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Abstract

Direct volume rendering based on projective methods works by projecting, in visibility order, the polyhedral cells of a
mesh onto the image plane, and incrementally compositing the cell’s color and opacity into the final image. Crucial to
this method is the computation of a visibility ordering of the cells. If the mesh is “well-behaved” (acyclic and convex),
then the MPVO method of Williams provides a very fast sorting algorithm; however, this method only computes an
approximate ordering in general datasets, resulting in visual artifacts when rendered. A recent method of Silva et al.
removed the assumption that the mesh is convex, by means of a sweep algorithm used in conjunction with the MPVO
method; their algorithm is substantially faster than previous exact methods for general meshes.
In this paper we propose a new technique, which we call BSP-XMPVO, which is based on a fast and simple way of
using binary space partitions on the boundary elements of the mesh to augment the ordering produced by MPVO. Our
results are shown to be orders of magnitude better than previous exact methods of sorting cells.

Key Words and Phrases:Volume rendering, scientific visualization, finite element methods, depth ordering, volume
visualization, visibility ordering.

1. Introduction

Direct volume rendering based on projective methods, such as
Max et al.13 and Williams21, works by projecting the polyhe-
dral cells of a mesh onto the image plane, in visibility order,
and incrementally compositing the cell’s color and opacity into
the final image. Projective methods, as opposed to those using
ray tracing, have the advantage of being able to make extensive
use of graphics hardware, and have the potential of avoiding
aliasing artifacts.

Williams’ MPVO method assumes that the mesh is “well-
behaved” (acyclic and convex). For such meshes, it com-
putes a visibility order at interactive rates; however, if this
method is applied to general datasets, it only computes an
approximateordering, resulting in visual artifacts when ren-
dered. Traditionally, there has been a big performance gap be-
tween approximate visibility sorting techniques (e.g., based
on Williams’ MPVO algorithm21), and exact solutions (e.g.,
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based on Steinet al. 20). While approximate solutions pro-
vide reasonable results for “well-behaved” datasets, the arti-
facts they induce increase with the presence of non-convex
boundaries, and “badly-shaped” cells.

Recently, Silvaet al. 18 described XMPVO, a fast sort-
ing algorithm based on an extension of the MPVO algorithm.
They showed it is possible to generalize the MPVO algorithm,
which exploits the ordering implied by adjacencies within the
mesh, by simply augmenting the DAG created in Phase II of
the MPVO algorithm. Thus, their technique removes the re-
quirement of the MPVO algorithm that the mesh be convex.
The augmentation involves the use of a sweep plane method
to generate dependencies between external facets of the mesh.
The XMPVO algorithm is orders of magnitude faster than the
algorithm originally proposed by Steinet al. 20. For n cells,
with b boundary facets, XMPVO improves on Steinet al. by
dropping the sorting complexity fromO(n2) to O(b2 + n).
However, the speeds reported in Silvaet al.18 are still far from
those required to drive current high-performance 3D graphics
hardware.

In this paper, we propose a new technique, “BSP-XMPVO”,
which is an order of magnitude faster than that of Silvaet
al. 18. We get this speed-up by moving the XMPVO view-
dependent DAG augmentation, into a view-independentpre-
processing phase, based on constructing an appropriate binary
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space partition (BSP) tree on the set of boundary facets of the
mesh. By carefully utilizing the partial ordering information
implied by the BSP-tree, together with the MPVO ordering,
we are able to achieve an order of magnitude speed-up over
XMPVO.

2. Previous Work

An algorithm, called the “Meshed Polyhedra Visibility Order-
ing” (MPVO) algorithm, for visibility ordering the cells of
an acyclic convex mesh is described by Williams21. A sim-
ilar algorithm to the MPVO Algorithm was developed inde-
pendently by Max, Hanrahan and Crawfis13. Both algorithms
were based on the work of Edelsbrunner described in his paper
on the acyclicity of certain cell complexes10. The MPVO al-
gorithm runs in linear time and uses linear storage. Williams21

also described a heuristic, called the MPVONC algorithm,
which sorts the cells of acyclicnon-convexmeshes of con-
vex cells,i.e. meshes with cavities and/or voids. This heuris-
tic generates an exact sorting of the cells only if noboundary
anomaliesare present. The MPVONC algorithm, in practice,
is linear in time for most meshes. For some important classes
of meshes (e.g., rectilinear meshes and Delaunay meshes10), it
is known that a visibility ordering always exists, with respect
to any viewpoint. If the visibility ordering graph has cycles for
a given viewpoint, then no visibility ordering exists. It is an
important problem to find a small number of “cuts” that parti-
tion the cells so as to eliminate such cycles; see2; 7. The binary
space partition (BSP) tree algorithm11, which is typically used
to depth-sort polygons, is not suitable for visibility ordering
large polyhedral meshes, since the splitting planes can readily
cause an unacceptable increase in the number of polyhedra.
(Paterson and Yao16 have shown the a BSP of objects in space
can have quadratic worst-case complexity; while this growth
is typically not experienced in practice, even a constant-factor
increase in the number of cells of the mesh is unacceptable for
large volumetric datasets.) An A-buffer6 is also not suitable
for visibility ordering large meshes for volume rendering be-
cause there are too many transparent cells at each pixel, mak-
ing memory requirements prohibitive with current hardware.

Steinet al.20 describe an algorithm for visibility ordering an
arbitrary collection of acyclic non-intersecting convex polyhe-
dra. This algorithm runs in timeO(n2) (worst case) forn arbi-
trarily shaped, non-intersecting convex polyhedra with planar
faces, whose visibility ordering does not contain cycles. The
faces of adjacent cells need not be aligned, and the meshes
may have disconnected portions. The algorithm is effectively
a 3D generalization of the Newell, Newell and Sancha sort for
polygons14; 15. Williams et al. 22 describe a correction and an
optimization to the original Stein algorithm. Even with the op-
timization, this algorithm does not run in interactive time,e.g.
it requires on the order of 3 minutes to sort 200,000 cells and
15 minutes to sort 1,000,000 cells, on an SGI Power Onyx us-
ing an R10000 194 MHZ CPU. (See the results in Section 5.)
Another related visibility-ordering technique based on Newell,
Newell and Sancha is described by Snyder and Lengyel19.

Theoretical results on exact visibility ordering are described

by de Berg, Overmars, and Schwarzkopf4, who give an al-
gorithm requiring worst-case timeO(n4=3+ε) (for any fixed
ε> 0) for determining an ordering or reporting that none exists
(because of a cycle in the “behind” relation). Their algorithm
utilizes a general framework for computing and verifying lin-
ear orders extending implicitly defined binary relations and
it relies on the rather complicated dynamic data structure of
Agarwal and Matoušek1, which detects intersections between
line segments in space and “curtains” (shadow surfaces cast by
segments). Although not readily implemented, the theoretical
significance of this work is that it shows that it is possible to
determine, insubquadratic worst-case time, if a linear order-
ing exists, while avoiding the computation of the full behind
relation (which is worst-case quadratic in the number of ob-
jects being ordered).

Karasicket al. 12, building on the earlier work of Edels-
brunner, describe a linear expected time algorithm for sort-
ing the cells of 3DDelaunay meshes(the Delaunay tetrahe-
dralization of some set of discrete points). Their algorithm is
based on sorting the cells by their “powers”. While this ap-
proach is elegant and efficient, many unstructured and curvi-
linear meshes encountered in scientific visualization are not
Delaunay meshes. A related technique for sorting cells using
“power diagrams” is described in Cignoni and De Floriani8.

3. Preliminaries

We begin with some basic definitions. Apolyhedronis a closed
subset ofℜ3 whose boundary consists of a finite collection of
convex polygons (2-faces, or facets) whose union is a con-
nected 2-manifold. Theedges(1-faces) andvertices(0-faces)
of a polyhedron are simply the edges and vertices of the polyg-
onal facets. A convex polyhedron is called apolytope. A poly-
tope having exactly four vertices (and four triangular facets)
is called asimplex(tetrahedron). A finite setS of polyhedra
forms amesh(or anunstructured grid) if the intersection of
any two polyhedra fromS is either empty, a single common
edge, a single common vertex, or a single common facet of
the two polyhedra. The polyhedra of a mesh are referred to as
thecells(or 3-faces). We say that cellC is adjacentto cellC0

if C andC0 share a common facet. The adjacency relation is
a binary relation on elements ofS that defines anadjacency
graph.

A facet that is incident on only one cell is called abound-
ary facet. We letB denote the set of boundary facets ofS. A
boundary cellis any cell having a boundary facet. The union
of all boundary facets inB is theboundaryof the mesh. If the
boundary of a meshS is also the boundary of the convex hull
of S, thenS is called aconvexmesh; otherwise, it is called a
non-convexmesh. If the cells are all simplicies, then we say
that the mesh issimplicial.

The input to our problem will be a given meshS, having
convex cells, but arbitrary boundary. We letc denote the num-
ber of connected components ofS. If c= 1, the mesh iscon-
nected; if c> 1, the mesh isdisconnected. We letn denote the
total number of edges of all polyhedral cells in the mesh. Then,
there areO(n) vertices, edges, facets, and cells. For some of
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our discussions, we will be assuming that the input mesh is
given in a standard data structure for cell complexes (e.g., a
facet-edge data structure9), so that each cell has pointers to its
neighboring (incident) cells, and basic traversals of the bound-
ary edges of facets are also possible by following pointers. If
the raw data does not have this topological information already
encoded in it, then it can be obtained by a preprocessing step,
using basic hashing methods, in worst-case timeO(nlogn).

We letv denote the viewpoint and letρu denote the ray from
v through the pointu. We say that cellsC andC0 areimmedi-
ate neighborswith respect to viewpointv if there exists a ray
ρ from v that intersectsC andC0, and no other cellC00 2 S
has a nonempty intersectionC00 \ ρ that appears in between
the segmentsC\ρ andC0 \ρ alongρ. Note that ifC andC0

are adjacent, then they are necessarily immediate neighbors.
Further, in a convex mesh, theonly pairs of cells that are im-
mediate neighbors are those that are adjacent.

A visibility ordering (or depth ordering), <v, of a meshS
from a given viewpoint,v 2 ℜ3 is a total (linear) order onS
such that if cellC 2 S visually obstructs cellC0 2 S, partially
or completely, thenC0 precedesC in the ordering:C0 <v C. A
visibility ordering is a linear extension of the binarybehindre-
lation, “<”, in which cellC0 is behindcell C (writtenC0 <C)
if and only if C andC0 are immediate neighbors andC at least
partially obstructsC0; i.e., if and only if there exists a rayρ
from the viewpointv such thatρ\C 6= /0, ρ\C0 6= /0, ρ\C
appears in betweenv and ρ\C0 along ρ, and no other cell
C00 intersectsρ at a point betweenρ\C andρ\C0. A visi-
bility ordering can be obtained in linear time (by topological
sorting) from the behind relation,(S;<), provided that the di-
rected graph on the set of nodesSdefined by(S;<) is acyclic.
If the behind relation induces a directed cycle, then no visi-
bility ordering exists. We assume that our input meshShas a
visibility ordering.

A Binary Space Partitioning tree (BSP-tree) is a data struc-
ture that represents a hierarchical convex decomposition of a
given space (in our case,ℜ3). See5; 11; 17. Each nodeν of a
BSP-treeT corresponds to a convex polyhedral region,P(ν),
of ℜ3; the root node corresponds to all ofℜ3. Each non-
leaf nodeν also corresponds to a plane,h(ν), which parti-
tions P(ν) into two subregions,P(ν+) = h+(ν)\P(ν) and
P(ν�) = h�(ν)\P(ν), corresponding to the two children,ν+
andν�, of ν. Here,h+(ν) (resp.,h�(ν)) is the halfspace of
points above (resp., below) planeh(ν).

Typically, a BSP-tree is built with respect to a given set
of objects (e.g., polygons or polyhedra), with the construc-
tion proceeding recursively until some stopping criterion is
met (e.g., that the regionP(ν) contains portions of at mostk
objects, for some integerk� 1). Often, then, the partitioning
planes are restricted to be from among those planes that sup-
port (contain) facets of the polyhedral objects; such BSP-trees
are calledauto-partition BSP-trees. Fuchset al. 11 demon-
strated that BSP-trees can be used for visibility ordering a set
of objects (or, more precisely, an ordering of the fragments
into which the objects are cut by the partitioning planes). The
key observation is that the structure of the BSP-tree permits a
simple recursive algorithm for “painting” the object fragments

from back to front: If the viewpoint lies in, say, the positive
halfspaceh+(ν), then we (recursively) paint first the fragments
stored in the leaves of the subtree rooted atν�, then the object
fragmentsS(ν) � h(ν), and then (recursively) the fragments
stored in the leaves of the subtree rooted atν+.

4. The BSP-XMPVO Algorithm

The goal of our BSP-XMPVO algorithm is to obtain a valid
visibility ordering of the cells of the meshS, assuming such
an ordering exists. In order to do this efficiently, we build on
the idea of the MPVO method, utilizing the simple-to-compute
partial order induced by the adjacency graph of the mesh. We
augment this partial order with additional dependencies, in-
duced by the boundary facets of the mesh, in order to be able
to complete it into a total order. The main idea of the BSP-
XMPVO algorithm is to utilize the BSP-tree of the setB of
boundary facets in order to determine these extra dependen-
cies efficiently.

The MPVO algorithm of Williams21 works by construct-
ing (in preprocessing) the (undirected) adjacency graphG of
the meshS, and then, for any given viewpointv, determining
the corresponding orientation of each undirected edge ofG ,
so that the directed edge points fromC0 towards a neighbor-
ingC if C0 lies behindC (a test that is simply an evaluation of
the viewpoint with respect to the plane equation for the shared
facet betweenC andC0). In this case, we writeC0 <ADJ C, in
order to indicate the dependency, implied by adjacency, thatC0

must precedeC in a visibility ordering of cells. The resulting
directed graph defines a partial ordering (<ADJ) of cells; topo-
logical sorting (in linear time) then produces a total ordering
that yields the desired visibility ordering.

The correctness of the MPVO algorithm depends, however,
on the mesh being convex. In the absence of these assump-
tions, there are additional dependencies that exist among cells
of Sthat are not captured by the directed adjacency graph. For
example, in Figure 1, a two-dimensional example is given to
illustrate some basic principles. There, it is seen that cell 10
lies behind cell 5, and cell 11 lies behind cell 10, but neither of
these dependencies is implied by the adjacency relation<ADJ.
(Indeed, the cells lie in distinct connected components of the
mesh.)

In order to augment the ordering information given by the
directed adjacency graph, we build a BSP-tree,T , using an
auto-partitioning of the setB of b = jBj boundary facets of
S. Specifically, our construction algorithm uses the common
heuristic of selecting a partitioning plane, passing through a
facet ofB, that minimizes the number of elements ofB within
the regionP(ν) that are split. (Our actual implementation does
not examine all possible cuts, but rather selects a small num-
ber (e.g., 10) of candidate cuts at random, and picks the best
among these.) We letB0 denote the set of facet fragments in-
duced byT .

It is known (e.g., see16; 5) that the size of the BSP-tree
(or, equivalently, the numberb0 = jB0j of facet fragments) is
quadratic (Θ(b2)) in the worst-case; however, in most realis-
tic situations (e.g., under assumptions of “fatness” of a set of
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Figure 1: Example of a two-dimensional mesh, with 5 connected components. Dashed lines show the cuts in a BSP-tree, shown on
the right. The viewpoint is assumed to be above and far away, so that the view direction is downward. The BSP-tree has been drawn
so that the right child is explored before the left child, for this particular view direction. Thus, the BSP-tree traversal proceeds in
the order A;B;C; : : : ;S.

objects3), BSP-trees tend to exhibit near-linear complexity.
Thus, we expect thatb0 = O(b), in practice, and that the con-
struction time forT is also near-linear inb. Further, we expect
b to be much less thann (the total number of cells inS), in
practice. (For a regular grid, one expectsb= O(n2=3).) Thus,
we expect a very low overhead for the computation ofT , both
in terms of memory and in terms of time.

Note that the BSP-treeT is cutting boundary facets into
fragments, but we are specificallynot partitioning any of the
3-cells of the mesh, as this would cost considerably more both
in terms of time and memory.

We now describe how the BSP-treeT allows us to de-
fine two other types of dependencies among cells. LetC be
a boundary cell ofS, having boundary facetc2 B that lies im-
mediately behindC with respect to the viewpointv. (In other
words, any ray fromv throughc passes through the interior of
C before exiting through facetc.) Let h denote the plane con-
taining facetc and letν be a node ofT that corresponds to
h. (There may be more than one such node, ifc is split into
fragments.) Then,h cuts the regionP(ν) into two regions,
P(ν+) = h+ \P(ν) andP(ν�) = h� \P(ν); without loss of
generality, assume thatv2 h+, which implies that alsoC2 h+

(sincec lies immediately behindC with respect tov). Then,
we define the following types of dependencies:

(a) We say that each boundary fragmentc0 on the boundary of
C defines aBSP-dependencyfor cell C, written c0 <BSPC.
The meaning of this dependency is that beforeC can be pro-
jected, each of its facet fragments (whether in front ofC or
behindC) must first be “projected.” Facet fragments are also
ordered according to the standard BSP-tree traversal for the

boundary setB; we say thatc0 <BSPc00, for facet fragments
c0 andc00, if c0 precedesc00 in the BSP-tree traversal (as in
the painter’s algorithm of11). In reality, we are not “project-
ing” these facet fragments; rather, we are defining these de-
pendencies so that we obtain implied dependencies among
3-cells.
In our traversal algorithm, at the instant that the last facet
fragment of a boundary cell is projected, we simultaneously
project that 3-cell.
For example, in Figure 1, cell 5 cannot be projected until
its (unique) facet fragment is projected, and, from the BSP-
tree traversal, this will not happen until all facet fragments
in the halfspace below plane “A” have been projected; in
particular, the two facet fragments of cell 10 must both be
projected before the facet fragment of cell 5. This guaran-
tees that cell 10 precedes cell 5 in our ordering, since cell
10 will be projected at the instant that its second (i.e., last)
facet fragment is projected.

(b) We say thatC0 has beenpartially projectedif at least one
(butnotall) of the facet fragments on the boundary ofC0 has
been projected; thus, by the BSP-dependencies, we know
thatC0 itself has not yet been projected, if it is partially pro-
jected, since it cannot be projected beforeall of its facet
fragments have been projected. We say that there is aPPC-
dependencybetween a 3-cellC0 and the 3-cellC, written
C0 <PPC C, if C0 has been “partially projected” at the time
that the BSP traversal algorithm examines nodeν, and cell
C0 lies behind cellC with respect to viewpointv. Our algo-
rithm maintains a list, the “PPC-list”, of the set of cells that
are currently partially projected.
For example, in Figure 1, the boundary fragments of cell 11
on planes “F” and “E” are the first two to be projected. At

c
 The Eurographics Association and Blackwell Publishers 1999.



Comba et al. / Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids

Algorithm BSP-XMPVO_traversal(node, vp)
/* The algorithm projects in back-to-front

order the part of the meshS
corresponding to BSP tree nodenode
with respect to the viewpointvp. */

1. if (node== NULL) then
2. return;
3. if (vp is in front plane)
4. BSP-XMPVO_traversal(back(node));
5. BSP-XMPVO_update_dep(node);
6. BSP-XMPVO_traversal(front(node);
7. else
8. BSP-XMPVO_traversal(front(node);
9. BSP-XMPVO_update_dep(node);
10. BSP-XMPVO_traversal(back(node));

Algorithm BSP-XMPVO_update_dep(node)
/* Updates the dependency counters

for the cells whose faces
lie onnode’s base plane. */

1. for (i = 0; i < numPPC; i++)
2. for ( j = 0; j < numCutCells(node); j++)
3. Check_update_ppc_dep_count(Ci ;Cj );
4. for (i = 0; i < numCutCells(node); i++)
5. Update_PPC(Ci );
6. for (i = 0; i < numCutCells(node); i++)
7. Decrem_bsp_dep_count(Ci );
8. if (num_inbound(Ci ) == 0) and
9. (bsp_dep_count(Ci ) == 0) and
10. (ppc_dep_count(Ci ) == 0)
11. enqueue(Ci );
12. MPVO_traverse();

Algorithm MPVO_traverse()
/* Modified MPVO traverse. */

1. while (deque(c) != false)
2. output(C);
3. for (i = 0; i < numFaces(C); i++)
4. if arrow(i, C) == INBOUND
5. continue;
6. Ci = neighbor(C, i);
7. Decrem_num_inbound(Ci );
8. if ((num_inbound(Ci ) == 0) and
9. (bsp_dep_count(Ci ) == 0) and
10. (ppc_dep_count(Ci ) == 0))
11. enqueue(Ci );

(a) (b) (c)

Figure 2: The complete BSP-XMPVO traversal algorithm. The node node of the BSP-tree is being projected. numCutCells(node)
is the number of cells with facets that are on the cutting plane associated with node. Ci is one of these cells. Its dependency counts
are given by: (i). num_inbound(Ci ), the number of INBOUND arrows remaining (i.e., the number of<ADJ-predecessors); (ii).
bsp_dep_count(Ci ), the number of BSP dependencies (i.e., the number of<BSP-predecessors); and (iii). ppc_dep_count(Ci), the
number of PPC dependencies (i.e., the number of<PPC-predecessors). Also, numFaces(C) gives the number of facets of cell C (e.g.,
4, in the case of a tetrahedron), and arrow(i, C) gives the type of the ith “arrow” for cell C (i.e., INBOUND if the neighbor is
behind C, OUTBOUND otherwise). Update_PPC(Ci) inserts or deletes Ci on the PPC list; Ci is inserted when it is first visited, and
bsp_dep_count(Ci ) > 1, and it is deleted when it is one (since it will be decremented to zero). At the time cell Ci is deleted from the
PPC, cells that have a dependency on it, are checked for potential projection with code similar to lines 8–11 in (b).

this point, cell 11 is partially projected and is the sole ele-
ment in the PPC-list. Then, as cells 7-10 are considered, cell
11 must be considered, as it generates a PPC-dependency;
this prevents any of cells 7-10 from being projected before
cell 11 is projected. The possibility that cell 11 generates
a PPC dependency for cell 6 is also considered when we
project the facet on planeC; however, it generates no PPC-
dependency, since cell 11 does not lie behind cell 6, with
respect to the viewpoint.

Note that, while we do not explicitly write the dependence
on v, each of the relationships<ADJ, <BSP, and<PPC is de-
pendent on the viewpoint.

Our BSP-XMPVO algorithm can be thought of as a means
of running in lock stepa BSP-tree traversal algorithm (on
boundary facets), together with the MPVO traversal algorithm
of Williams. Another interpretation is that we perform a topo-
logical sort, based on the partial order induced by the three
types of dependencies<ADJ, <BSP, and<PPC, which induce
a partial ordering on the setS[B0 of 3-cells and facet frag-
ments. As with standard topological sorting, we start by iden-
tifying those elements that have “in-degree” zero – these have
no dependencies and can be projected immediately. With each
projection of an element, we remove the dependencies that the
element had on other elements, as given by the relations<ADJ,
<BSP, and<PPC, each of which can be thought of as a di-
rected edge in a graph on the setS[B0 of cells and boundary
facet fragments. Our implementation is based on keeping three
separate dependency counters (num_inbound, bsp_dep_count,
andppc_dep_count), which give the number of dependencies

of each of the three types. Once all of the dependency coun-
ters hit zero, an element is projectable, and then updates are
made. Pseudo-code for the BSP-XMPVO traversal algorithm
is contained in Figure 2.

Note that we compute the PPC dependencies on an as-
needed basis. In order to speed up the test for PPC dependen-
cies, we use a simple bounding sphere test on a candidate pair
of cells, (Ci ;Cj ), in order to prune from consideration those
pairs whose corresponding cones are disjoint.

The technical justification for the BSP-XMPVO method
comes from two lemmas:

Lemma 1 The dependencies<ADJ, <BSP, and<PPC induce a
partial ordering on the setS[B0.

Proof.By definition, ifC<ADJ C0 or C<PPCC0, thenC is be-
hindC0; thus, a directed cycle could not consist purely of di-
rected edges corresponding to<ADJ and<PPC (by the acyclic-
ity assumed in the behind relation). Thus, a directed cycle, if
it exists, must contain edges of type<BSP. Assume that there
is such a cycle and letc0 be a facet fragment that corresponds
to a node in the cycle; in fact, assume thatc0 is the last such
facet fragment in the BSP-tree ordering given by the traversal.
(Such a “last” element exists, since the BSP traversal induces
a partial ordering on facet fragments.) Then, there exists a di-
rected path fromc0 to some other facet fragmentc00 (possibly,
c00 = c0) in the cycle, with this path containing a node corre-
sponding to a 3-cell; letC be the last such 3-cell. But this is a
contradiction, since the only directed edges defined by our de-
pendencies that are directedout of a 3-cell are those that link
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the 3-cell to another 3-cell (<ADJ or<PPC). We conclude that
there can be no directed cycle. ut

The second lemma asserts that the three dependencies that
our algorithm respects are sufficient for determining a visibil-
ity ordering:

Lemma 2 Any linear ordering that conforms with the depen-
dencies<ADJ, <BSP, and<PPC gives a valid visibility order-
ing of S.

Proof. Suppose that cellC0 lies behind cellC; i.e.,C0<v C. We
must exhibit a directed path within the directed graph induced
by<ADJ, <BSP, and<PPC, fromC0 toC. SinceC0 <v C, there
is a rayρ from the viewpointv that intersectsC beforeC0.
If the portion,rr 0, of the rayρ betweenρ\C andρ\C0 lies
within the union of the cellsS, then no boundary effects are
present, and there exists a directed path within the directed
adjacency graph, fromC0 toC, so we are done. Otherwise, the
segmentrr 0 exits the mesh and then reenters, at least once. Let
ab denote one such segment ofρ that lies outside the mesh,
with a the closer endpoint tov. Then,a lies on a boundary
facet fragment,c1, of a cellC1 such thatc1 <BSPC1, andb
lies on a boundary facet fragmentc2, of a cellC2 such that
C2 <BSP c2. If, at the time in the traversal that we visit the
node corresponding to planeh1 that containsc1, the cellC2 is
in the list of partially projected cells (the PPC-list), then we
know thatC2 <PPC C1, establishing the necessary link in the
partial ordering. Otherwise, at the time of visiting the node for
h1 the cellC2 has already been projected, and therefore alsoc2
(which precedesc1 in the ordering<BSP.) ut

Computational Complexity. In comparing the performance
of our algorithm to XMPVO, which takesO(b2 + n) time,
where b is the number of cells in the boundary; our technique
takes timeO(bp+n), wherep= jPPCj (since we need to ex-
amine all elements of the PPC-list each time we update de-
pendencies). The PPC actually changes as the algorithm pro-
gresses, but an upper bound on its size can be obtained by
counting the boundary cells which are cut by more than one
face of the BSP. These are exactly the cells that will be in-
cluded in the PPC. Fortunately, in practice the PPC-list does
not grow to be big (e.g., in our experiments reported below,
the PPC-list never grew above 0.3%, and averaged about 0.1%
of the elements), since most mesh elements tend to be well-
shaped and do not “spike in” behind other elements (as does
cell 11 in Figure 1). The fact thatp is most often less than 0.3%
of the total numbers of cells, and in general much smaller than
b (which can be 5%, or more of the total cells), makes our
algorithm essentially linear in the total number of cells. Fur-
ther, our bounding sphere-based test for possible dependen-
cies allows for a quick filtering of those PPC-list elements that
clearly are not behind the cell in question.

5. Results

The implementation of the BSP-XMPVO method is relatively
straightforward, due to the simplicity of the algorithm. In fact,

exclusive of the MPVO portion of the code, and the BSP-tree
generation, BSP-XMPVO consists of just 600 lines of C++
code.

To evaluate the performance of BSP-XMPVO, we ran a
battery of experiments. We measured basic statistics of the
BSP-tree construction (Table 2) and, of course, the time re-
quired to obtain a visibility sorting of the cells (Table 1).
We have experimentally validated the correctness of our code
by concurrently running the HIAC depth-witness-check code
of Williams et al. 22 during our cell projections. This check
projects the cells in the visibility order determined by our algo-
rithm and determines (by looking at the depth buffer) whether
a cell has been projected out of order.

Because of constraints in machine availability at this time,
we are forced to report timings on two separate machines: the
BSP-XMPVO and MPVONC times are reported on an IBM
RS/6000 43P, with a 333MHz PowerPC 604 processor (this
is a slower processor than the ones available on the high-end
PowerMacs), while all other times are on a single 194 MHz
R10000 CPU of an SGI Power Onyx, as in Silvaet al. 18. We
estimate the 43P to be slightly faster than the R10000 (between
10%-30%). We report results on three irregular grid datasets,
ranging in size from roughly 13,000 cells to a mesh of over
240,000 cells.

5.1. BSP-Tree Performance

Our BSP-tree construction method uses a simple heuristic
in an attempt to get reasonably small trees that, in practice,
avoid the known worst-case quadratic behavior. At every node,
we evaluate a small set of randomly chosen candidates, and
choose the cutting plane that minimizes the number of cuts
of the input data. As the number of candidates increases, so
does the BSP tree generation time. We have chosen to use 10
candidates as our default, as this provides us with enough flex-
ibility to avoid cutting many cells, while at the same time is
not overly costly in construction time. Figure 3 shows the ef-
fect of the BSP-tree generation on the boundary facets of the
13,000 cell dataset.

Table 2 summarizes our construction results for all of the
datasets. We feel it contains some interesting data. For in-
stance, there is no direct correlation between the number of
boundary faces and the depth of the BSP tree. The depth of
the BSP tree is more related to the complexity of the mesh
boundary (e.g., non-convexities). Our BSP tree construction
algorithm is working very well, as can be seen in the last col-
umn of the table. In the worst case, the number of BSP faces is
only two times the original number of boundary faces. This is
further justification of our choice of 10 candidates when con-
structing the trees.

Since BSP traversal time is dominated by the number of
nodes and not by the depth of the tree (as every node in the tree
is visited during each traversal), we decided to optimize the
construction for minimizing the number of unnecessary splits,
which has the side effect of increasing the depth of the tree.

c
 The Eurographics Association and Blackwell Publishers 1999.
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(a) (b) (c)

Figure 3: The boundary of the 13,000 cell complex: (a) shows the original boundary facets; (b) and (c) show two views of the
BSP-facets. The BSP cuts are apparent. In the center of (a) and (b), a hole which runs through the center of the mesh can be seen.

No. Cells Stein Sort Multi-Tiled Sort XMPVO MPVONC BSP-XMPVO

13,000 14 sec. 7.2 sec. 3.5 sec. 0.07 sec. 0.37 sec.

190,000 2,880 sec. 162 sec. 25 sec. 0.70 sec. 2.5 sec.

240,000 N/A 475 sec. 48 sec. 0.90 sec. 2.9 sec.

Table 1: Comparative timings, in seconds, for visibility ordering using five methods: (1) the sort reported in Stein et al.20, (2) the
multi-tiled sort of Williams et al.22, (3) the XMPVO algorithm of Silva et al.18, (4) the MPVONC algorithm of Williams21, and
(5) our BSP-XMPVO algorithm. The first three timings were performed on an R10000 CPU of an SGI Power Onyx; MPVONC and
BSP-XMPVO were timed on a 333MHz PowerPC 604. Note that BSP-XMPVO is an order of magnitude faster than XMPVO.

5.2. Visibility Sorting Times

We compare our results with the algorithm of Steinet al. 20,
the multi-tiled sort of Williamset al. 22, the XMPVO algo-
rithm of Silvaet al. 18, and MPVONC of Williams21. Table 1
summarizes our sorting times. We see that for all three (irreg-
ular) datasets, our BSP-XMPVO algorithm is over an order of
magnitude faster than the XMPVO algorithm, and almost as
fast as MPVONC. Compared to the other two approaches, our
method looks even more promising. We can sort about 80,000
cells per second.

6. Conclusion

In this paper, we have proposed a fast new method for visibil-
ity ordering unstructured grids. We have achieved an order of
magnitude improvement over the most recent improvements
of Silva et al. 18. The main innovation was the use of a coor-
dinated traversal algorithm, based on the MPVO ordering of
Williams 21, together with a carefully augmented traversal of
a BSP-tree based purely on the boundary facets of the mesh,
which led to an improvement in running time fromO(b2+n)
to O(bjPPCj+n), whereb is substantially larger thanjPPCj.

Our BSP-XMPVO method makes approximate visibility-
ordering techniques substantially less attractive as an option
for rendering irregular grids by projective methods. This helps

to close the gap between rendering regular and irregular grids,
which historically has shown a disparity of orders of magni-
tude in speed of rendering. It also opens up the possibility of
using irregular grids to approximate volumetric datasets de-
fined on regular grids, in much the same way that triangulated
irregular networks (TINs) have been used to approximate and
compress regular digital elevation map (DEM) datasets. We
are currently exploring this direction, as well as the paralleliza-
tion of our algorithm.
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Figure 4: Image computed with BSP-XMPVO of a 240,000-cell complex.

Figure 5: Image computed with BSP-XMPVO of a 190,000-cell complex.

Figure 6: Image computed with BSP-XMPVO of a 13,000-cell complex.
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