X ColorMultiply(surf->amb, Options.ambient, color); X X /* X * Calculate direction of reflected ray. X */ X k = -dotp(&ray->dir, nrm); X VecAddScaled(ray->dir, 2.*k, *nrm, &refl); X X /* X * Calculate intensity contributed by each light source. X */ X for (lp = Lights; lp; lp = lp->next) X LightRay(lp, pos, nrm, gnrm, smooth, &refl, surf, X ray->depth, ray->sample, ray->time, color); X X if (ray->depth >= Options.maxdepth) X /* X * Don't spawn any transmitted/reflected rays. X */ X return; X /* X * Specular transmission (refraction). X */ X ColorScale(surf->reflect, surf->spec, &reflectivity); X X if (surf->transp > EPSILON) { X ColorScale(surf->transp, surf->body, &intens); X ColorMultiply(intens, *contrib, &newcontrib); X if (newcontrib.r > Options.cutoff.r || X newcontrib.g > Options.cutoff.g || X newcontrib.b > Options.cutoff.b) X /* X * Transmit ray. If TIR occurs, add transmitted X * component to reflected component. Kinda strange, but... X */ X if (TransmitRay(ray, pos, nrm, k, surf->index, X surf->statten, enter, back, &newcontrib, &intens, color)) X ColorAdd(reflectivity, intens, &reflectivity); X } X X if (reflectivity.r > EPSILON || X reflectivity.g > EPSILON || X reflectivity.b > EPSILON) { X ColorMultiply(reflectivity, *contrib, &newcontrib); X if (newcontrib.r > Options.cutoff.r || X newcontrib.g > Options.cutoff.g || X newcontrib.b > Options.cutoff.b) X ReflectRay(ray, pos, &refl, back, &reflectivity, X &newcontrib, color); X } X} X X/* X * Lighting calculations X */ Xstatic void XLightRay(lp, pos, norm, gnorm, smooth, reflect, surf, depth, samp, time, color) XLight *lp; /* Light source */ XVector *pos, *norm, *gnorm; /* hit pos, shade norm, geo norm */ Xint smooth; /* true if shade and geo norm differ */ XVector *reflect; /* reflection direction */ XSurface *surf; /* surface characteristics */ Xint depth, samp; /* ray depth, sample # */ XFloat time; XColor *color; /* resulting color */ X{ X Color lcolor; X Ray newray; X Float costheta, cosalpha, dist; X X newray.pos = *pos; X newray.depth = depth; X newray.sample = samp; X newray.time = time; X newray.media = (Medium *)NULL; X X LightDirection(lp, pos, &newray.dir, &dist); X X costheta = dotp(&newray.dir, norm); X X if (smooth) { X cosalpha = dotp(&newray.dir, gnorm); X /* X * If shading normal indicates self-shadowing X * and geom normal indicates no self-shadowing, X * trust the geom normal. X */ X if (costheta <= 0. && cosalpha > 0.) X costheta = cosalpha; X /* X * If geom normal indicates self-shadowing and X * geom normal doesn't, then have to do something X * clever ala Snyder & Barr. X */ X } X X if (costheta <= 0.) { X /* X * Light source is on opposite side of surface, X * hence light must be transmitted through... X */ X if (surf->translucency < EPSILON) X return; X if (!LightIntens(lp, &newray, dist, X (int)surf->noshadow, &lcolor)) X return; X cosalpha = -dotp(reflect, &newray.dir); X Lighting(-costheta, cosalpha, &lcolor, &surf->translu, X &surf->body, surf->stexp, color); X ColorScale(surf->translucency, *color, color); X } else { X if (!LightIntens(lp, &newray, dist, X (int)surf->noshadow, &lcolor)) X return; /* prim is in shadow w.r.t light source */ X X cosalpha = dotp(reflect, &newray.dir); X Lighting(costheta, cosalpha, &lcolor, &surf->diff, X &surf->spec, surf->srexp, color); X } X} X X/* X * Compute shading function (diffuse reflection and specular highlight) X * X * This function *adds* the computed color to "color". X */ Xstatic void XLighting(costheta, cosalpha, lcolor, diff, spec, coef, color) XFloat costheta, cosalpha, coef; XColor *diff, *spec, *color, *lcolor; X{ X Float intens; X X /* X * Diffuse reflection. X * Falls off as the cosine of the angle between X * the normal and the ray to the light (costheta). X */ X color->r += diff->r * costheta * lcolor->r; X color->g += diff->g * costheta * lcolor->g; X color->b += diff->b * costheta * lcolor->b; X /* X * Specularly reflected highlights. X * Fall off as the cosine of the angle X * between the reflected ray and the ray to the light source. X */ X if (coef < EPSILON || cosalpha <= 0.) X return; X /* X * Specular highlight = cosine of the angle raised to the X * appropriate power. X */ X intens = pow(cosalpha, coef); X color->r += spec->r * intens * lcolor->r; X color->g += spec->g * intens * lcolor->g; X color->b += spec->b * intens * lcolor->b; X} X X/* X * Spawn a transmitted ray. Returns TRUE if total internal reflection X * occurs, FALSE otherwise. X */ Xstatic int XTransmitRay(ray, pos, norm, k, index, statten, enter, back, contrib, intens, color) XRay *ray; XVector *pos, *norm; XFloat k, index, statten; Xint enter; XColor *back, *contrib, *intens, *color; X{ X int total_int_refl = FALSE; X Ray NewRay; X Float dist; X Color newcol; X HitList hittmp; /* Geom intersection record */ X X NewRay.pos = *pos; /* Origin == hit point */ X NewRay.media = ray->media; /* Media == old media */ X NewRay.sample = ray->sample; X NewRay.time = ray->time; X NewRay.depth = ray->depth + 1; X X if (enter) { X /* X * Entering surface. X */ X if (Refract(&NewRay.dir, X NewRay.media ? NewRay.media->index : X TopMedium.index, index, &ray->dir, norm, k)) { X total_int_refl = TRUE; X } else { X /* X * Push information for new medium. X */ X NewRay.media = MediumPush(index, statten, NewRay.media); X } X } else { X /* X * Exiting surface X * Pop medium from stack. X */ X if (NewRay.media != (Medium *)0) X NewRay.media = NewRay.media->next; X if (Refract(&NewRay.dir, index, X NewRay.media ? NewRay.media->index : X TopMedium.index, &ray->dir, norm, k)) { X total_int_refl = TRUE; X } X } X X /* X * At this point, NewRay.media is the medium into which X * the new ray is entering. X */ X X if (!total_int_refl) { X Stats.RefractRays++; X hittmp.nodes = 0; X dist = FAR_AWAY; X TraceRay(&NewRay, &hittmp, EPSILON, &dist); X ShadeRay(&hittmp, &NewRay, dist, back, &newcol, contrib); X ColorMultiply(newcol, *intens, &newcol); X /* X * Attenuate transmitted color. Note that X * if the transmitted ray hit nothing, we still X * perform this computation, as it's possible X * that 'air' has a non-unit statten. X */ X statten = NewRay.media ? NewRay.media->statten : X TopMedium.statten; X if (statten != 1.0) { X statten = pow(statten, dist); X ColorScale(statten, newcol, &newcol); X } X ColorAdd(*color, newcol, color); X /* Free pushed medium */ X if (enter) X free((voidstar)NewRay.media); X } X X return total_int_refl; X} X Xstatic void XReflectRay(ray, pos, dir, back, intens, contrib, color) XRay *ray; XVector *pos, *dir; XColor *back, *intens, *contrib, *color; X{ X Ray NewRay; X HitList hittmp; /* Geom intersection record */ X Color newcol; X Float dist; X X NewRay.pos = *pos; /* Origin == hit point */ X NewRay.dir = *dir; /* Direction == reflection */ X NewRay.media = ray->media; /* Medium == old medium */ X NewRay.sample = ray->sample; X NewRay.time = ray->time; X NewRay.depth = ray->depth + 1; X Stats.ReflectRays++; X hittmp.nodes = 0; X dist = FAR_AWAY; X (void)TraceRay(&NewRay, &hittmp, EPSILON, &dist); X ShadeRay(&hittmp, &NewRay, dist, back, &newcol, contrib); X ColorMultiply(newcol, *intens, &newcol); X ColorAdd(*color, newcol, color); X} END_OF_FILE if test 10451 -ne `wc -c <'libshade/shade.c'`; then echo shar: \"'libshade/shade.c'\" unpacked with wrong size! fi # end of 'libshade/shade.c' fi echo shar: End of archive 13 \(of 19\). cp /dev/null ark13isdone MISSING="" for I in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ; do if test ! -f ark${I}isdone ; then MISSING="${MISSING} ${I}" fi done if test "${MISSING}" = "" ; then echo You have unpacked all 19 archives. rm -f ark[1-9]isdone ark[1-9][0-9]isdone else echo You still need to unpack the following archives: echo " " ${MISSING} fi ## End of shell archive. exit 0