Synthetic aperture photography and illumination using arrays of cameras and projectors

Marc Levoy

Outline

technologies
- large camera arrays
- large projector arrays
- camera-projector arrays

optical effects
- synthetic aperture photography
- synthetic aperture illumination
- synthetic confocal imaging

applications
- partially occluding environments
- weakly scattering media

examples
- foliage
- murky water

Multi-camera systems

- multi-camera vision systems
- omni-directional vision
- 1D camera arrays
- 2D camera arrays

Stanford multi-camera array

- 640 x 480 pixels x 30 fps x 128 cameras ÷ 18:1 MPEG = 512 Mbs

- snapshot or video
- synchronized timing
- continuous streaming
- cheap sensors & optics
- flexible arrangement
Applications for the array

- How are the cameras arranged?
 - tightly packed
 - widely spaced
 - intermediate spacing
 → high-performance imaging
 → light fields
 → synthetic aperture photography

Cameras tightly packed: high-performance imaging

- high-resolution
 → by abutting the cameras’ fields of view
- high speed
 → by staggering their triggering times
- high dynamic range
 → mosaic of shutter speeds, apertures, density filters
- high precision
 → averaging multiple images improves contrast
- high depth of field
 → mosaic of differently focused lenses

Abutting fields of view

Q. Can we align images this well?

A. Yes.
High-speed photography

Harold Edgerton, Stopping Time, 1964

A virtual high-speed video camera

[Wilburn, 2004 (submitted)]

- 52 cameras, each 30 fps
- packed as closely as possible
- staggered firing, short exposure
- result is 1560 fps camera
- continuous streaming
- no triggering needed

Example

A virtual high-speed video camera

[Wilburn, 2004 (submitted)]

- 52 cameras, 30 fps, 640 x 480
- short exposure, staggered firing
- result is 1536 fps camera
- no triggering needed
- scalable to more cameras
- limited by available photons
- overlap exposure times?

100 cameras
3072 fps
Cameras tightly packed: high-X imaging

- high-resolution
 - by abutting the cameras’ fields of view
- high speed
 - by staggering their triggering times
- high dynamic range
 - mosaic of shutter speeds, apertures, density filters
- high precision
 - averaging multiple images improves contrast
- high depth of field
 - mosaic of differently focused lenses

High dynamic range (HDR)

- overcomes one of photography’s key limitations
 - negative film = 250:1 (8 stops)
 - paper prints = 50:1
 - [Debevec97] = 250,000:1 (18 stops)
 - hot topic at recent SIGGRAPHs

Seeing through murky water

- scattering decreases contrast
- noise limits perception in low contrast images
- averaging multiple images decreases noise
Seeing through murky water

- scattering decreases contrast, but does not blur
- noise limits perception in low contrast images
- averaging multiple images decreases noise

Cameras tightly packed: high-X imaging

- high-resolution
 - by abutting the cameras’ fields of view
- high speed
 - by staggering their triggering times
- high dynamic range
 - mosaic of shutter speeds, apertures, density filters
- high precision
 - averaging multiple images improves contrast
- high depth of field
 - mosaic of differently focused lenses

High depth-of-field

- adjacent views use different focus settings
- for each pixel, select sharpest view

[Haeberli90]
Synthetic aperture photography

Long-range synthetic aperture photography

Synthetic pull-focus
Synthetic aperture photography using an array of mirrors

- 11-megapixel camera
- 22 planar mirrors
Synthetic aperture illumination

• technologies
 – array of projectors
 – array of microprojectors
 – single projector + array of mirrors

• applications
 – bright display
 – autostereoscopic display [Matusik 2004]
 – confocal imaging [this paper]
Confocal scanning microscopy

light source

pinhole

photocell

[UMC SUNY/Stonybrook]
Synthetic confocal scanning

- \rightarrow 5 beams
- \rightarrow 0 or 1 beam

• works with any number of projectors ≥ 2
• discrimination degrades if \bullet point to left of
• no discrimination for \bullet points to left of
• slow!
• poor light efficiency

Synthetic coded-aperture confocal imaging

• different from coded aperture imaging in astronomy
• [Wilson, Confocal Microscopy by Aperture Correlation, 1996]
100 trials

→ 2 beams × ~50/100 trials ≈ 1

→ ~1 beam × ~50/100 trials ≈ 0.5
Synthetic coded-aperture confocal imaging

100 trials
- \rightarrow 2 beams $\times \left\lceil -50/100 \text{ trials} \right\rceil \approx 1$
- \rightarrow 1 beam $\times \left\lceil -50/100 \text{ trials} \right\rceil \approx 0.5$

floodlit
- \rightarrow 2 beams
- \rightarrow 2 beams

trials $- \frac{1}{4} \times$ floodlit
- $\rightarrow 1 - \frac{1}{4} \left(2 \right) \approx 0.5$
- $\rightarrow 0.5 - \frac{1}{4} \left(2 \right) \approx 0$

- 50% light efficiency
- any number of projectors ≥ 2
- no discrimination to left of
- works with relatively few trials (~16)
- needs patterns in which illumination of tiles are uncorrelated

Example pattern
Patterns with less aliasing

(Video available at http://graphics.stanford.edu/papers/confocal/)

Implementation using an array of mirrors

Synthetic aperture confocal imaging

single viewpoint

synthetic aperture image

confocal image

combined
Selective illumination using object-aligned mattes

Confocal imaging in scattering media
- small tank
 - too short for attenuation
 - lit by internal reflections

Experiments in a large water tank
- 50-foot flume at Wood’s Hole Oceanographic Institution (WHOI)
- 4-foot viewing distance to target
- surfaces blackened to kill reflections
- titanium dioxide in filtered water
- transmissometer to measure turbidity
Experiments in a large water tank

- stray light limits performance
- one projector suffices if no occluders

Seeing through turbid water

Other patterns

- sparse grid
- staggered grid
- swept stripe

Other patterns

- floodlit
- scanned tile

- floodlit
- swept stripe
- scanned tile
Stripe-based illumination

- if vehicle is moving, no sweeping is needed!
- can triangulate from leading (or trailing) edge of stripe, getting range (depth) for free

Strawman conclusions on imaging through a scattering medium

- shaping the illumination lets you see 2-3x further, but requires scanning or sweeping
- use a pattern that avoids illuminating the media along the line of sight
- contrast degrades with increasing total illumination, regardless of pattern

Application to underwater exploration

- use a pattern that avoids illuminating the media along the line of sight
- contrast degrades with increasing total illumination, regardless of pattern
The team

- **staff**
 - Mark Horowitz
 - Marc Levoy
 - Bennett Wilburn

- **students**
 - Billy Chen
 - Vaibhav Vaish
 - Katherine Chou
 - Monica Goyal
 - Neel Joshi
 - Hsiao-Heng Kelin Lee
 - Georg Petschnigg
 - Guillaume Poncin
 - Michael Smulski
 - Augusto Roman

- **collaborators**
 - Mark Bolas
 - Ian McDowall
 - Guillermo Sapiro

- **funding**
 - Intel
 - Sony
 - Interval Research
 - NSF
 - DARPA

Relevant publications

(in reverse chronological order)

- **Spatiotemporal Sampling and Interpolation for Dense Camera Arrays**
 - Bennett Wilburn, Neel Joshi, Katherine Chou, Marc Levoy, Mark Horowitz
 - ACM Transactions on Graphics (conditionally accepted)

- **Interactive Design of Multi-Perspective Images for Visualizing Urban Landscapes**
 - Augusto Roman, Gaurav Garg, Marc Levoy
 - Proc. IEEE Visualization 2004

- **Synthetic aperture confocal imaging**
 - Marc Levoy, Billy Chen, Vaibhav Vaish, Mark Horowitz, Ian McDowall, Mark Bolas
 - Proc. SIGGRAPH 2004

- **High Speed Video Using a Dense Camera Array**
 - Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Marc Levoy, Mark Horowitz
 - Proc. CVPR 2004

- **The Light Field Video Camera**
 - Bennett Wilburn, Michael Smulski, Hsiao-Heng Kelin Lee, and Mark Horowitz