Light field photography and videography

Marc Levoy

Computer Science Department Stanford University

List of projects

- high performance imaging using large camera arrays
- light field photography using a handheld plenoptic camera
- dual photography

High performance imaging using large camera arrays

Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez, Adam Barth, Andrew Adams, Mark Horowitz, Marc Levoy

(Proc. SIGGRAPH 2005)

Stanford multi-camera array

- 640 × 480 pixels ×
 30 fps × 128 cameras
- synchronized timing
- continuous streaming
- flexible arrangement

Ways to use large camera arrays

- widely spaced
- tightly packed
- intermediate spacing

- light field capture
- high-performance imaging
- ---- synthetic aperture photography

Intermediate camera spacing: synthetic aperture photography

Example using 45 cameras [Vaish CVPR 2004]

Tiled camera array

Can we match the image quality of a cinema camera?

- world's largest video camera
- no parallax for distant objects
- poor lenses limit image quality
- seamless mosaicing isn't hard

Tiled panoramic image (before geometric or color calibration)

Tiled panoramic image (after calibration and blending)

Tiled camera array

Can we match the image quality of a cinema camera?

- world's largest video camera
- no parallax for distant objects
- poor lenses limit image quality
- seamless mosaicing isn't hard
- per-camera exposure metering
- HDR within and between tiles

same exposure in all cameras

individually metered

checkerboard of exposures

High-performance photography as multi-dimensional sampling

- spatial resolution
- field of view
- frame rate
- dynamic range
- bits of precision
- depth of field
- focus setting
- color sensitivity

Spacetime aperture shaping

- shorten exposure time to freeze motion → dark
- stretch contrast to restore level → noisy
- increase (synthetic) aperture to capture more light → decreases depth of field

• center of aperture:

few cameras, long exposure \rightarrow high depth of field, low noise, but action is blurred

• periphery of aperture:

many cameras, short exposure \rightarrow freezes action, low noise, but low depth of field

Light field photography using a handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz and Pat Hanrahan

> (Proc. SIGGRAPH 2005 and TR 2005-02)

Conventional versus light field camera

Conventional versus light field camera

Conventional versus light field camera

© 2005 Marc Levoy

Prototype camera

Contax medium format camera

Adaptive Optics microlens array

Kodak 16-megapixel sensor

125µ square-sided microlenses

 $4000 \times 4000 \text{ pixels} \div 292 \times 292 \text{ lenses} = 14 \times 14 \text{ pixels per lens}$

Mechanical design

- microlenses float 500µ above sensor
- focused using 3 precision screws

© 2005 Marc Levoy

Prior work

- integral photography
 - microlens array + film
 - application is autostereoscopic effect
- [Adelson 1992]
 - proposed this camera
 - built an optical bench prototype using relay lenses
 - application was stereo vision, not photography

Digitally stopping-down

• stopping down = summing only the central portion of each microlens

Digital refocusing

• refocusing = summing windows extracted from several microlenses

A digital refocusing theorem

 an *f* / N light field camera, with P × P pixels under each microlens, can produce views as sharp as an *f* / (N × P) conventional camera

-Or-

it can produce views with a shallow depth of field (*f* / N) focused anywhere within the depth of field of an *f* / (N × P) camera

Example of digital refocusing

Refocusing portraits

Action photography

Extending the depth of field

conventional photograph, main lens at f/4

conventional photograph, main lens at f/22

light field, main lens at f/4, after all-focus algorithm [Agarwala 2004]

Macrophotography

Digitally moving the observer

• moving the observer = moving the window we extract from the microlenses

Example of moving the observer

© 2005 Marc Levo

Moving backward and forward

Implications

- cuts the unwanted link between exposure (due to the aperture) and depth of field
- trades off (excess) spatial resolution for ability to refocus and adjust the perspective
- sensor pixels should be made even smaller, subject to the diffraction limit

36mm × 24mm ÷ 2.5µ pixels = 266 megapixels

 $20K \times 13K$ pixels

 4000×2666 pixels $\times 20 \times 20$ rays per pixel

Can we build a light field microscope?

- ability to photograph moving specimens
- digital refocusing \rightarrow focal stack \rightarrow deconvolution microscopy \rightarrow volume data

Dual Photography

Pradeep Sen, Billy Chen, Gaurav Garg, Steve Marschner, Mark Horowitz, Marc Levoy, Hendrik Lensch

(Proc. SIGGRAPH 2005)

Helmholtz reciprocity

Helmholtz reciprocity

scene

Measuring transport along a set of paths

Reversing the paths

Forming a dual photograph

scene

Physical demonstration

- light replaced with projector
- camera replaced with photocell
- projector scanned across the scene

conventional photograph, with light coming from right

dual photograph, as seen from projector's position and as illuminated from photocell's position

Related imaging methods

• time-of-flight scanner

- if they return reflectance as well as range
- but their light source and sensor are typically coaxial
- scanning electron microscope

Velcro® at 35x magnification, Museum of Science, Boston

applying Helmholtz reciprocity...

Example

dual photograph as seen from projector's position

Properties of the transport matrix

- little interreflection \rightarrow sparse matrix
- many interreflections \rightarrow dense matrix
- convex object \rightarrow diagonal matrix
- concave object \rightarrow full matrix

Can we create a dual photograph entirely from diffuse reflections?

Dual photography from diffuse reflections

the camera's view

The relighting problem

Paul Debevec's Light Stage 3

- subject captured under multiple lights
- one light at a time, so subject must hold still
- point lights are used, so can't relight with cast shadows

The advantage of dual photography

- capture of a scene as illuminated by different lights cannot be parallelized
- capture of a scene as viewed by different cameras <u>can</u> be parallelized

Measuring the 6D transport matrix

projector

caimoraaaraayy

scene

Relighting with complex illumination

- step 1: measure 6D transport matrix T
- step 2: capture a 4D light field
- step 3: relight scene using captured light field

Running time

- the different rays within a projector can in fact be parallelized to some extent
- this parallelism can be discovered using a coarse-to-fine adaptive scan
- can measure a 6D transport matrix in 5 minutes

Can we measure an 8D transport matrix?

projector array

camera array

scene

