
Brook: A Streaming Programming Language

I. Buck

8 October 2001

1 Motivation

1.1 Why design our own language?

� Modern processors can be limited by communication rather than com-

putation. However, communication or dependency information can often

be diÆcult to determine at compile time and therefore limit parallelism.

Communication and dependency information should be explicit within

Brook to alleviate this problem.

� Scienti�c computing can bene�t greatly from parallel computing. How-

ever, porting large applications can be diÆcult if not impossible for un-

conventional languages. Brook should cater to the scienti�c computing

community and be simple to port from existing C applications.

� Straightforward to parallelize the computation. The programmer should

have a clear understanding of what portions of the calculations are going

to be parallelized by the system. Both data and task parallelism should

be fairly intuitive.

� Retargetable. Mappable to a variety of hardwares including existing

stream machines (a.k.a Imagine), SMP systems, and future graphics hard-

ware. It should also be clear to the programmer how their code may be

mapped to hardware.

2 Streams, Stream Functions, and Kernels Func-

tions

2.1 What is a Stream?

Brook introduces a new datatype called a Stream. A stream is simply a collec-

tion of data which can be operated on in parallel. Each stream element consists

of a record of values. The layout of these records within the hardware memory

is hidden from the programmer to accommodate for the variety of hardware

implementations.

1

vec4f a = {...};

vec4f b;

mat4f M = {...};

b = M * a;

Figure 1: Transforming vector a by matrix M and storing the result in b.

2.2 Stream Functions

The elements of a stream can only be accessed via a stream function. A stream

function is a function which is applied to the elements of a stream. A function

can take multiple stream inputs and have multiple stream outputs.

2.3 Kernel Functions

A kernel function is a type of stream function which operates in parallel over

the elements of a stream. The operations allowed in kernel functions are limited

in order to insure parallel operation.

3 Programming Model

3.1 Language Basics

The syntax of Brook is designed to be similar to C with a few additions. A na-

tive vector library is provided which o�ers mathematical types and operations

common to scienti�c computing. These types include: Vectors : vec2f (2 com-

ponent, IEEE standard oating point), vec3f, vec4f, vec2d (double precision),

vec3d, vec4d, vec2i (32 bit integer), vec3i, vec4i; Matrices : mat2f (2x2 matrix),

mat3f, mat4f, mat2d, mat3d, mat4d, mat2i, mat3i, mat4i.

Standard mathmatical operations such as computing the dot product or

performing a matrix transform are expressed in a C-like style as shown in �gure

3.1. The compiler converts these operations to the most eÆcient hardware

implementation.

3.2 Stream Declaration

A stream consists of a collection of elements which can be declared similar to

C structs. Each element can contain any native C type (oat, int, double) or

vector type (vec3f, mat4d). Arrays are allowed although no pointers can exist

within a stream declaration. An example stream de�nition and declaration is

shown in �gure 3.2.

Streams can be declared as a simple set such as the vtx example. The length

of the stream is unspeci�ed, allowing it to grow or shrink as needed. Streams

2

\\ Stream definitions

stream Vertex {

vec4f pos;

vec4f color;

vec3f normal;

vec2f texture;

}

stream Color {

vec3f c;

}

\\ Stream declaration

Vertex vtx;

Color framebuffer[1024][1024];

Figure 2: De�ning and declaring a stream. De�ning streams is similar to de�n-

ing a C struct.

can also be declared as arrays, giving them a �xed size as in the framebu�er

example.

The layout of streams in memory is not exposed to the programmer. The

only way to access stream elements is through stream functions.

3.3 Stream Functions

Stream functions are functions which process elements of a stream. These func-

tions are de�ned much like a C function. The inputs of a stream function are

elements from a stream as well as any constant values. Below is a simple function

which prints the position �eld of a Vertex stream.

Invoking the stream function PrintVertexPos causes the function to be called

on each element within the stream v. The element passed into the stream

function is both readable as well as writable. General stream functions provide

a convenient method for unrestricted access to elements within a stream since

they operate similarly to C functions. They are capable of conditionals, looping,

local variables, accessing global memory, perform function calls, etc. However,

they are serial operations and are executed on a single processor or host CPU.

For parallel performance, the programmer should use a special type of stream

function called a kernel function.

3.4 Kernel Functions

General stream functions such as PrintVertexPos are not parallelized by the

compiler nor do they use special streaming hardware within the host system. In

3

void

PrintVertexPos (Vertex vtx) {

printf (``pos: %f %f %f\n'', vtx.pos[0], vtx.pos[1], vtx.pos[2]);

}

void main (void) {

Vertex v;

\\ Do some calculations on v

....

\\ Print the Vertex stream

PrintVertexPos (v);

}

Figure 3: A simple stream function.

kernel void

vtransform (Vertex vtx, Vertex out tvtx, mat4f matrix) {

tvtx.v = matrix * vtx.v

}

Figure 4: A simple kernel function.

order for stream functions to take advantage of parallel hardware the program-

mer should use a kernel function.

A kernel functions are a subset of stream functions which allow the use

parallel hardware units to operate on a stream in parallel. In order to allow

the kernel function to be parallelized, restrictions are placed on the types of

operations it is able to perform.

Figure 3.4 shows is an example of a kernel function which applies a matrix

transform to each element of vertex stream.

The kernel keyword signals to the compiler that this is a kernel function

which should be run in parallel on the hardware. Kernel functions, in general,

can perform normal C-like operations: Local variables, conditionals, and loops.

However certain restrictions are enforced when de�ning kernels:

1. Global variables are not visible within kernels. Only the arguments of

kernel are accessible.

2. Function calls are permitted to other kernel functions only. This prevents

the kernels from calling system functions, memory allocation functions,

etc.

3. Stream elements can only be accessed read only or write only. Read modify

write is not allowed. By default, arguments are considered to be read only,

unless the out or outm keyword is used. (More on these keywords below.)

4

These restrictions are checked by the compiler if the kernel keyword is spec-

i�ed at beginning of the function declaration. One of the key restrictions for

kernel function is the read or write only arguments. This allows the compiler to

easily detect communication between kernels and build a basic ow graph for

the computation. The compiler is also able to schedule the execution of stream

functions, both kernel and general stream functions.

3.5 1-N Kernels

In the vtransform example, there is a one to one mapping from input elements to

output elements. One vertex is passed in from vtx and one vertex is outputted

to tvtx. This is the de�ned behavior for the out keyword.

Brook also supports multiple outputs to a stream. Figure 3.5 is a kernel for

doing x-major line rasterization where two endpoints of a line are inputted and

a variable number of fragments are outputted.

In this example, the lineraster program can output multiple fragments which

are determined by the line length. The fragment stream is passed in via the

argument list with the outm keyword. This tells the compiler that the kernel

may output a variable number of elements to stream f, including no elements at

all. To output to the stream, the kernel uses the push function which outputs

the current value of f to the stream.

To summarize, there are two di�erent types of keywords for outputs.

1. out: One output element is generated per input element. push operator

is not required.

2. outm: Zero to n elements generated for an input element. Each element

must be explicitly outputted using the push function.

4 Array Accesses

In the previous examples, streams have been declared as simple sets. For com-

putations which require convolution operations the programmer may want to

query the neighboring values within a stream.

To allow for this, Brook supports neighborhood addressing. Figure 4 demon-

strates a 3x3 convolution kernel which performs a simple blur at given a rate.

For each element, it computes a new value based on the weighted sum of itself

with the value above, below, left, and right.

In this example, the argument list to the kernel function includes the relative

addressing information. Convolve takes a stream input in the form of the array.

x and y are o�set variables which contain the current o�set of grid in which

is being processed by the kernel function. Following the o�set variables is the

range information. In this example, the kernel declares that it access one

element left and right of x ([x:-1,1]) and one element above and below of y

([y:-1,1]). The compiler uses this information to know what parts of grid in

must be de�ned before calling the function. The range can be speci�ed for

5

stream Line {

vec2i a;

vec2i b;

}

stream Fragment {

vec2i pos;

}

kernel void

lineraster (Line l, Fragment outm f) {

int dx = abs (l.a.x - l.b.x), dy = abs (l.a.y - l.b.y);

int p = 2 * dy - dx;

int twoDy = 2 * dy, twoDyDx = 2 * (dy - dx);

int xEnd;

vec2i v;

/* Determine which point to use as start, which as end */

if (l.a.x > l.b.x) {

v = l.b;

xEnd = l.a.x;

} else {

v = l.a;

xEnd = l.b.x

}

/* Write the first fragment */

f.pos = v;

push(f);

/* Bresenham loop */

while (v.x < xEnd) {

v.x++;

if (p < 0) p += twoDy;

else { v.y++; p += twoDyDx; }

f.pos = v

push(f);

}

}

Figure 5: A xmajor line rasterization kernel which demonstrates the multiple

element output from a kernel using the push operator.

6

stream Flow {

float t;

}

kernel void

SetValues (Flow out grid_out[x][y]) {

grid_out.t = x + y;

}

kernel void

Convolve (Flow grid_in[x:-1,1][y:-1,1], Flow out grid_out,

float rate) {

float k = 1.0f - (rate*4.0f);

float a, b, c, d;

float t = grid_in.t;

/* Check the boundry condition */

a = (x==0) ? t : grid_in[-1][0].t;

b = (x==XMAX) ? t : grid_in[+1][0].t;

c = (y==0) ? t : grid_in[0][-1].t;

d = (y==YMAX) ? t : grid_in[0][+1].t;

grid_out.t =

t * k +

a * rate + b * rate +

c * rate + d * rate;

}

void main (void) {

Flow grid[1024][1024];

/* initialize grid */

SetValues(grid);

/* Perform the convolution */

Convolve (grid, grid, 0.1f)

}

Figure 6: A relative addressing example.

7

kernel void

Convolve (Flow grid_anyx_in[x:][y:-1,1], Flow grid_out, float rate) {

....

Figure 7: Example of absolute range array. Here the x component of

grid anyx in is an absolute address.

both outputs and inputs if needed. Accessing the elements of the array is done

through relative o�sets from the o�set variables.

In some cases, a kernel may only access the x,y value of an array and not

require any other values. This is similar to the range [x:0,0]. In this case,

the range information does not need to be speci�ed, as shown in the SetValues

kernel function. The :0,0 is not required and the zero range is assumed.

Finally, a kernel may require absolute addressing within an array. This is

the case if the o�set into the array is computed by a function and is not known

at compile time. The range is therefore the entire array. This is speci�ed

by not indicating a range after the : character, e.g. [x:]. Figure 4 declares

function argument that can be accessed anywhere in the x direction but only

one element above or below in the y direction. When accessing grid anyx in,

the x component is absolute instead of relative.

The programmer should try to specify the minimum range necessary for the

function to operate. If all the o�set variables are speci�ed as absolute then the

full array must be de�ned in order for the function to be executed. This can

limit the task parallelism of the kernel.

5 Reduction Operations

Stream function includes a return value which can be used to gather information

about the stream computation. Often with iterative scienti�c methods a partic-

ular computation is repeated until a system stabilizes. Figure 5 shows a kernel

which returns the di�erence of a value amongst its neighbors. The main loop

repeats the convolution kernel until the di�erence is below a certain threshold.

Themax operator returns the maximum value from all the Divergence kernel

operations. (MORE TEXT HERE)

6 Stream Management

(MORE TEXT HERE)

7 Special Streams

There are some special stream types de�ned in Brook .

8

kernel float

Divergence (Flow grid_in[x:-1,1][y:-1,1]) {

float a, b, c, d;

float t = grid_in.t;

float div;

a = (x==0) ? t : grid_in[-1][0].t;

b = (x==XMAX)? t : grid_in[+1][0].t;

c = (y==0) ? t : grid_in[0][-1].t;

d = (y==YMAX)? t : grid_in[0][+1].t;

return abs(t-a) + abs(t-b) +

abs(t-c) + abs(t-d);

}

void main (void) {

Flow grid[XMAX][YMAX];

const float rate = 0.1;

float diverge;

do {

Convolve (grid, grid, rate);

diverge = max Divergence (grid);

} while (diverge > 5.0f);

}

Figure 8: Example of a reduction operation. The kernel function returns a

oating point number. Themax operator returns the maximum value returned

from the Divergence function.

9

1. FileStream:A �le stream which can be read or written with standard

stdio.h functions like fscanf, fprintf, fread. Equivalent to a FILE pointer

in C. These streams cannot be passed to kernel functions.

2. (MORE TEXT HERE)

10

