The Digital Michelangelo Project: 3D scanning of large statues

Marc Levoy, Kari Pulli, Brian Curless,
Szymon Rusinkiewicz, David Koller, Lucas Pereira,
Matt Ginzton, Sean Anderson, James Davis,
Jeremy Ginsberg, Jonathan Shade, Duane Fulk

Stanford University,
University of Washington,
Cyberware Inc.
Our year in Italy…
was not a boondoggle.
We worked hard!
Executive summary

Create a 3D computer archive of the principal statues and architecture of Michelangelo

What we scanned

- Slave called Atlas
- Awakening slave
- Bearded slave
- Youthful slave
- Dusk
- Dawn
- Day
- Night
- St. Matthew
- David
- 2 museum interiors
- Forma Urbis Romae
Motivations

• push 3D scanning technology
• tool for art historians
• lasting archive

Technical goals

• scan a big statue \(\rightarrow 5 \text{ meters} \)
• capture chisel marks \(\rightarrow 1/4 \text{ mm} \)
• capture reflectance \(\rightarrow 1/4 \text{ mm} \)

\(20,000^2 \) \(1 \text{ billion} \) \(20,000:1 \)
Why capture chisel marks?

Atlas (Accademia)
Day (Medici Chapel)

\[\rightarrow | \leftarrow 2 \text{ mm} \]
Outline of talk

- scanner design
- scanning procedure
- post-processing pipeline
- scanning the David
- side project: the Forma Urbis Romae
- future work
Scanner design

• flexibility
 – outward-looking rotational scanning
 – 16 ways to mount scan head on arm

• accuracy
 – center of gravity kept stationary during motions
 – precision drives, vernier homing, stiff trusses

4 motorized axes

laser, range camera, white light, and color camera
Scanning St. Matthew

working in the museum

scanning geometry

scanning color
Prior work

• large-scale 3D scanning
 – NRC [Beraldin et al. 1997]
 – IBM [Rushmeier et al. 1998]

• our pipeline
 – registration [Pulli 1999]
 – merging [Curless & Levoy 1996]
 – reflectance [Sato et al. 1997]
Scanning a large object

- calibrated motions
 - pitch (yellow)
 - pan (blue)
 - horizontal translation (orange)

- uncalibrated motions
 - vertical translation
 - rolling the gantry
 - remounting the scan head
Our scan of St. Matthew

- 104 scans
- 800 million polygons
- 4,000 color images
- 15 gigabytes
- 1 week of scanning
Range processing pipeline

• steps
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method

• lessons learned
 – should have tracked the gantry location
 – ICP is unstable on smooth surfaces
Range processing pipeline

• steps
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method

• lessons learned
 – should have tracked the gantry location
 – ICP is unstable on smooth surfaces
Range processing pipeline

• steps
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method

• lessons learned
 – should have tracked the gantry location
 – ICP is unstable on smooth surfaces
Range processing pipeline

• steps
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method

• lessons learned
 – should have tracked the gantry location
 – ICP is unstable on smooth surfaces
Range processing pipeline

- **steps**
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method

- **lessons learned**
 - should have tracked the gantry location
 - ICP is unstable on smooth surfaces
Range processing pipeline

• steps
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method

• lessons learned
 – should have tracked the gantry location
 – ICP is unstable on smooth surfaces
Color processing pipeline

• steps
 1. compensate for ambient illumination
 2. discard shadowed or specular pixels
 3. map onto vertices – one color per vertex
 4. correct for irradiance → diffuse reflectance

• limitations
 – ignored interreflections
 – ignored subsurface scattering
 – treated diffuse as Lambertian
Color processing pipeline

• steps
 1. compensate for ambient illumination
 2. discard shadowed or specular pixels
 3. map onto vertices – one color per vertex
 4. correct for irradiance → diffuse reflectance

• limitations
 – ignored interreflections
 – ignored subsurface scattering
 – treated diffuse as Lambertian
Color processing pipeline

• steps
 1. compensate for ambient illumination
 2. discard shadowed or specular pixels
 3. map onto vertices – one color per vertex
 4. correct for irradiance \rightarrow diffuse reflectance

• limitations
 – ignored interreflections
 – ignored subsurface scattering
 – treated diffuse as Lambertian
artificial surface reflectance
estimated diffuse reflectance
artificial surface reflectance
estimated diffuse reflectance
accessibility shading
Hard problem #1:
view planning

• procedure
 – estimate a new view point
 – manually set scanning limits
 – run scanning script

• lessons learned
 – need automatic view planning – especially in the endgame
 – 50% of time on first 90%, 50% on next 9%, ignore last 1%

for horizontal = min to max by 12 cm
 for pan = min to max by 4.3 °
 for tilt = min to max continuously
 perform fast pre-scan (5 ° /sec)
 search pre-scan for range data
 for tilt = all occupied intervals
 perform slow scan (0.5 ° /sec)
 on every other horizontal position,
 for pan = min to max by 7 °
 for tilt = min to max by 7 °
 take photographs without spotlight
 warm up spotlight
 for pan = min to max by 7 °
 for tilt = min to max by 7 °
 take photographs with spotlight
Hard problem #2: accurate scanning in the field

• error budget
 – 0.25mm of position, 0.013° of orientation

• design challenges
 – minimize deflection and vibration during motions
 – maximize repeatability

• lessons learned
 – motions were sufficiently accurate and repeatable
 – remounting was not sufficiently repeatable
 – calibration of such a large gantry is hard
 – used ICP to circumvent poor calibration
Hard problem #3: handling large datasets

• range images instead of polygon meshes
 – \(z(u,v) \) [2 bytes], not \(xyz \) [3 floats]
 – yields 18:1 lossless compression

• out-of-core global registration
 – pairwise alignments only once
 – fast global relaxation of pairwise alignments

• multiresolution viewer using splatting
 – real-time frame rate when moving
 – progressive refinement when idle
Scanning the David

- height of gantry: 7.5 meters
- weight of gantry: 800 kilograms
Statistics about the scan

- 480 individually aimed scans
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scanning
- 22 people
Head of Michelangelo’s David

photograph

1.0 mm computer model
The importance of viewpoint

classic 3/4 view
left profile
The importance of lighting

lit from above

lit from below
David’s left eye
Side project:
The Forma Urbis Romae
side face
forma urbis romae
Logistical challenges

- getting permission to scan the statues
- recalcitrant customs officials
- inaccessible buildings
- narrow doorways
- clumsy truckers
- shaky scaffolding
- bumped scanners
- endless questions
- museum guards
- glass barricades
- adhoc repairs
- time pressure
- getting sleep

- tourists’ flashbulbs !!
Future work

1. hardware
 - scanner design
 - scanning in tight spots
 - tracking scanner position
 - better calibration methodologies
 - scanning uncooperative materials
 - insuring safety for the statues

2. software
 - automated view planning
 - accurate, robust global alignment
 - more sophisticated color processing
 - handling large datasets
 - filling holes
3. uses for these models
 – permanent archive
 – virtual museums
 – physical replicas
 – restoration record
 – geometric calculations
 – projection of images onto statues

4. digital archiving
 – central versus distributed archiving
 – insuring longevity for the archive
 – authenticity, versioning, variants
 – intellectual property rights
 – permissions, distribution, payments
 – robust 3D digital watermarking
 – detecting violations, enforcement
 – real-time viewing on low-cost PCs
 – indexing, cataloguing, searching
 – viewing, measuring, extracting data
Acknowledgements

Faculty and staff
Prof. Brian Curless
Jelena Jovanovic
Lisa Pacelle
Dr. Kari Pulli

Graduate students
Sean Anderson
James Davis
Lucas Pereira
Jonathan Shade
Daniel Wood

Undergraduates
Alana Chan
Jeremy Ginsberg
Unnur Gretarsdottir
Wallace Huang
Ephraim Luft
Semira Rahemtulla
Joshua David Schroeder
David Weekly

John Gerth
Prof. Marc Levoy
Domi Pitturo

Barbara Caputo
Dave Koller
Szymon Rusinkiewicz
Marco Tarini

Kathryn Chinn
Matt Ginztom
Rahul Gupta
Dana Katter
Dan Perkel
Alex Roetter
Maisie Tsui

In Florence
Dott.ssa Cristina Acidini
Dott.ssa Licia Bertani
Matti Auvinen

Dott.ssa Franca Falletti
Alessandra Marino

In Rome
Prof. Eugenio La Rocca
Dott.ssa Anna Somella

Dott.ssa Susanna Le Pera
Dott.ssa Laura Ferrea

In Pisa
Roberto Scopigno

Sponsors
Interval Research
Stanford University

Paul G. Allen Foundation for the Arts

Equipment donors
Cyberware
Faro Technologies
Silicon Graphics
3D Scanners

Cyra Technologies
Intel
Sony
Software: /software/qsplat/
3D models: /data/mich/