Where does volume and point data come from?

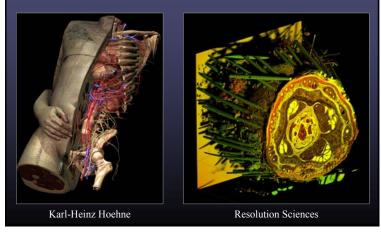
Marc Levoy

Computer Science Department Stanford University

Three theses

Thesis #1:	Many sciences lack good visualization tools.
Corollary:	These are a good source for volume and point data.
<u>Thesis #2:</u>	Computer scientists need to learn these sciences.
Corollary:	Learning the science may lead to new visualizations
<u>Thesis #3:</u>	We also need to learn their data capture technologie
Corollary:	Visualizing the data capture process helps debug it.

Success story #1: volume rendering of medical data





Success story #2: point rendering of dense polygon meshes

Levoy and Whitted (1985)

Szymon Rusinkiewicz's QSplat (2000)

Failure: volume rendering in the biological sciences

- (a leading software package)
- Bright
 100

 Gamma
 1

 Max Threshold
 255

 Min Threshold
 0

 Projection
 Apha

 Storage Hint
 Texture3D

 View Aligned Sizes
 False

 Volume Size
 256

 \checkmark in this talk

- limited control over opacity transfer function. Volume Size
 no control over surface appearance or lighting
- no quantitative 3D probes

• Photoshop

- converting 16-bit to 8-bit dithers the low-order bit
- PhotoMerge (image mosaicing) performs poorly
- no support for image stacks, volumes, n-D images

What's going on in the basic sciences?

- new instruments \Rightarrow scientific discoveries
- most important new instrument in the last 50 years: the digital computer
- computers + digital sensors = computational imaging <u>Def:</u> imaging methods in which computation is inherent in image formation. - B.K. Horn
- the revolution in medical imaging (CT, MR, PET, etc.) is now happening all across the basic sciences

(It's also a great source for volume and point data!)

Examples of computational imaging in the sciences

- medical imaging
 - rebinning ______ inspiration for light field rendering
- transmission tomography
 - reflection tomography (for ultrasound)
- geophysics
- borehole tomography
 - seismic reflection surveying
- applied physics
- diffuse optical tomography
- diffraction tomography
- \checkmark scattering and inverse scattering

• biology

- ✓ confocal microscopy ← applicable at macro scale too
- deconvolution microscopy
- astronomy
- \checkmark coded-aperture imaging
- interferometric imaging
- airborne sensing
 - multi-perspective panoramas
 - synthetic aperture radar

• optics

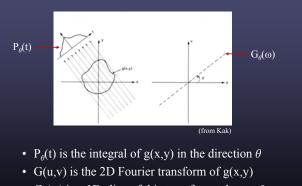
- holography

- wavefront coding

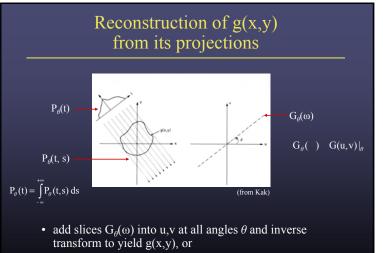
Computational imaging technologies used in neuroscience

- Magnetic Resonance Imaging (MRI)
- Positron Emission Tomography (PET)
- Magnetoencephalography (MEG)
- Electroencephalography (EEG)
- Intrinsic Optical Signal (IOS)
- In Vivo Two-Photon (IVTP) Microscopy
- Microendoscopy
- Luminescence Tomography
- New Neuroanatomical Methods (3DEM, 3DLM)

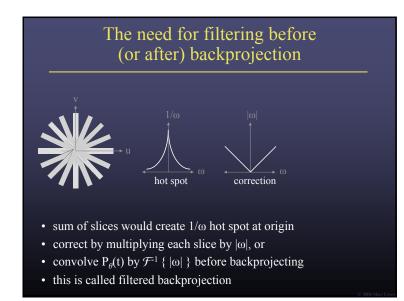
The Fourier projection-slice theorem (a.k.a. the central section theorem) [Bracewell 1956]

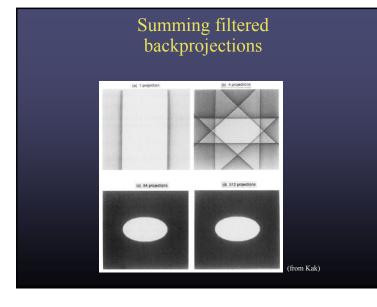


- $G_{\theta}(\omega)$ is a 1D slice of this transform taken at θ
- $\mathcal{F}^{1} \{ G_{\theta}(\omega) \} = P_{\theta}(t) !$



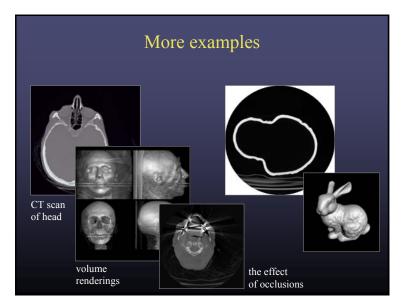
• add 2D backprojections $P_{\theta}(t, s)$ into x,y at all angles θ

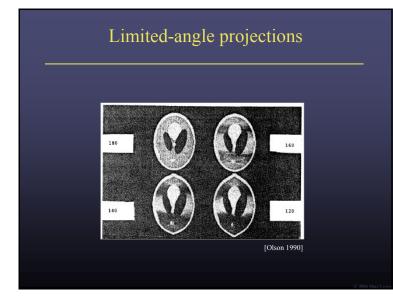




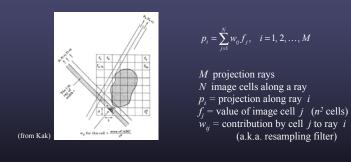
Example of reconstruction by filtered backprojection

reconstruction



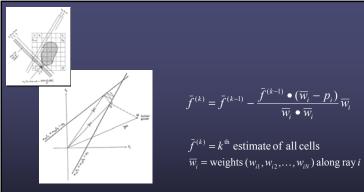


Reconstruction using the Algebraic Reconstruction Technique (ART)



• applicable when projection angles are limited or non-uniformly distributed around the object

• can be under- or over-constrained, depending on N and M



Procedure

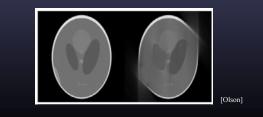
- make an initial guess, e.g. assign zeros to all cells
- project onto p_1 by increasing cells along ray 1 until $\Sigma = p_1$
- project onto p_2 by modifying cells along ray 2 until $\Sigma = p_2$, etc.
- to reduce noise, reduce by $\alpha \Delta \bar{f}^{(k)}$ for $\alpha < 1$

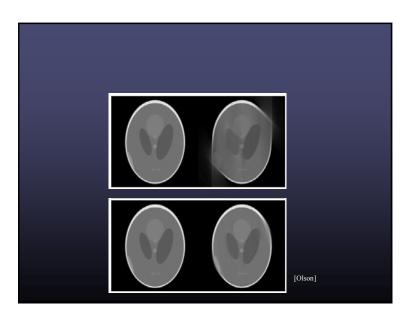
- linear system, but big, sparse, and noisy
- ART is solution by *method of projections* [Kaczmarz 1937]
- to increase angle between successive hyperplanes, jump by 90°
- SART modifies <u>all</u> cells using $f^{(k-1)}$, then increments k
- overdetermined if M > N, underdetermined if missing rays
- optional additional constraints:
 - $f > \theta$ everywhere (positivity)
 - f = 0 outside a certain area

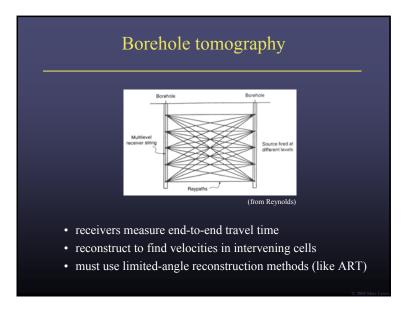
Procedure

- make an initial guess, e.g. assign zeros to all cells
- project onto p_1 by increasing cells along ray 1 until $\Sigma = p_1$
- project onto p_2 by modifying cells along ray 2 until $\Sigma = p_2$ etc.
- to reduce noise, reduce by $\alpha \Delta \bar{f}^{(k)}$ for $\alpha < 1$

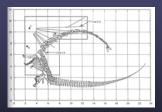
- linear system, but big, sparse, and noisy
- ART is solution by *method of projections* [Kaczmarz 1937]
- to increase angle between successive hyperplanes, jump by 90°
- SART modifies <u>all</u> cells using $f^{(k-1)}$, then increments k
- overdetermined if M > N, underdetermined if missing rays
- optional additional constraints:
 - f > 0 everywhere (positivity)
 - f = 0 outside a certain area







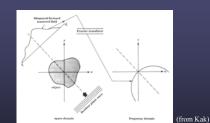
Applications

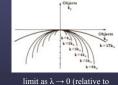


mapping a *seismosaurus* in sandstone using microphones in 4 boreholes and explosions along radial lines

mapping ancient Rome using explosions in the subways and microphones along the streets?

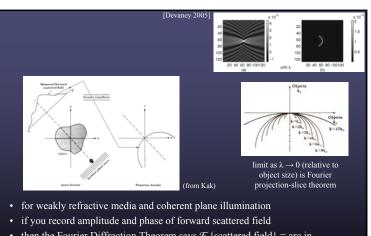
Optical diffraction tomography (ODT)



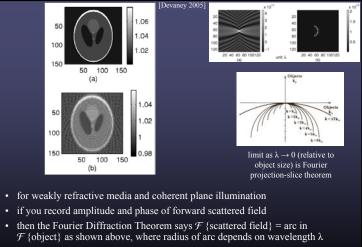


object size) is Fourier projection-slice theorem

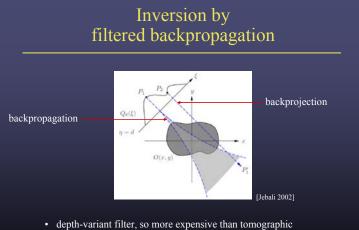
- · for weakly refractive media and coherent plane illumination
- · if you record amplitude and phase of forward scattered field
- then the Fourier Diffraction Theorem says \mathcal{F} {scattered field} = arc in \mathcal{F} {object} as shown above, where radius of arc depends on wavelength λ .
- repeat for multiple wavelengths, then take \mathcal{F}^{-1} to create volume dataset
- equivalent to saying that a broadband hologram records 3D structure



- then the Fourier Diffraction Theorem says \mathcal{F} {scattered field} = arc in \mathcal{F} {object} as shown above, where radius of arc depends on wavelength λ
- repeat for multiple wavelengths, then take $\mathcal{F}^{\text{-}1}$ to create volume dataset
- equivalent to saying that a broadband hologram records 3D structure

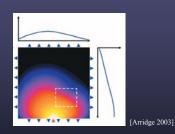


- repeat for multiple wavelengths, then take \mathcal{F}^{-1} to create volume dataset
- equivalent to saying that a broadband hologram records 3D structure

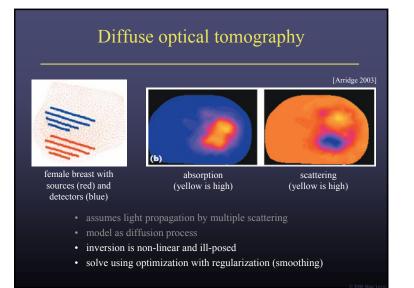


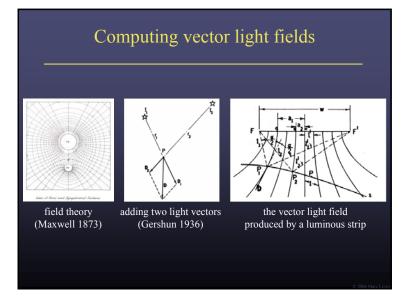
- depth-variant filter, so more expensive than tomographic backprojection, also more expensive than Fourier method
- applications in medical imaging, geophysics, optics

Diffuse optical tomography (DOT)

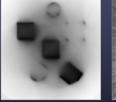


- assumes light propagation by multiple scattering
- model as diffusion process





Computing vector light fields



flatland scene with partially opaque blockers under uniform illumination

- light field magnitude light fie (a.k.a. irradiance)
- light field vector direction

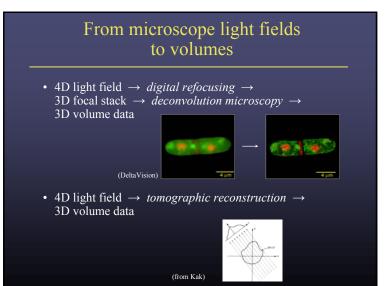
From microscope light fields to volumes

 4D light field → digital refocusing → 3D focal stack → deconvolution microscopy → 3D volume data

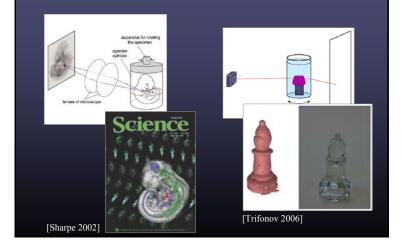
3D deconvolution(MeNally 1999)Image: Imaging and Image: Imaging and Image: Imag

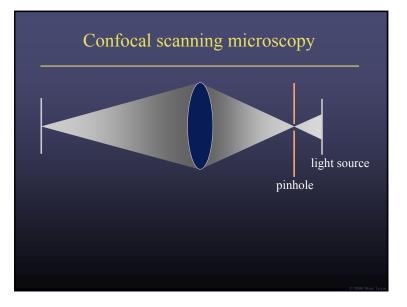
Silkworm mouth
(40x / 1.3NA oil immersion)Image: Silk of the second se

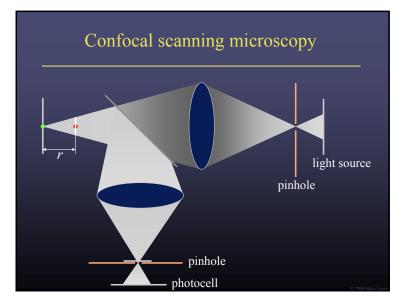
Page 9

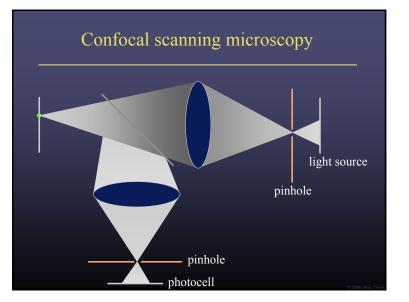


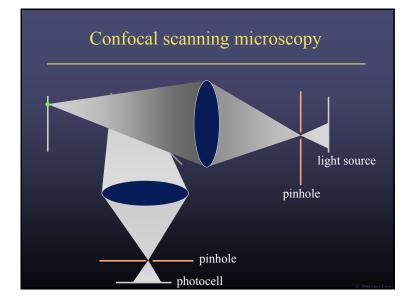
Optical Projection Tomography (OPT)

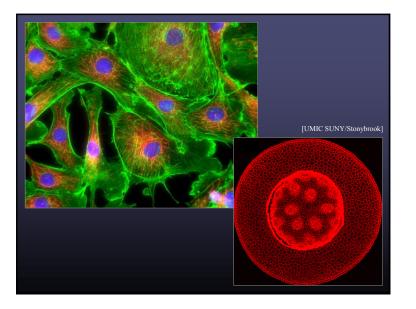


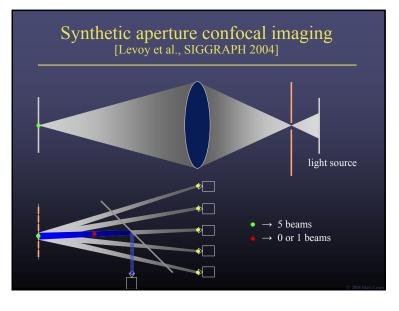


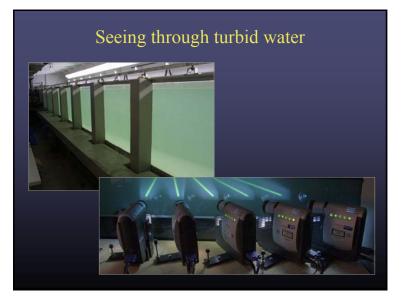


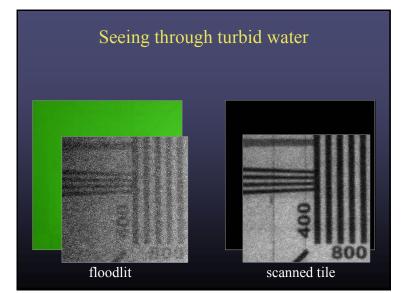


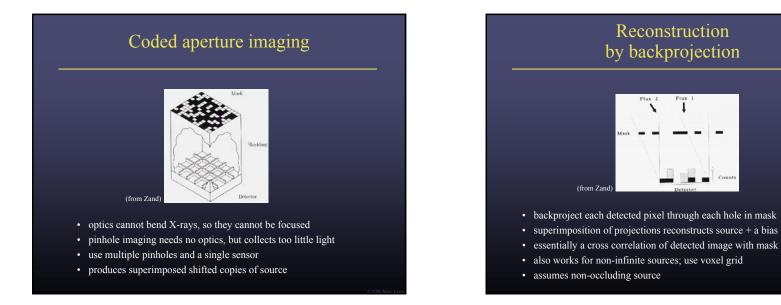




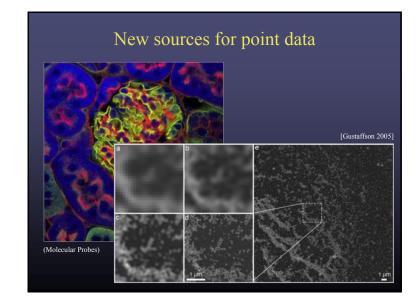






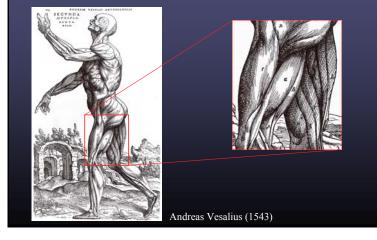






Three theses		
<u>Thesis #1:</u>	Many sciences lack good visualization tools.	
Corollary:	These are a good source for volume and point data.	
<u>Thesis #2:</u>	Computer scientists need to learn these sciences.	
Corollary:	Learning the science may lead to new visualizations.	
Thesis #3:	We also need to learn their data capture technologies	
Corollary:	Visualizing the data capture process helps debug it.	

The best visualizations are often created by domain scientists



Three theses

<u>Thesis #1:</u>	Many sciences lack good visualization tools.
Corollary:	These are a good source for volume and point data.
<u>Thesis #2:</u>	Computer scientists need to learn these sciences.
Corollary:	Learning the science may lead to new visualizations.
<u>Thesis #3:</u>	We also need to learn their data capture technologies.
Corollary:	Visualizing the data capture process helps debug it.

Visualizing raw data helps debug the capture process

hollow fluorescent 15-micron sphere, manually captured Z-stack, 1-micron increments, 40×/1.3NA oil objective

X-Z cross-sectional slice of same stack

...or may force improvements in the capture technology

Final thought: the importance of building <u>useful</u> tools

"A toolmaker succeeds as, and only as, the users of his tool succeed with his aid. However shining the blade, however jeweled the hilt, however perfect the heft, a sword is tested only by cutting. That swordsmith is successful whose clients die of old age."

> Fred Brooks, Computer Scientist as Toolsmith – II, Proc. CACM 1996

Acknowledgements

- Fred Brooks ("Computer Scientist as Toolsmith")
- Pat Hanrahan ("Self-Illustrating Phenomena")
- Bill Lorensen ("The Death of Visualization")
- Shinya Inoué ("History of Polarization Microscopy")