
Appendix – The Event Heap Wire Protocol

By Bradley Earl Johanson

© Copyright 2003

This is a supplemental electronic appendix that is a companion to “Application Coordination

Infrastructure for Ubiquitous Computing Rooms,” a dissertation by the author which was written

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical

Engineering at Stanford University.

Preface

This appendix contains the Event Heap wire protocol version 1 as implemented by Event Heap

versions 1.96 and higher. The protocol specification was compiled with assistance from Satyajeet

Salgar. The most recent version of the protocol is always available as part of the iROS source

tree on http://iros.sourceforge.net.

Overview

The protocol consists of two parts:

• How to send requests, tuples and associated other information to the server, and receive

the replies back

• What are the valid requests to make to the server, and the response that can be expected

The first part is the wire bundle protocol, and is found in the first part of this protocol

specification. The second part is the Event Heap server invocation specification, and can be

found toward the end of this appendix. A proper Event Heap client needs to understand the wire

bundle protocol, and speak a sub-set of the supported server invocation op-codes.

This specification is primarily intended to enable programmers to write their own Event Heap

client in some language other than the original Java, but should contain enough information to

write a new server as well.

The Wire Bundle Protocol

In order to access an Event Heap server, you need to speak to it over a standard socket using

TCP/IP to the port on which the server is listening. After an initial handshake to agree on the

protocol version, the underlying Event Heap wire protocol is a unidirectional bit-stream

http://iros.sourceforge.net/

2 Appendix – The Event Heap Wire Protocol

transmitted using TCP/IP over a socket connection to some port. A stream of wire bundles is sent

to the server from the client which specify requests, and a stream of response wire bundles from

the server is sent back over the same socket. The semantics of the bundles are discussed in the

Event Heap server invocation specification toward the end of the appendix. In this specification

only sending of a valid stream is discussed, but receiving may be inferred since it is just the

inverse operations.

Initial Hand-Shake and High-Level Protocol

Here is the high-level protocol, details of sending sub-objects follows:

1. Once the connection is established, send the version (as a UTF-8 String) of the wire

protocol running on this entity (e.g. "EHWPv1" for this version of the wire protocol)

2. Read a UTF-8 String over the wire that is the protocol version running on the peer.

• If the versions are different ---Exit

• else ---continue

3. Send (or receive) WireBundles

Semantics for WireBundle Transfer

A WireBundle is a simple helper class which bundles up a set of tags, sequencing information

and a tuple array for transmission or receipt by an entity using the Event Heap.

1. Construct and send a mask (one byte) that indicates if there are non-null values for each

of the fields in WireBundle

• 1s place set indicates a non-null destinationTag (i.e. the remote entity that should

process this bundle)

• 2s place set indicates a non-null returnTag (i.e. the entity that should be sent the

results of the processing of this bundle)

• 4s place set indicates a non-null sequenceInfo array

• 8s place set indicates a non-null outTuples array

2. If the 1's place bit is set in the mask send (as a UTF-8 String) the destination Tag.

Appendix – The Event Heap Wire Protocol 3

3. If the 2's place bit is set in the mask send (as a UTF-8 String) the return Tag.

4. If the 4's place bit is set in the mask send SequenceInfo object by:

• Write to the socket the number of elements (as an Int) in the sequenceInfo array

• Write each sequenceInfo object

5. If the 8's place bit is set in the mask send Tuple objects by:

• Writing to the socket the number of elements (as an Int) in the outgoing Tuples

array

• Write each Tuple object

Semantics for SequenceInfo Transfer

This object is used to store sequencing information for one EventType. It contains an array with

one SourceInfo object per known source that emits events with this EventType.

1. Write the EventType (as a UTF-8 String).

2. Write the number of SourceInfo objects that will be transferred (as an Int).

3. Write each SourceInfo object to the socket.

Semantics for SourceInfo Transfer

This class is used to indicate which sources and sessions are known to be generating specific

event types by a given EventHeap client object.

1. Write the source (as a UTF-8 String).

2. Write the session ID (as an Int).

3. Write the maximum seen sequence number for the given source, in the given session (as

an Int).

4 Appendix – The Event Heap Wire Protocol

Semantics for Tuple Transfer

A tuple is the main unit of information transfer for the Event Heap. Conceptually each tuple is an

unordered collection of fields, where each field is characterized primarily by its type, name, and

post value and template value. Each tuple is transferred as a serialized byte array-- this allows

each tuple to be read off the socket in one chunk, deferring parsing of tuple content until later.

Sending Serialized Tuple

1. Write the length of the serialized tuple (as an Int)

2. Write the serialized byte array

Serializing Tuple to a Byte Array

1. Write the tuple serial number (as an Int). Serial numbers are uniquely assigned to each

new tuple written to an Event Heap server. The serial number zero indicates the tuple has

never been on an Event Heap server.

2. Write the number of fields (as an Int)

3. Write each Field to the byte array

Note: Fields that have both post-values and template-values that are 'VIRTUAL' are known as

pure virtual fields (i.e. the field is ignored in matching both when the tuple is posted and when it

is used as a template). In this case, as an optimization, the field need not be transmitted, although

it is not a violation of semantics if it is sent.

Semantics for Field Transfer

Fields hold the main content of tuples, which are a collection of fields. Like tuples, they are

transferred as a serialized byte array allowing deferment of content parsing. This is useful since

the server can avoid parsing fields that it never needs to access (namely those which never get

used in any matching). Since the field name is a key value, it is transmitted before the serialized

byte array. Full semantics of the various sub-fields of a field are discussed elsewhere (including

in the Javadoc API documentation for the Java reference implementation).

Sending Serialized Field and Field Name

1. Write the name of the Field (as a UTF-8 String).

2. Write the length of the coming byte array (as an Int).

Appendix – The Event Heap Wire Protocol 5

3. Write the serialized field as a byte array.

Serializing Field to a Byte Array

1. Write the Field type (as a UTF-8 String). This is used to indicate the data type of this

field. Valid possibilities are:

• "boolean", "int", "long", "float", "double", "string":

o These are the standard data types that all implementations will be expected to

understand.

• "EHJava.{Fully qualified Java class name}":

o "EHJava." concatenated to the beginning of a valid Java class name indicates

the field values will be Java objects of the given class

• "[other platform qualifier].{fully qualified class name}":

o "[other platform qualifier]." concatenated to the beginning of a class

identifier for that platform indicates that the field values will be objects of the

given type in that language (e.g. "c_obj.transform_matrix"). Currently no

other platforms besides Java are defined, but compliant implementations

must be able to detect fields containing such data and move them around

with the tuple undisturbed.

2. Write the post value of the field (see Semantics for Value Transfer)

3. Write the template value of the field (see Semantics for Value Transfer)

Semantics for Value Transfer

A value contains the actual data for a field. Values are used for both the 'post value' and 'template

value' sub-fields. Again, full details of the semantics of possible values are discussed elsewhere,

including in the Javadoc API documentation from the Java reference implementation.

1. Write a byte value which is one of the following:

• ACTUAL=0: The field contains an actual object value which will follow.

• FORMAL=1: The value is formal and matches any field with the same name and

type regardless of value.

6 Appendix – The Event Heap Wire Protocol

• VIRTUAL >= 2: The value is virtual, and the field containing it is never sent

when it is being used (i.e. if a tuple is posted and one of its fields has a post value

that is VIRTUAL, that field will not be sent). The only time VIRTUAL will be

seen is in the non-used field value when the used value is non-virtual (i.e. if the

template value is formal, a post value of virtual may be sent along with it). All

values greater than 2 are considered virtual, but individual clients may use

different values in this range to indicate subtle differences in types of virtual

values (e.g. the Java version uses 3 to indicate the field value is automatically set,

and 4 to indicate that it is automatically set but may be overridden by the

application using the library).

2. Write the value if the value is ACTUAL:

a. Write a boolean which is 'true' if the value to come is NULL (in which case no

further bits will follow), or false otherwise.

b. If the value is non-NULL

i. If field type is one of the fundamental types, a value in the format for that

type is written (see boolean , int , long , float , double , string)

ii. If the field type is a non-fundamental type (platform specific):

1. Write the length of the coming byte array (as an Int).

2. Write the serialized value as a byte array.

Note: For non-fundamental types, the format of the serialized value is implementation dependent.

Transfer of Fundamental Types

Int - four bytes, high byte first. •

•

•

•

•

Long - eight bytes, high byte first

Float - the floating-point argument according to the IEEE 754 floating-point "single

precision" bit layout, transmitted as four bytes, high byte first.

Boolean - one byte. true is given by a non-zero value (normally 1), false is given by 0.

Double - the floating-point value according to the IEEE 754 floating-point "double

format" bit layout, transmitted as eight bytes, high byte first.

Appendix – The Event Heap Wire Protocol 7

Byte - 8-bits •

• UTF-8 String:

1. Write two bytes indicating the length of the coming string (high byte first).

2. Write each character:

a. If a character c is in the range \u0001 through \u007f, it is represented by

one byte:

� (byte)c

b. If a character c is \u0000 or is in the range \u0080 through \u07ff, then it

is represented by two bytes, to be written in the order shown:

� (byte)(0xc0 | (0x1f & (c > > 6)))

� (byte)(0x80 | (0x3f & c))

c. If a character c is in the range \u0800 through \uffff, then it is represented

by three bytes, to be written in the order shown:

� (byte)(0xc0 | (0x0f & (c > > 12)))

� (byte)(0x80 | (0x3f & (c > > 6)))

� (byte)(0x80 | (0x3f & c))

Event Heap Server Invocation Specification

The Event Heap server invocation specification explains what information is sent in the wire

bundles (defined in the Wire Bundle Protocol section) to actually execute commands on a running

Event Heap server. Specifically it discusses how the return and destination tags, sequence info

and tuple objects are used.

Tuple Matching

As can be inferred from the wire bundle protocol for tuples, a tuple is a set of fields, each of

which has a name, a type, a post value and a template value. Tuples, when placed into the Event

Heap as events (see Events versus Tuples), have the post values for their fields active. Tuples

passed to the Event Heap as template events in a retrieval call have the template values for their

fields active.

8 Appendix – The Event Heap Wire Protocol

Field values can be one of several different things:

•

•

•

•

•

•

Formal: This value matches any non-virtual value in a comparison tuple. This is

equivalent to saying the field is a wild card field.

Virtual: This field is inert and will be ignored in any matching, as if it doesn't exist. If

both post and template values are virtual, Event Heap clients may omit the field in

posting it to the Event Heap to save bandwidth. Its use is primarily for specifying

optional fields without forcing them to be sent to the Event Heap when they are unused..

Value: An actual value for the field that matches the type of the field.

When a retrieval call is made, the tuples passed with the call are used to match against tuples in

the Event Heap, called comparison tuples. A template tuple can match a comparison tuple if and

only if every field in the template tuple with a non-virtual template value is present in the

comparison tuple. Beyond this, every field in the template tuple that has a non-virtual template

value must have its template value match the post value in the equivalent field in the comparison

tuple, where equivalency is determined by field name. Fields match if one or more of the

following is true:

The template tuple field's template value is formal.

The comparison tuple field's post value is formal.

The template tuple field's template value and the comparison tuple field's post value are

both actual, and are equivalent.

Events versus Tuples

In the wire bundle protocol only tuples are referenced. This is because the wire bundle protocol

was designed to be suitable for communication of any collection of name, type, value fields.

Events are a specific type of tuple with required fields that obey certain semantics. This session

details the required fields and the semantics.

The following tables detail the reserved fields:

Appendix – The Event Heap Wire Protocol 9

Name Type Post Value Template
Value

Can be
Overridden? Description

EventType String INVALID_EVENT Formal Must be
overridden∗

In general, all events must
have an event type. All
events of the same type
should contain the same
minimum set of additional
fields beyond the standard
ones (but may contain
additional fields beyond the
minimum set).

TimeToLive Integer 120000 ms Formal Post value
only.

The amount of time after
placement in the Event
Heap until the event expires
and becomes no longer
retrievable.

Source String
Set to Source of
EventHeap object
on posting

Formal Template
value only.

Indicates which EventHeap
object placed this event into
the Event Heap. Only one
Source of a given name may
be active in an Event Heap
at one time.

Target String Formal

Set to
Source of
EventHeap
object on
template
submission.

Yes.
The name of the of the
Event Heap source for
which this event is intended.

SourceApplication String
Set to Application
of EventHeap object
on posting.

Formal Template
value only.

The name of the application
which generated this event.
Event Heap clients will try
to generate this
automatically if it is not
specified.

TargetApplication String Formal

Set to
Application
of
EventHeap
object on
template
submission.

Yes.
The name of the application
for which this event is
intended.

(Table Continued on next page)

∗Both template and post values must be overridden to be the same.

10 Appendix – The Event Heap Wire Protocol

(Continued from previous page)

Name Type Post Value Template
Value

Can be
Overridden? Description

SourceDevice String
Set to Device of
EventHeap object
on posting.

Formal Template
value only.

The name of the device
which generated this event.
Event Heap clients will
generate this automatically
from the DNS name or IP
address of the device if it is
not specified.

TargetDevice String Formal

Set to
Device of
EventHeap
object on
template
submission.

Yes. The name of the device for
which this event is intended.

Table 1- Required Fields for Event Heap Events

Name Type Post Value Template Value Can be
Overridden? Description

SourcePerson String

Virtual, or set to
Person of
EventHeap
object, if non-
null, on posting.

Virtual Template
value only.

The person most directly
responsible for the generation
of this event, if known. This
may be specified using the
appropriate method call to the
EventHeap client object.

TargetPerson String Formal

Virtual, or set to
Person of
EventHeap object,
if non-null, on
posting.

Yes. The person for whom this
event is intended.

SourceGroup String

Virtual, or set to
Group of
EventHeap
object, if non-
null, on posting.

Virtual Template
value only.

The group which generated
this event. This may be
specified using the
appropriate method call to the
EventHeap client object.

TargetGroup String Formal

Virtual, or set to
Group of
EventHeap object,
if non-null, on
template
submission .

Yes. The group for whom this
event is intended.

Table 2- Optional Fields for Event Heap Events

Appendix – The Event Heap Wire Protocol 11

Name Type Post Value Template Value Can be
Overridden? Description

SessionID Integer Set by EventHeap
object on posting. Virtual No. Used for event

sequencing.

SequenceNum Integer Set by EventHeap
object on posting. Virtual No. Used for event

sequencing.

EventHeapVersion Integer

Set to Event Heap
version of
EventHeap object
on posting.

Set to Event Heap
version of
EventHeap object
on posting.

No.

Used to insure event
compatibility and
allow for event
versioning.

Table 3- Internal Use Fields for Event Heap Events

Event Heap Client Responsibilities

An Event Heap client has several other responsibilities beyond just packaging up arguments of

method calls and forwarding them to the server in wire bundles. Specifically, they are:

•

•

•

•

For each EventType received at that client, the client must maintain a list of all sources

(based on source field) from which events of the given type have been received. For each

of these sources, the SessionID and SequenceNum values from the most recently

received event must be stored. Whenever a sequenced event retrieval operation is

executed, this sequencing information must be packaged up into the sequence info

portion of the wire bundle. The sequence info needs to be sent only for event types

represented in the template events being used in the sequenced retrieval call.

The client should insure that all events which it submits to the Event Heap server, either

for placement, or to be used as templates, must include all required fields, and those

fields must be set in valid fashion (see Events versus Tuples).

Each client instantiation within a single running application is strongly recommended to

maintain a single connection to the Event Heap server. If multiple client instances are

instantiated within the application, they should have unique Source names, but make their

calls through the same socket.

The client must maintain Source, Application, Device, Group and Person values for each

client instance. These values should be used to fill in fields that are supposed to be

automatically set as specified in 'Events versus Tuples'. Source should be a unique value,

and it is suggested that a random integer be attached to either the application name or the

user specified source name to insure this is so. Group and Person are optional, and if

they are not specified by the application through the appropriate API calls, their

associated fields may be omitted at the time the wire bundle is formed and sent.

12 Appendix – The Event Heap Wire Protocol

•

•

When sending an event in a wire bundle, clients may strip out any field that has both post

value and template value set to virtual. Such fields are known as pure-virtual.

Clients should automatically reconnect to the server anytime the connection goes down.

This insures that both Event Heap client applications and the Event Heap server itself can

be independently restarting without requiring the other to do so.

Event Heap Server Responsibilities

The server is responsible for handling all of the Event Heap server operations specified here by

receiving appropriately formatted wire bundles and responding as required. The server must also

assign each event placed into the Event Heap with the putEvent call an ID unique to the

instantiation history of the server. This must be assigned even if the event being placed was

formerly removed from the Event Heap and already has an ID. This ID can then be used by the

server to uniquely determine which event to delete in the case of a deleteEvent call.

Event Heap Server Operations

General Usage

The general call response protocol is asynchronous. A client sends some request bundle to the

server, and the response from the server will arrive at some later time. The client should in

general not block until the response arrives, since especially in the case of blocking retrieval

operations, the response may not come until the conditions required to meet the request are

satisfied (e.g. a blocking retrieve won't return until the appropriate event to be retrieved arrives at

the server). In general this is the case for multi-threaded clients who can handle multiple

simultaneous outstanding requests to the server. In the case of a single threaded client, the client

will need to block always until the return wire bundle for the request is received. This is not a

problem as long as the client insures they only have one request out at a time.

Appendix – The Event Heap Wire Protocol 13

In general, here are how the wire bundle fields are used:

Wire Bundle Field Usage for Request from Client
to Server

Usage in Response from Server
to Client

Destination Tag

The server opcode for the desired
Event Heap operation (see the rest
of this section of the
specification).

The return tag field from the
request that caused this response to
be generated. Note that this means
that clients can use whatever
routing scheme they wish by
setting their return tag in the
original request. When they
receive the response they can look
at the destination tag they
themselves generated and use that
information to get the actual
request contents to the appropriate
application thread.

Return Tag
The tag for the server to use in the
destination tag field when
responding to this request.

Empty, or may contain back
channel information for some calls.

Sequence Information

Used only for sequenced retrieval
operations. Contains information
on what events have already been
seen by the client that is used by
the server to determine which
events are valid to return to the
client. See Event Heap Client
Responsibilities for more
information.

Empty

Tuple Objects

The set of events which are
parameters to be used by the
Event Heap server in executing
the request. Note that while the
wire bundle allows tuples here,
events must be used when
communicating with an Event
Heap server. See Events versus
Tuples for more information.

One of two things:
A set of one or more events which
satisfy a retrieval request operation
to which this wire bundle is the
response.
Null if the retrieval request
operation that caused this response
found no matching events currently
in the Event Heap, or the request
operation that generated this
response gets an ACK only.

Table 4- Meanings of Wire Bundle Fields

Single Returned Event

These operations are all retrieval calls that result in a wire bundle being returned with a single

event that matches one or more of the events passed as template events in the request wire bundle.

14 Appendix – The Event Heap Wire Protocol

getEvent

Operation
Meaning:

Get an event currently stored on the server that satisfies template value fields of one or
more of the events included in the request. Retrieved events will satisfy the
sequencing constraints derived from the sequence information included in the wire
bundle. The retrieved event will remain in the Event Heap for others to retrieve.

Expected Response
from Server:

A wire bundle with exactly one event that matches one or more of the events passed as
templates subject to the constraints of the passed sequencing information. Zero events
will be returned if no matching event is in the Event Heap at the time the request is
received.

Destination Tag: getEvent
Sequence Info
Needed? Yes (see Event Heap Client Responsibilities)

Meaning of
included Events:

The template value fields in each included event will be used to try and find a match
among existing events (see Tuple Matching).

Table 5- getEvent Operation Description

removeEvent

Operation
Meaning:

Remove an event currently stored on the server that satisfies template value fields of
one or more of the events included in the request. Retrieved events will satisfy the
sequencing constraints derived from the sequence information included in the wire
bundle. The retrieved event will be removed from the Event Heap, so no others may
retrieve it after this call returns.

Expected Response
from Server:

A wire bundle with exactly one event that matches one or more of the events passed as
templates subject to the constraints of the passed sequencing information. Zero tuples
will be returned if no matching event is in the Event Heap at the time the request is
received.

Destination Tag: removeEvent
Sequence Info
Needed? Yes (see Event Heap Client Responsibilities)

Meaning of
included Events:

The template value fields in each included event will be used to try and find a match
among existing events (see Tuple Matching).

Table 6- removeEvent Operation Description

Appendix – The Event Heap Wire Protocol 15

waitToRemoveEvent

Operation
Meaning:

Remove an event currently stored on the server that satisfies template value fields of
one or more of the events included in the request. Retrieved events will satisfy the
sequencing constraints derived from the sequence information included in the wire
bundle. The retrieved event will be removed from the Event Heap, so no others may
retrieve it after this call returns. In the case when no event is found, the incoming
event which eventually satisfies the request will not be placed into the Event Heap.

Expected Response
from Server:

A wire bundle with exactly one event that matches one or more of the events passed as
templates subject to the constraints of the passed sequencing information. If no event
is found in the Event Heap at request submission time, the server will monitor events
coming into the Event Heap, and return the response wire bundle when the first
incoming event matching one or more of the template events in the request is found.

Destination Tag: waitToRemoveEvent
Sequence Info
Needed? Yes (see Event Heap Client Responsibilities)

Meaning of
included Events:

The template values of the fields in each included event will be used to try and find a
match among existing events (see Tuple Matching). If no matching event is found at
request time, all incoming events will be checked against the template values of the
fields for each event, and after the first matching incoming event is found, it will be
returned to the requester, having not been placed into the Event Heap.

Table 7- waitToRemoveEvent Operation Description

waitForEvent

Operation
Meaning:

Get an event currently stored on the server that satisfies template value fields of one or
more of the events included in the request. Retrieved events will satisfy the
sequencing constraints derived from the sequence information included in the wire
bundle. The retrieved event will remain in the Event Heap for others to retrieve, or in
the case that no event is initially found, the incoming event which eventually satisfies
the request will be both returned to the requester and placed into the Event Heap.

Expected Response
from Server:

A wire bundle with exactly one event that matches one or more of the events passed as
templates subject to the constraints of the passed sequencing information. If no event
is found in the Event Heap at request submission time, the server will monitor events
coming into the Event Heap, and return the response wire bundle when the first
incoming event matching one or more of the template events in the request is found.

Destination Tag: waitForEvent
Sequence Info
Needed? Yes (see Event Heap Client Responsibilities)

Meaning of
included Events:

The template values of the fields in each included event will be used to try and find a
match among existing events (see Tuple Matching). If no matching event is found at
request time, all incoming events will be checked against the template values of the
fields for each event, and after the first matching incoming event is found, it will be
returned to the requester before being placed into the Event Heap.

Table 8- waitForEvent Operation Description

Multiple Returned Events

These operations return an array of events in the return wire bundle.

16 Appendix – The Event Heap Wire Protocol

snoopEvents

Operation
Meaning:

Retrieves all events currently stored on the server that satisfy the template value fields
of one or more of the events included in the request. Sequencing is ignored, and
copies of the retrieved events remain on the server.

Expected Response
from Server:

A wire bundle with all events that match one or more of the events passed as
templates. If no events are found, zero events will be returned

Destination Tag: snoopEvents
Sequence Info
Needed? No

Meaning of
included Events:

The template values of the fields in each included event will be used to try and find
matches among existing events (see Tuple Matching).

Table 9- snoopEvents Operation Description

getAll

Operation
Meaning: Returns copies of all events currently in the Event Heap. Sequencing is ignored.

Expected Response
from Server:

A wire bundle with copies of all events currently in the Event Heap, regardless of
sequencing constraints.

Destination Tag: getAll

Sequence Info
Needed? No

Meaning of
included Events: No events need be included, and any events sent are ignored.

Table 10- getAll Operation Description

Notification Streams

These operations register with the server to receive a stream of events. Instead of returning a

single wire bundle, the server will continue to return wire bundles, each with a matching event,

until a deregister operation (documented in the Void Calls section) is sent to the server with a

Return Tag that is the same as the one used for the initial registration call. All returned events

will use the same Return Tag. It is the responsibility of the client to insure that Return Tag is

unique for that client.

Appendix – The Event Heap Wire Protocol 17

registerForEvents

Operation
Meaning:

Causes each event put on the server, from the point of wire bundle receipt onward, that
matches the template value fields of one or more of the events included in the request
to be returned in a wire bundle to the client making the call. Sequencing is ignored,
and copies of the retrieved events remain on the server.

Expected Response
from Server:

A stream of wire bundles each with an event that matched one or more of the events
passed as templates. These bundles will continue to be sent by the server until
deregister is called.

Destination Tag: registerForEvents
Sequence Info
Needed? No

Meaning of
included Events:

The template values of the fields in each included event will be used to try and find
matches among existing events (see Tuple Matching).

Table 11- registerForEvents Operation Description

registerForAll
This call is intended primarily for logging and debugging applications.

Operation
Meaning:

Causes each event put on the server, from the point of wire bundle receipt onward, to
be returned in a wire bundle to the client making the call. Sequencing is ignored, and
copies of the retrieved events remain on the server.

Expected Response
from Server:

A stream of wire bundles each with a new event that was put onto the server. These
bundles will continue to be sent by the server until deregister is called.

Destination Tag: registerForAll

Sequence Info
Needed? No

Meaning of
included Events: No events need be included, and any events sent are ignored.

Table 12- registerForAll Operation Description

ACK Only

This call causes an ACK (a returned wire bundle containing no events) from the server, but no

returned events.

18 Appendix – The Event Heap Wire Protocol

putEvent

Operation
Meaning: Places the included event into the Event Heap.

Expected Response
from Server:

A wire bundle with destination tag set to the return tag in the putEvent request wire
bundle. All other fields will be empty. This bundle serves as an ACK from the server
that the put was successful.

Destination Tag: putEvent
Sequence Info
Needed? No

Meaning of
included Events:

A single event to be added to the Event Heap. The post values for the fields in the
event are used to match against the template values of fields in template events from
future retrieval calls. The template values are ignored (although they may be used by
a client application that retrieves this event).

Table 13- putEvent Operation Description

deleteEvent

Operation
Meaning:

Deletes the specified event from the Event Heap, after which it will no longer be
accessible by other Event Heap clients.

Expected Response
from Server: Nothing.

Destination Tag: deleteEvent
Sequence Info
Needed? No

Meaning of
included Events:

Must be a single event previously returned by the same Event Heap server. An
internally set ID is used by the server to determine which event to delete.

Table 14- deleteEvent Operation Description

clear

Operation
Meaning: Deletes all events currently in the Event Heap, after which it will be empty.

Expected Response
from Server: Nothing.

Destination Tag: clear
Sequence Info
Needed? No

Meaning of
included Events: No events need be included, and any events sent are ignored.

Table 15- clear Operation Description

Appendix – The Event Heap Wire Protocol 19

deregister

Operation
Meaning: Stops future wire bundles form being sent for a Notification Stream.

Expected Response
from Server: Nothing.

Destination Tag: deregister
Sequence Info
Needed? No

Meaning of
included Events:

A single event should be included with type "EHS_DeregisterEvent" and a string type
field named "StreamID" whose post value is set to the stream ID of the notification
stream to be deregistered.

Table 16- deregister Operation Description

Unknown Operations

To allow for expansion of the protocol without breaking old servers, servers must gracefully

handle unknown destination tags. If the return tag is set for a wire bundle request with unknown

opcode in the destination field, an ACK with return tag set to 'UNKNOWN' is sent. If there is no

return tag in the request, no response is given.

Expected Response
from Server:

If return tag in the request is non-null, a simple ACK wire bundle is sent with
destination tag taken from return tag and return tag set to 'UNKNOWN'. If return tag
in the request is null, no response is sent.

Destination Tag: Any not specified as a valid destination tag elsewhere in this document.

	Appendix – The Event Heap Wire Protocol
	Preface
	Overview
	The Wire Bundle Protocol
	Initial Hand-Shake and High-Level Protocol
	Semantics for WireBundle Transfer
	Semantics for SequenceInfo Transfer
	Semantics for SourceInfo Transfer
	Semantics for Tuple Transfer
	Sending Serialized Tuple
	Serializing Tuple to a Byte Array

	Semantics for Field Transfer
	Sending Serialized Field and Field Name
	Serializing Field to a Byte Array

	Semantics for Value Transfer
	Transfer of Fundamental Types

	Event Heap Server Invocation Specification
	Tuple Matching
	Events versus Tuples
	Event Heap Client Responsibilities
	Event Heap Server Responsibilities
	Event Heap Server Operations
	General Usage
	Single Returned Event
	getEvent
	removeEvent
	waitToRemoveEvent
	waitForEvent

	Multiple Returned Events
	snoopEvents
	getAll

	Notification Streams
	registerForEvents
	registerForAll

	ACK Only
	putEvent
	deleteEvent
	clear
	deregister

	Unknown Operations

