
Vispedia∗: Interactive Visual Exploration of Wikipedia Data via
Search-Based Integration

Bryan Chan, Leslie Wu, Justin Talbot, Mike Cammarano, Pat Hanrahan

Abstract—
Wikipedia is an example of the collaborative, semi-structured data sets emerging on the Web. These data sets have large, non-
uniform schema that require costly data integration into structured tables before visualization can begin. We present Vispedia, a
Web-based visualization system that reduces the cost of this data integration. Users can browse Wikipedia, select an interesting
data table, then use a search interface to discover, integrate, and visualize additional columns of data drawn from multiple Wikipedia
articles. This interaction is supported by a fast path search algorithm over DBpedia, a semantic graph extracted from Wikipedia’s
hyperlink structure. Vispedia can also export the augmented data tables produced for use in traditional visualization systems. We
believe that these techniques begin to address the “long tail” of visualization by allowing a wider audience to visualize a broader
class of data. We evaluated this system in a first-use formative lab study. Study participants were able to quickly create effective
visualizations for a diverse set of domains, performing data integration as needed.

Index Terms—Information visualization, Data integration, Wikipedia, Semantic web, Search interfaces

1 INTRODUCTION

There is great interest in making visualization available to a broader
audience. Projects such as sense.us [15] and Many Eyes [31], en-
able collaborative analysis through easy-to-understand visualizations.
Anyone can upload a data set, build a visualization, and then begin a
discussion with others about their findings.

A major hurdle in using visualization in analysis is finding and
preparing the data. Common operations are foraging for relevant data,
integrating data from multiple sources, cleaning errors and inconsis-
tencies, and converting to normalized formats. These transformations
are expensive to perform and often require great judgment. They are
particularly difficult if the input data is heterogeneous and does not
conform to a well-defined schema. We believe that collaborative vi-
sualization software will be much more useful if it supports some of
these early data integration tasks.

In this paper we present Vispedia, a system designed to support vi-
sualization of data interactively integrated from Wikipedia. We use
Wikipedia because it contains a wealth of interesting semi-structured
data for visualization, in the form of tables, infoboxes, lists, and hier-
archies (categories). The data in Wikipedia is a hyperlinked graph,
representative of the comprehensive, heterogeneous data sets being
created by web communities.

We would like to support Wikipedia users who want to build ad-hoc
visualizations to explore Wikipedia as a whole or to understand the
context around a specific Wikipedia article; however, these users may
be creating visualizations for unfamiliar data sets, where the structure
of hyperlinks leading to additional, useful data is unclear. If the cost
of integrating data and authoring a visualization is too high, they will
abandon their attempts to create a visualization.

Vispedia aims to reduce this cost by including iterative data inte-
gration within the visual exploration loop, as shown in Figure 1. In
previous work, we developed a keyword-query formalism and pro-
vided a non-interactive algorithm for ranking attributes against key-
words [5]. In this paper, we describe an interactive system based on

∗http://vispedia.stanford.edu

Bryan Chan, Leslie Wu, Justin Talbot, Mike Cammarano, and Pat Hanrahan
are with Stanford University,
E-mail: {bryanc,lwu2,jtalbot,mcammara}@stanford.edu,
hanrahan@cs.stanford.edu

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send
e-mailto:tvcg@computer.org.

the formalism and evaluate its usability. Users begin building a visual-
ization by browsing Wikipedia, selecting a seed table from an article,
and choosing a visualization type. Then they use a keyword query to
create a visualization and integrate additional data with the initial ta-
ble. Vispedia provides a query recommendation system that suggests
relevant data integration options using a novel, fast graph search over
Wikipedia’s semantic graph. In a first-use formative evaluation study
of the system (n=7), participants successfully created compelling vi-
sualizations from Wikipedia data.

In addition to permitting users to rapidly create and refine stand-
alone visualizations, Vispedia also supports new browsing and data
integration scenarios. For example, users who create a visualization of
data from a Wikipedia article can then follow links in the visualization
back to related articles. Vispedia also makes the user-created aug-
mented tables available for re-use, supporting future export to other
visualization applications or integration back into Wikipedia.

After presenting a scenario to illustrate the main features of Vis-
pedia, we describe the challenges presented by Wikipedia’s complex
schema and explain how we designed interaction techniques, algo-
rithms, and the larger Vispedia system to address these challenges.

Fig. 1. (top) In existing systems, finding and integrating the data is a
slow and necessary preprocess, so interactive exploratory visualization
is limited to the data already integrated. (bottom) Instead, Vispedia uses
a search interface to make visual exploration over large data sources
with unfamiliar schema possible. Casual users can quickly find and vi-
sualize data, and then interactively integrate new data on-demand for a
particular task.

http://vispedia.stanford.edu

Fig. 2. Vispedia workflow: (a) While browsing Wikipedia, (b,c) a user finds a table and selects it using the Vispedia bookmarklet, (d) then picks
a visualization type. On the Vispedia site, a list of table columns and the query recommender (e) help the user formulate an initial search query.
Vispedia finds data matching the queries and creates a visualization (f). A user may then choose to browse back into Wikipedia, continue refining
the existing query, explore related data using different visualization types, or export the augmented data table.

2 SCENARIO: NHL TEAMS

Carol is an avid fan of the National Hockey League (NHL). While
browsing the main article on the NHL1, she notices a table listing the
teams playing in the Eastern Conference (follow along in Figure 2).
Wanting to make a visualization of when teams joined the league, she
clicks on the Visualize this! bookmarklet in her browser toolbar.

Doing so highlights the available data tables on the page and lets
Carol pick the Eastern Conference table by clicking directly on it.
Within the same Wikipedia page a menu appears allowing Carol to
select an initial visualization type. This selection can be changed at
any time, but seeing the original Wikipedia table in place may suggest
starting points for exploration. For example, Carol notices the “Joined
NHL” column, containing the date when teams first joined the league,
and decides to create a timeline.

A new browser window opens showing the Vispedia site, with a
query interface for specifying the visualization attributes needed by a
timeline—Date, Caption, and Image. The data from the Wikipedia
table is extracted by Vispedia and the available table columns appear
in the box on the left of the screen. Carol can immediately click on
a column like “Joined NHL”, to map that table column directly to
a visual variable. When the original table does not contain a piece of
desired data, such as the team logo, she can integrate additional data by
typing in keywords to perform a search over the rest of Wikipedia. A
query recommender (displayed in a drop-down under the query field)
shows a ranked list of potential integration options with example data
values. The list is dynamically updated as the user changes the query.

After creating a visualization, Carol may choose to refine it further.
For example, she may modify the query in order to change the images
used by the visualization or she might change the visualization type.
Alternatively, Carol can click on items in the visualization or fields in
the table rows (not shown) to see more details, and browse back into
Wikipedia to learn more.

In a few minutes, Carol created a useful visualization from
Wikipedia. During this process, she interactively performed complex
data integration tasks using a simple, easy to understand interface.

3 DATA INTEGRATION CHALLENGES

Data integration is the process of mapping several data sources into
a common schema [21]. In Vispedia this happens by combining in-

1http://en.wikipedia.org/wiki/NHL

Fig. 3. Part of the Wikipedia infobox for the city of Columbus,
Ohio. Infoboxes contain some of the structured information available
on Wikipedia.

formation from multiple Wikipedia pages into a single table. Data
integration is a difficult problem. Sources can have different schema
with subtle variations in the meaning of attribute labels. In addition,
the quality of data varies from source to source. Some sources are
more complete, more relevant, or more trustworthy. Data integra-
tion involves extracting structured data from sources, building queries
mapping each source to the common schema, and choosing between
different sources based on criteria like data quality.

Vispedia addresses the challenge of building queries and choosing
between alternative queries based on relevance. Other measures like
completeness and trustworthiness are left for future work. We also
depend on external sources for most of the data extraction. While the
system extracts seed tables, we use the semantic graph from DBpedia
that includes information from Wikipedia infoboxes [4].

In this section we will introduce the infobox, explain how the search
for attributes corresponds to path queries on the infobox graph, and
show why integrating data from this graph is hard.

3.1 Infobox Graph
Infoboxes contain a list of labeled attributes and appear in about
600,000 Wikipedia articles. The infobox for Columbus, OH (Figure 3)

http://en.wikipedia.org/wiki/NHL

links to other Wikipedia articles, as well as images and literal val-
ues like population. The infobox data forms a semantic graph where
objects (articles, images, and literals) are nodes and relationships be-
tween objects are directed edges. For example, in the Columbus, Ohio
infobox, one of the extracted edges links the city to its mayor:

Columbus, Ohio leader name−−−−−−−→Michael B. Coleman

Each infobox is based on a template that lists possible attribute la-
bels. For example, the edge label “leader name” comes from the in-
fobox template for settlements2 and appears in the wiki markup for
Columbus, Ohio infobox. Wikipedia translates this label to the more
readable ”Mayor” for page display.

3.2 Path Queries
Following a path in the graph is the same as following hyperlinks be-
tween Wikipedia articles. Paths correspond to indirect relationships
between nodes the graph, like the political party of Columbus’ mayor:

Columbus, OH leader name−−−−−−−→Michael B. Coleman
party−−−→ Democratic

We can use a path query to describe the abstract relationship be-
tween the city and the political party of its mayor:

? leader name−−−−−−−→?
party−−−→?

This is a pattern for matching paths in the graph. We formerly defined
the terms instance path and schema path [5], but we will now use the
more common terms path and path query respectively.

Vispedia uses an improved algorithm to solve the same path ranking
problem that we introduced in previous work: finding a list of path
queries that match a keyword query, ordered by relevance.

In addition to the search for potential path queries, the system must
eventually execute the path queries to find data to visualize. For exam-
ple, if Columbus is an entry in a seed table and the user wants to use
the above path query to find the mayor’s party, the system will try to
match the following pattern to a path from the graph:

Columbus, OH leader name−−−−−−−→?
party−−−→?

When several paths match a query, our system currently presents only
the first match. We do not yet handle 1-to-many relationships.

3.3 Complexity of Available Path Queries
The high branching factor and heterogeneous structure of the graph
gives a large number of possible path queries. This makes it difficult
for a user to discover good queries for a visualization attribute. It also
makes the problem of finding and ranking path queries difficult for the
system.

3.3.1 High Branching Factor
The articles in Wikipedia are highly interconnected [20]. In a random
sample of 1% of the articles with infoboxes, each article has 19 dif-
ferent attributes on average. This means that for a single article, the
number of possible path queries grows exponentially with path length.

3.3.2 Diverse Infobox Templates
More importantly, although infobox templates introduce some struc-
ture to the schema, there is a great deal of variety between arti-
cles. Templates define what relationships an infobox might contain;
however, Wikipedia is authored by many contributors who have only
loosely standardized on templates for each domain – There are 2139
templates in our data set using over 8000 different edge labels. Articles
on two people can use different templates. For instance, the article on
John McCain uses a senator template while Kevin Bacon has an actor
template. Labels used for similar relationships can vary between tem-

plates, so while the Senator template uses birthPlace−−−−−→, the actor template
2http://en.wikipedia.org/wiki/Template:Infobox Settlement

uses
placeOfBirth−−−−−−−→. In some articles, template fields are not completely

populated, leading to missing data. Furthermore, unlike strict ontolo-
gies, templates specify attribute labels, but don’t constrain the type on
attribute values.

All of these factors – many branching edges, semantically similar
labels, loose template constraints, and missing data – contribute to the
variety of path queries available. Let us return to the NHL example
and enumerate the number of path queries available across the set of
fifteen teams:

Average Total Distinct
Path Length per Team for All Teams

1 37 84
2 910 3,907
3 15,366 111,525
4 404,497 3,839,530

The second column shows the average number of available path
queries for a single team. This exhibits the exponential branching pre-
viously mentioned. In comparison, the third column shows the total
number of different path queries across all teams. This is the space of
queries the user must consider when finding data to visualize. Due to
differences between teams, the total number of queries is much greater
than the average for any single team. Some of these queries match
paths for many teams, but a large number match paths for only a few
teams.

3.4 Challenges
The space of possible path queries is large, unfamiliar, and different
from one object to the next. Because of the semantic subtleties, any
approach for matching path queries to keywords cannot be fully auto-
matic. We need to help the user understand and choose path queries
from this large and complex space. This poses both user interface and
system challenges.

4 THE DESIGN OF VISPEDIA

We have now described the challenges involved in integrating
Wikipedia data. In this section we first describe the design goals and
criteria that we developed while working on Vispedia. We discuss how
these criteria are derived from the principal challenges that arise from
using an integration-on-demand approach to visualization. We then
describe the design decisions we have made to meet these criteria.

4.1 Users
We would like our tool to be used by Wikipedia readers who would
benefit from ad-hoc visualizations while browsing, often in domains
outsider their area of expertise. We would also like our tool to be used
by Wikipedia editors, who may want to quickly create visualizations
to accompany Wikipedia articles.

Both classes of users are fairly nontechnical, so the interface should
be straightforward. We assume no knowledge of database technology
or terminology, such as “schema integration,” table joins, or SQL. It
should be possible to create a visualization in a small number of steps,
both as a starting point for iterative refinement, and to support the
common case where the first version is good enough. More abstract
data integration tools should only appear if user needs to refine the
visualization further.

4.2 Designing a Search-Based Interface
As discussed previously, the space of paths within Wikipedia is very
large. To permit users to effectively find useful attributes using these
paths, we propose a design that narrows the search space to be an-
chored to a specific, user-specified seed table. A simple query inter-
face then hides the complexity of ranking different paths.

In this paper, we focus on helping the user understand the space of
and handle the differences moving from one table to another. For dif-
ferences within a table, where one row requires a different path query
than another, we continue to use our previous method: automatically
falling back on lower ranked alternatives [5].

http://en.wikipedia.org/wiki/Columbus%2C_Ohio
http://en.wikipedia.org/wiki/Michael_B._Coleman
http://en.wikipedia.org/wiki/Template:Infobox_Settlement
http://en.wikipedia.org/wiki/Template:Infobox_Settlement
http://en.wikipedia.org/wiki/Columbus%2C_Ohio
http://en.wikipedia.org/wiki/Michael_B._Coleman
http://en.wikipedia.org/wiki/Democratic_Party_(United_States)
http://en.wikipedia.org/wiki/Columbus%2C_Ohio

Fig. 4. Vispedia search interface showing a list of columns pulled from
the user-selected Wikipedia column and the query recommender show-
ing data items that are available through search.

We will consider our design within the user-interface framework
proposed by Shneiderman, where search starts by formulating and cre-
ating a query, then reviewing the results, and refining the query [26].

4.2.1 Picking a Topic

In Shneiderman’s framework, query formulation is the most complex
phase, involving the need to decide where to search, what terms to
search for, and what variants of those terms to accept. Vispedia’s
starts the user’s search at a table selected with the Visualize this! book-
marklet.

After selecting a table, the user is presented with a box above the
table showing a selection of visualization types supported by Vispedia:
map, timeline, and scatterplot. Seeing the table in-situ within the arti-
cle and choosing a visualization type while looking at the article allows
a user to build an intuitive understanding of the available data. Picking
a table and visualization type first also narrows the search space since
Vispedia can start from relatively complete seed data and it can search
only for the data types required by the visualization type.

4.2.2 Formulating a Search

Once a user picks a table and a visualization, they need to query
Wikipedia for the attributes needed to create the visualization. The
space of possible path queries is large, so to simplify query formula-
tion, the interface helps the user discover possible queries.

In many cases, the values needed are in the table itself. To use
these values for a visual attribute, the user simply clicks on the table
column in a list near the query fields (see Figure 4). This populates
the query with the column name and causes the search to use data from
the table, unless data is missing or does not have the right data type for
the visualization.

If the user does not find the data they need in a table column, users
can type in a query. Vispedia will then try to match the query keywords
to paths in the graph.

We assume that the user is not familiar with the structure of the
Wikipedia hyperlink graph and the information available from fol-
lowing paths in the graph. In order to find the correct attributes, we
provide a query recommendation engine similar to an auto-complete
widget (also shown in Figure 4). This interactive feedback makes it
possible to quickly see if the search will match useful results and helps
suggest additional terms to formulate or refine the query.

The widget shows a ranked list of paths, along with an example
data instance that results from following each path. For example, the
query recommender, shown in Figure 4, displays three possible paths
related to the query “team” in sorted order, where the first path is es-
timated to be the most relevant. The second path in this list,“Team→
city”, shows the matching example for one NHL team “New Jersey
Devils→ Newark, New Jersey”. The user can select an item directly
from the query recommender. This populates the query with the terms
from the path query, guaranteeing that the chosen path query will then
be used first.

Fig. 5. Users can click items in the visualization to reveal additional
sourcing metadata. This permits users to verify and evaluate how Vis-
pedia is locating data in Wikipedia.

4.2.3 Reviewing Search Results and Refining Query

The next phase in Shneiderman’s framework is reviewing the results.
After the user fills in desired fields of the visualization template, they
can click “Show Visualization” which causes Vispedia to query the
Wikipedia semantic graph. Returned data are shown both on the vi-
sualization and in tabular form. Showing both representations makes
incorrect or missing results easier to see.

The instance paths used to find the data are available by clicking on
columns in the table or by clicking on items in the visualization (see
Figure 5). These paths provide links back to Wikipedia which users
can use to better understand how Vispedia is finding the results. This
allows the user to evaluate the provenance of the data and then revise
the query to improve the results.

5 IMPLEMENTATION DETAILS

Here are the implementation details for the user interface, data set, and
table extraction.

5.1 Frontend
The bookmarklet used for table selection is implemented in Javascript.
The web frontend is implemented in PHP, and the visualization in-
terface uses Javascript components from MIT’s Simile timeline [24],
Google Maps [13],

5.2 Graph Data
The frontend accesses the graph data using REST HTTP requests to a
mod python Apache module.

For the data set, we use version 3.0 of DBpedia [4], extracted from
Wikipedia in January 2008. This graph has 13 million nodes and 36
million edges taking up 4GB of storage. It includes the infoboxes,
redirections, images, and geocoordinates data from DBpedia. The
redirections handle alternate names for the same object, and images
and geocoordinates hold pictures and locations if they exist for an ar-
ticle.

While there are database solutions for storing and querying seman-
tic graphs [18, 2], they are not designed for the sort of best-first path
search operations we depend on. Instead, we keep all the graph edges
in a memory mapped adjacency list, with a Berkeley DB for holding
strings from node and edge labels.

5.3 Linking Table and Graph
Unfortunately DBpedia depends on Wikipedia dumps, which are often
several months out of date. Vispedia combines the current version of
a Wikipedia table with the DBpedia semantic graph. This implemen-
tation allows a user to start from the live, immediately editable data

they see on Wikipedia, and serves as a model for future combinations
of arbitrary web tables with Wikipedia data.

The system downloads the user-selected table from Wikipedia,
parses the wiki markup, and converts it to a graph. This graph con-
tains a node for each table row, with labeled edges to each field in the
row. For example, in the NHL scenario table, Figure 2, the following
edge is extracted from the Team column of the first row:

row:0 Team−−−→ New Jersey Devils

When the DBpedia graph and a table graph reference the same
Wikipedia article or use the same string literal value, then the graphs
share a node and the search can follow paths from the table into
Wikipedia to find additional data.

6 PATH SEARCH ALGORITHM

Vispedia uses a fast path search to recommend path queries and match
data for visualization. As in our previous work [5], the path search
turns a user’s keywords into a ranked list of the most relevant path
queries; however, the current graph search provides answers of simi-
lar quality significantly faster than our old non-interactive algorithm.
The main improvement is a reformulation of the ranking function to
allow a time-limited A* search. This is a best-first search that explores
available path queries in order of decreasing relevance. It is both more
efficient and more likely to return good answers within a given time
limit.

6.1 Ranking Function
The path search shows the user a list of path queries ranked by rele-
vance. We focus on supporting interactive response times with a fast,
simple algorithm that gives usable, but not perfect quality. There are
ways to improve match quality, such as corpus based techniques [22],
but these are slower and more costly to implement.

The function for ranking path queries against keywords is the same
as in our previous work, except that we have simplified the heuristic for
penalizing longer path queries. We keep the same cap on the branching
factor and continue to ignore links through non-string literals. At the
moment, the interface does not allow the user to manage path queries
with multiple matches, so we no longer use the common path or voting
heuristics.

The updated ranking function is motivated by document similar-
ity metrics based on term frequency vectors [25]. The user’s key-
word query and the path query are each broken into a bag of words
by considering non-alphanumeric separators and camelCasing. Words
are case invariant, but may appear multiple times in a bag. For ex-

ample, the path query ? Team←−−−?
teamLogo−−−−−→? becomes the bag of words

{team, team, logo}
For each bag, we compute a word count histogram, called a term

frequency vector:
tfvbag = {t1, t2, · · · , tn}

where n is the number of different words that appear in graph edge
labels, and ti is a count of how many times the word with index i
appears in the bag. The term frequency vector for the path query above
will have a count of 2 for the word “team”, a count of 1 for “logo”, and
all other ti will be zero.

A Manhattan distance function between term frequency
vectors [25] gives the similarity between the user’s key-
word query, tfvkeyword = {q1,q2, · · · ,qn}, and the path query,
tfvpath = {p1, p2, · · · , pn}:

dist(tfvkeyword, tfvpath) =
n

∑
i=1

tfidf(i)w(pi,qi)|pi−qi|

where w(pi,qi) =
{

α if pi > qi
1 otherwise

As in previous work, we use tf-idf weights to give common terms like
“of” and “the” less impact on the distance. The weighting function,

w, penalizes words in the path query that do not appear as a keyword,
thus favoring shorter paths. Currently α is set to 0.5, but we have not
tested this extensively.

6.2 A* search
In our previous paper, we used an exhaustive graph search that took
several minutes to find paths to a depth of 4 for a set of 101 U.S.
senators [5]. The revised distance function presented above permits
Vispedia to use an A* search that explores the graph in approximate
order of relevance, greatly improving performance.

We run a separate A* search starting from each seed table row and
maintain the 5 best path queries per row. Results from all rows are
collected together for display in the query recommender. The ranking
function does not always match human judgement, so keeping the top
5 path queries provides a reasonable but not overwhelming number of
additional options for the query recommender.

During the search, the algorithm estimates the relevance in unex-
plored parts of the graph. It explores the parts with the highest rele-
vance first and prunes parts where there is no chance of finding better
path queries. In order to prune correctly, we need a bound on how
much closer a path can get to the keywords by adding more edges.
Adding edges that match more keywords can decrease the distance,
making the path more relevant. It is easy to see that if

h(tfvkeyword, tfvpath) =
n

∑
i=1

{
tfidf(i)α(pi−qi) if pi > qi
0 otherwise

then
dist(tfvkeyword, tfvpath∗)≥ h(tfvkeyword, tfvpath)

for all paths, path∗, which include path as a prefix. Thus h is exactly
the bound we need, and it is only achieved if the extended path matches
every keyword.

6.3 Time Limited Search
Pruning in the A* search usually improves performance, however if
the search discovers no good path queries, it cannot prune effectively.
This can happen if the user enters a keyword that does not appear in
the graph.

To ensure the search still returns the best possible answer interac-
tively, we run A* searches one row at a time and limit the search time
to 0.1 seconds per row and 1 second overall. This means that the space
of paths for a single row may not be fully explored, missing parts with
less estimated relevance. Also some rows may not be explored at all
if the search reaches the overall time limit. This can be a problem if
an row omitted during the search needs a unique path query to find
data. Usually though, the path queries from other rows can be reused
to match data for the omitted row.

6.4 Performance
We will evaluate the proposed distance metric and A* search based on
the number of path queries considered by the search and the execution
time compared to an exhaustive search. Evaluation of the result quality
was done as part of the user study.

6.4.1 Search Space
The table below shows the average number of path queries considered
at each length over all rows of the NHL table, with each column show-
ing a different query. Note that the first step of any path query always
passes through one of the 7 columns in the Wikipedia table.

“Joined NHL” “Team” “Team logo”
Length (date) (string) (image)

1 7 7 7
2 200 186 204
3 2314 268 1407
4 3274 255 1499
5 136 2 390

http://en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/New_Jersey_Devils

The search for “Joined NHL” matches the table column, but then
finds few other paths matching the rare keywords. As a result, the
search to find the top 5 paths continues with few opportunities to prune
early. In general, pruning during the A* search avoids the exponential
growth in the number of longer path queries that appears in an exhaus-
tive search.

6.4.2 Search Time

The next table shows the total execution time of the A* search over
all rows of the NHL table. Since the table is relatively small, all the
items are fully explored well under the time limit of one second. For
comparison, we also show the speedups compared to an exhaustive
depth first search of all path queries up to length 4, which takes 3.5
seconds.

Speedup versus
Time(s) DFS to length 4

“Joined NHL” (date) 0.34 10
“Team” (string) 0.026 130

“Team logo” (image) 0.13 26

6.4.3 Effect of Time Limits

Over two weeks that included the user study as well as our own usage,
we logged a larger sample of 526 unique queries on 37 different tables
from our website. Most of the queries finished within the time limit
(457 queries). The remaining 157 queries that reached the 1 second
barrier tended to be from larger tables, with over a hundred rows, and
these searches still managed to fully explore 38% of their rows on
average.

Partial exploration will miss candidate path queries that exist only
for a small number of rows, but we have observed that these tend to be
less useful than more frequent candidates.

7 USABILITY EVALUATION

We conducted a first-use study to qualitatively evaluate usability.
There were 7 total participants: 2 female, 5 male. Their ages ranged
from 18-24 (five participants) to 25-34 (two). Most participants (over
two-thirds) used Wikipedia on a daily basis, and had no experience
with database technologies such as SQL or Microsoft Access.

The first two participants took part in a pilot study, designed to un-
cover major usability flaws and provide incremental feedback on Vis-
pedia’s design.

7.1 Study Protocol

Each study session took approximately 60 minutes. Participants were
seated at a workstation and used a standard web browser that had
the “Visualize this” bookmarklet pre-installed. Direct observation and
server query logs were used for analysis.

We demonstrated Vispedia’s interface, briefly walked through the
process of specifying and refining search terms, and asked participants
to complete three design tasks of increasing complexity. The first task
tested the basic usability of our system, and instructed participants
to create a timeline of NHL hockey teams and their logos, according
to when teams joined the NHL. In the the second task, participants
were asked to plot all fourteener mountain peaks in California on a
map and use this depiction to plan a climbing trip beginning with the
southernmost peak. Both of these tasks required data beyond the initial
seed table, and the second task involved more complex queries.

Finally, the third design task was open-ended, asking users to pick a
topic of personal interest and to create a compelling visualization from
a table found on Wikipedia. We suggested potential topics, but partic-
ipants generally diverged from this list, preferring to explore, for ex-
ample, topics ranging from the Roman Empire to aeronautic disasters
of the twentieth century. The table sizes varied from five rows (Roman
Emperors from the Julio-Claudian dynasty) to 577 rows (United States
Micropolitan Statistical Areas).

Time (min) Display count
mean σ mean σ

Task 1 (NHL) 5.2 2.7 3.7 2.3
Task 2 (14ers) 3.7 2.3 2.3 0.8

Open Task 2.4 3.3 1.8 1.6

Table 1. Time spent and number of times a revised query was displayed
per visualization, taken from server logs. These summaries omit one
participant on Task 1 and one on Task 2, who took more than 20 minutes
due to difficulties refining the query to answer the given questions.

7.2 Results
Overall, results from evaluation study support our hypothesis that
the Vispedia system and associated interaction techniques were eas-
ily learnable (mean=4.1, median=4 on a 5-point Likert scale, σ=0.7).
In combination with a novel, fast path search algorithm, the resulting
system was found to be usable by first-time users (mean=4.3, σ=0.8),
who were able to browse or search for tabular data sets and quickly
prototype visualizations.

In the following analysis, a visualization begins with choosing a
seed table and visualization type and includes all subsequent revisions
to the keyword queries.

In the first two tasks, most participants worked on a single visual-
ization. One participant attempted several different seed tables on the
California fourteeners task, as some were not sufficient to complete
the task given. While all participants completed the first task, not all
participants found the southernmost fourteener in the second task.

In the open task, we encouraged participants to build additional vi-
sualizations if time permitted. Participants attempted 19 visualizations
using 15 different seed tables. 4 of these failed to yield useful visu-
alizations due to missing data, either because the seed table lacked
enough hyperlinks, the linked articles contained no infoboxes, or our
table extractor parsed the wiki markup incorrectly.

7.2.1 The cost structure of visual sensemaking
Participants were able to quickly create visualizations. The average
time spent per visualization in each task was generally 5 minutes or
less, as seen in subsection 7.2.

One participant wrote that Vispedia could help in “sparing the user
from the tedium of manual spidering” when one is interested in infor-
mation not presented in the original Wikipedia table.

Participants generally agreed that the Vispedia system responded
quickly enough (mean=4.1, σ=1.1). Furthermore, they strongly
agreed that Vispedia “facilitates rapidly exploring different visualiza-
tions and data” (mean=4.4, σ=0.5).

7.2.2 Data integration on demand
Before running the lab study, we hypothesized that Vispedia would
support data integration and visualization on demand, by allowing a
fast, iterative, and visual sensemaking loop. Observing our partici-
pants as they completed the provided design tasks, we noted that par-
ticipants would enter a few query terms for a subset of fields, display
the corresponding visualization, and then return to fill additional fields
or refine the query, much as one would refine a keyword search on the
Web. Participants updated queries and displayed visualizations multi-
ple times per task as shown in subsection 7.2.

During the open task, in 10 out of 15 successful visualizations, users
integrated data via the path search. In the remaining 5 cases, the orig-
inal table contained all the desired data, and these visualizations were
completed very quickly (mean=0.4min, σ=0.2min). This shows that
while Vispedia enables integration on demand, it also efficiently sup-
ports traditional visualization from structured tables.

Participants generally agreed that they were satisfied with the qual-
ity of the search results returned (mean=3.9, σ=1.1), and were able to
perform data integration and visualization for tables the authors had
not previously encountered. One participant said they thought it was
“impressive that the system did the smart thing in most cases.”

Fig. 6. Post-experiment questionnaire results. Error bars indicate one
standard deviation in each direction.

7.2.3 Data quality and provenance
While integrating data from multiple sources, participants often used
the visual representations of data to heuristically check data quality.
For example, when plotting data specific to one country or state, par-
ticipants easily noticed visual outliers. In contrast, participants per-
forming the California fourteeners task often failed to recognize nu-
meric outliers if they inspected data mainly in the table form.

Participants mostly agreed that the Vispedia “makes it possible to
see incorrect data” (mean=3.9, σ=1.1) and also “helps [them] under-
stand where data comes from” (mean=4, σ=1.2). We observed that
participants made frequent use of the ability to quickly toggle between
“data sourcing” view and data view in the table provided, as a way to
quickly get a sense of where and how different items are being sourced.

7.2.4 Compelling visualizations
Participants were able to create compelling visualizations of their own
choosing, and several participants wanted to e-mail visualizations they
created to friends. One participant thought Vispedia was “an easy way
to share graphs. . . can argue points in blogs visually.”

7.3 Shortcomings
7.3.1 Finding seed data
In the open task, participants employed various strategies for finding
data. They encountered a number of difficulties and spent between 3-
10 minutes (mean = 7.1min) finding a table. Some common problems
included the inability to search for tables, difficulty browsing to an
article with a table, and incorrect extraction of complex table formats.

Possible solutions to this problem include building search engines
for tabular web data and providing additional information scent to
show data sets related to an article. In addition, with an entity rec-
onciliation step, any table could be linked to Wikipedia, increasing the
number of potential starting points.

7.3.2 Learning the query model
While the majority of participants reported that they “understood how
to refine queries,”, other participants either disagreed or were neutral
about this claim. All of the participants were able to refine queries and
author visualizations, so we infer that participants may have struggled
to align their mental model of Wikipedia’s semantic graph (infoboxes,
tables, and entries) with system’s understanding of Wikipedia. For ex-
ample, a NHL logo image may be labeled “logo image” in the infobox
template, but neither “logo” nor “image” may appear in the rendered
Wikipedia article itself.

To address this mismatch, a future system may provide a way to
co-locate semantic metadata with the original web page. In particular,
the bookmarklet could also allow users to mouse over wiki elements
which have invisible semantic representations, surfacing them visibly.

7.3.3 Transforming and Tailoring
Similarly, participants were split as to whether Vispedia allowed them
to “specify data [they] want to show” on the visualization (mean=3.3,

σ=0.8). At times, participants wanted to plot “unrelated” images
or iconic representations such as triangles or arbitrary pictures from
Wikipedia. One participant asked for the ability to edit the table
sourced from Wikipedia directly. These suggestions would improve
users’ ability to transform and re-represent sourced data. They also
suggest the tailoring and editing of existing visualizations as one av-
enue for future work.

7.3.4 Change blindness
Because data integration happened on demand, participants would oc-
casionally exhibit change blindness when refining queries. That is,
they were unable to tell whether or not changing query terms or paths
actually resulted in a different integrated data set. Participants also
failed to notice missing data when only one or two cells were incom-
plete. More work needs to be done in understanding how visualization
systems can help highlight missing data and combat change blindness.

7.3.5 Sharing and Collaboration
Multiple participants requested the ability to share and annotate their
visualizations. Techniques described in Heer’s sense.us [15] and
ManyEyes could be extended to a system that closes the loop by al-
lowing users to embed created visualizations or tables back into the
original data source (in this case Wikipedia).

8 RELATED WORK

Vispedia builds on the research in two areas: web-scale collaborative
data exploration, and semantic graphs.

8.1 Collaborative Data Exploration
Collaborative visualization projects such as sense.us [15] and Many
Eyes [31], as well as commercial endeavors like Swivel [29] and
Tableau Server [30] have made it easy to explore and share well struc-
tured data with other users. GraphWise [14] is another example that
combines user-created content with visualizations automatically gen-
erated from Wikipedia tables. These systems depend on structured
data with a known schema, so Vispedia complements these advances
in social visualization by addressing the case where the schema is large
and unknown.

Visualizations that make transparent the social dynamics of
Wikipedia authors, like WikiDashboard and the revert graph [1, 28]
help users better understand the source of the data itself.

The challenge of performing data integration at web-scale has been
explored by others. The Cimple [6] project created a web platform for
supporting the social aspects of community-driven data integration.
Madhavan et al. promote a formal “Pay as You Go” [23] model where
web-scale data integration is done on demand and implicit or explicit
user feedback is incorporated to improve the results. Like our project,
they use queries and ranking to enable integration. Google Base [12]
and FreeBase [9] are two commercial ventures whose goal is to create
large collaboratively-authored semantic databases.

In contrast to these systems, Vispedia emphasizes visualization as
the major focus, and as part of a sensemaking loop rather than as the
end point of a data integration pipeline.

8.2 Semantic Graphs
A second rich research area is the work on how to extract, search, and
visualize semantic graph data.

There has been growing interest in extracting semantic relationships
from Wikipedia. DBpedia provides an extractor for the infoboxes [4]
and links the graph they extract with a wider Linking Open Data com-
munity project [3]. The KYLIN system uses the relationships in in-
foboxes to seed a relationship extractor on the free text of Wikipedia
[34]. The YAGO system seeks to build a better category hierarchy, a
first step to more meaningful classes of objects on Wikipedia, by com-
bining the Wikipedia category hierarchy with the Wordnet hierarchy
[27]. Dontcheva et al. [8] have suggested a personal data extraction
and integration system based on templatized screen scraping. Mak-
ing more organized, interlinked semantic data available increases the
benefits of building visualizations from such data.

Many query interfaces and search algorithms exist for semantic
graphs. There are graphical query interfaces for RDF such as the
W3C’s Tabulator [33], and the basic DBpedia search interface [4], use
a link following model similar to web browsing. The W3C SPARQL
query language [32] provides a way to specify graph patterns against
a semantic graph.

Compared to the stepwise query interfaces found in all of these
systems, we support a more flexible keyword query for discovering
and matching paths, more akin to the proximity search system in Lore
[10], which ranks objects based on their distance in the graph to focus
objects, or The DBpedia Relationship Finder [20], which lets users
browse paths connecting pairs of nodes.

The graph search algorithm we present is similar in spirit to the
Bidirectional keyword search by Kacholia et. al. [19]. They devel-
oped a method for matching keywords to subtrees that searches the
graph as directed by a scoring function. Indexing schemes for keyword
search on heterogeneous graphs [7] and for summarizing relationships
in DataGuides [11] also exist; however, it is these approaches may not
scale for path queries on a schema as complex as Wikipedia’s.

Exhibit is a data publishing system that includes an HTML-tag
based method of specifying a visualization from an underlying graph
[16]. Potluck allows data integration between several Exhibit data
sources [17]. Vispedia aims instead give a wider audience access to
data integration on web-scale data sources.

9 CONCLUSIONS AND FUTURE WORK

We introduced a novel system, Vispedia, for building visualizations
sourced from Wikipedia, and described its algorithmic and interaction
design. Vispedia addresses the long tail of visualization, by reducing
the work required to integrate and visualize data.

In a first-use lab study with 7 participants, we found that partic-
ipants did indeed perform data integration and visualization on de-
mand, switching back and forth between visual and tabular represen-
tations. The study also demonstrated the usability of Vispedia and
the interaction techniques it embodies, as well as the feasibility of an
interactive visualization authoring tool, enabled by a fast, novel graph-
structured search algorithm.

We hope that future visualization researchers consider the chal-
lenges involved with data sets such as Wikipedia, and continue to work
toward a tighter collaborative sensemaking loop, which seamlessly
blends foraging for data, data integration, visual and non-visual sense-
making, re-representation, and storytelling in a compelling fashion.
Exposing more data without a pre-specified schema changes the fun-
damental assumptions of visualization and suggests many other open
problems: Extraction and integration interfaces like Vispedia can be
made more powerful yet more usable; missing data and multiple alter-
natives of different provenance will require additional research in ap-
propriate visual representations; and richer semantic information also
expands the possibilities for automating the design of visualizations,
beyond statistical graphics.

ACKNOWLEDGEMENTS

This work was supported in part by an RVAC grant from the Depart-
ment of Energy and the Max Planck Institute. Thanks to Björn Hart-
mann for figure assistance and inspiration, and to Mark James for the
use of his icons.

REFERENCES

[1] Lifting the veil: Improving accountability and social transparency in
wikipedia with wikidashboard.

[2] Virtuoso. http://www.openlinksw.com/.
[3] Linking open data. http://esw.w3.org/topic/SweoIG/

TaskForces/CommunityProjects/LinkingOpenData, 2008.
[4] S. Auer, C. Bizer, J. Lehmann, G. Kobilarov, R. Cyganiak, and Z. Ives.

Dbpedia: A nucleus for a web of open data. In Proceedings of ISWC
2007 (To Appear), 2007.

[5] M. Cammarano, X. L. Dong, B. Chan, J. Klingner, J. Talbot, A. Halevey,
and P. Hanrahan. Visualization of heterogeneous data. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1200–1207, 2007.

[6] A. Doan, R. Ramakrishnan, F. C. 0002, P. DeRose, Y. Lee, R. McCann,
M. Sayyadian, and W. Shen. Community information management. IEEE
Data Eng. Bull., 29(1):64–72, 2006.

[7] X. Dong and A. Y. Halevy. Indexing dataspaces. In SIGMOD Conference,
pages 43–54, 2007.

[8] M. Dontcheva, S. M. Drucker, D. Salesin, and M. F. Cohen. Relations,
cards, and search templates: user-guided web data integration and layout.
In UIST ’07: Proceedings of the 20th annual ACM symposium on User
interface software and technology, pages 61–70, New York, NY, USA,
2007. ACM.

[9] freebase. http://www.freebase.com.
[10] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-

Molina. Proximity search in databases. In Proc. of VLDB, 1998.
[11] R. Goldman and J. Widom. Dataguides: Enabling query formulation

and optimization in semistructured databases. In Proc. of VLDB, Athens,
Greece, 1997.

[12] Google Base. http://base.google.com/, 2005.
[13] Google Maps. http://maps.google.com.
[14] Graphwise. http://www.graphwise.com.
[15] J. Heer, F. B. Viégas, and M. Wattenberg. Voyagers and voyeurs: support-

ing asynchronous collaborative information visualization. In CHI ’07:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 1029–1038, New York, NY, USA, 2007. ACM.

[16] D. F. Huynh, D. R. Karger, and R. C. Miller. Exhibit: lightweight struc-
tured data publishing. In WWW ’07: Proceedings of the 16th interna-
tional conference on World Wide Web, pages 737–746, New York, NY,
USA, 2007. ACM.

[17] D. F. Huynh, R. C. Miller, and D. R. Karger. Potluck: Semi-ontology
alignment for casual users. ISWC 2007.

[18] Jena. http://jena.sourceforge.net/.
[19] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and

H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. In VLDB ’05: Proceedings of the 31st international confer-
ence on Very large data bases, pages 505–516. VLDB Endowment, 2005.

[20] J. Lehmann, J. Schppel, and S. Auer. Discovering unknown connections
- the dbpedia relationship finder. In S. Auer, C. Bizer, C. Mller, and A. V.
Zhdanova, editors, CSSW, volume 113 of LNI, pages 99–110. GI, 2007.

[21] M. Lenzerini. Data integration: a theoretical perspective. In PODS ’02:
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems, pages 233–246, New York, NY,
USA, 2002. ACM.

[22] J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy. Corpus-based
schema matching. In ICDE, pages 57–68, 2005.

[23] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery, D. Ko,
and C. Yu. Web-scale data integration: You can afford to pay as you go.
In CIDR, pages 342–350, 2007.

[24] MIT. Simile timeline. http://simile.mit.edu/timeline/.
[25] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic

indexing. Commun. ACM, 18(11):613–620, 1975.
[26] B. Shneiderman, D. Byrd, and W. B. Croft. Clarifying search: A user-

interface framework for text searches. D-Lib Magazine, 1997.
[27] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic

knowledge. In WWW ’07: Proceedings of the 16th international confer-
ence on World Wide Web, pages 697–706, New York, NY, USA, 2007.
ACM.

[28] B. Suh, E. H. Chi, B. A. Pendleton, and A. Kittur. Us vs. them: Under-
standing social dynamics in wikipedia with revert graph visualizations.
Visual Analytics Science and Technology, 2007. VAST 2007. IEEE Sym-
posium on, pages 163–170, Oct. 30 2007-Nov. 1 2007.

[29] Swivel. http://www.swivel.com.
[30] Tableau. http://tableausoftware.com.
[31] F. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.

Manyeyes: a site for visualization at internet scale. Visualization and
Computer Graphics, IEEE Transactions on, 13(6):1121–1128, Nov.-Dec.
2007.

[32] W3C. SPARQL Query Language for RDF. http://www.w3.org/
TR/rdf-sparql-query/.

[33] W3C. The Tabulator. http://www.w3.org/2005/ajar/tab.
[34] F. Wu and D. S. Weld. Autonomously semantifying wikipedia. In CIKM

’07: Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management, pages 41–50, New York, NY,
USA, 2007. ACM.

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.freebase.com
http://base.google.com/
http://maps.google.com
http://www.graphwise.com
http://simile.mit.edu/timeline/
http://www.swivel.com
http://tableausoftware.com
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2005/ajar/tab

	Introduction
	Scenario: NHL Teams
	Data Integration Challenges
	Infobox Graph
	Path Queries
	Complexity of Available Path Queries
	High Branching Factor
	Diverse Infobox Templates

	Challenges

	The Design of Vispedia
	Users
	Designing a Search-Based Interface
	Picking a Topic
	Formulating a Search
	Reviewing Search Results and Refining Query

	Implementation Details
	Frontend
	Graph Data
	Linking Table and Graph

	Path Search Algorithm
	Ranking Function
	A* search
	Time Limited Search
	Performance
	Search Space
	Search Time
	Effect of Time Limits

	Usability Evaluation
	Study Protocol
	Results
	The cost structure of visual sensemaking
	Data integration on demand
	Data quality and provenance
	Compelling visualizations

	Shortcomings
	Finding seed data
	Learning the query model
	Transforming and Tailoring
	Change blindness
	Sharing and Collaboration

	Related Work
	Collaborative Data Exploration
	Semantic Graphs

	Conclusions and Future Work

