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Melting and Burning Solids into Liquids and Gases
Frank Losasso, Geoffrey Irving, Eran Guendelman, and Ron Fedkiw

Abstract— We propose a novel technique for melting
and burning solid materials including the simulation of
the resulting liquid and gas. The solid is simulated with
traditional mesh-based techniques (triangles or tetrahedra)
which enable robust handling of both deformable and
rigid objects, collision and self-collision, rolling, friction,
stacking, etc. The subsequently created liquid or gas is
simulated with modern grid-based techniques including
vorticity confinement and the particle level set method.
The main advantage of our method is that state of the art
techniques are used for both the solid and the fluid without
compromising simulation quality when coupling them
together or converting one into the other. For example, we
avoid modeling solids as Eulerian grid-based fluids with
high viscosity or viscoelasticity, which would preclude the
handling of thin shells, self-collision, rolling, etc. Thus,
our method allows one to achieve new effects while still
using their favorite algorithms (and implementations) for
simulating both solids and fluids, whereas other coupling
algorithms require major algorithm and implementation
overhauls and still fail to produce rich coupling effects
(e.g. melting and burning solids).

Index Terms— physically based modeling, melting, burn-
ing, solid, liquid, gas, phase change, Lagrangian mesh,
Eulerian grid, adaptive mesh.

I. INTRODUCTION

S IMULATIONS of water, smoke, and fire are be-
coming increasingly important in computer graphics

applications such as feature films, since it is often costly,
dangerous, or simply impossible to film the desired
interactions between these fluids and their surroundings.
These difficulties are exacerbated when the surrounding
environment is undergoing complex motion or destruc-
tive modification, making it advantageous to combine
fluid effects with simulations of rigid and deformable
objects. Ideally, one would like to simultaneously in-
corporate the full range of available fluid and solid
behaviors in a simulation including interactions between
different components. This leads naturally to the concept
of handling phase changes between solids and fluids.
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Historically, particle methods have been popular for
the physical simulation of both solids and fluids as well
as phase changes between them, and [1] applied them
to softening and melting behavior in graphics early on.
These methods avoid the need to maintain connectivity
information for the solid phase, which simplifies topo-
logical change and transition between different material
behaviors. Unfortunately, particle methods have not yet
reached the quality and efficiency of specialized tech-
niques for fluid or solid simulation. The lack of exact
topological information for solids makes collision and
self-collision problematic and thin sheets such as cloth
almost impossible to simulate. High particle densities are
typically required to achieve good accuracy for fluids,
and it is often difficult to generate a smooth renderable
surface from the resulting set of points. Moreover, while
there has been recent progress in specialized methods
for both solids (e.g. [2]) and fluids (e.g. [3]), researchers
have not yet coupled together the specialized treatments
devised for each. For example, [2] softens solids to the
point where they start to melt and flow, but does not
consider (or obtain) high quality particle based fluid
effects as in [3].

The aim of our approach is to couple the highest qual-
ity simulation techniques for fluids and solids together,
and thus we consider Eulerian grid-based techniques for
fluids and Lagrangian mesh-based techniques for solids
as in [4]. See also [5], although that method is not
applicable to the deformable or thin materials treated in
[4]. The opposite approaches of Lagrangian mesh-based
fluids and Eulerian grid-based solids typically have only
limited success, although there has been some interesting
recent work with high viscosity and viscoelastic fluids.
[6], [7] used high viscosity fluid to model melting and
flowing, and [8] compute elastic forces resisting defor-
mation by advecting a strain field along with the fluid.
While these techniques allow the simulation of a much
greater range of fluid phenomena, they do not support
accurate self-collision, rolling, etc. as a tetrahedral mesh
can, and cannot be applied to thin objects such as cloth.

For the fluid phase, we use state of the art simulation
techniques for smoke [9], water [10] and fire [11].
We use standard Lagrangian mesh-based techniques for
deformable objects (in particular [12]–[15]), except that
we embed the surface geometry of the object in a parent
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Fig. 1. A sheet of material constrained at its four corners catches fire. When the top corners burn away from the rest of the material, it
falls to the ground (121x193x121 grid, 13K triangles).

simulation mesh as in [16] to allow smooth erosion of
the surface during melting or burning. This is essentially
a free form deformation (FFD) [17]. For more on FFD’s
applied to simulation, see for example [18]–[22].

[23], [24] used level sets to model the erosion
of burning rigid objects (see also [25]), but did not
consider thin objects, deformable objects or melting. We
similarly use level set methods to simulate the erosion
of solid material, but desire a direct implementation on
the object’s tetrahedral or triangular simulation mesh in
material coordinates enabling the treatment of both thin
and deformable objects. In order to avoid the difficulties
associated with implementing level set algorithms on
tetrahedral and triangular meshes, we instead evolve
the level set on a background octree (or quadtree) grid
in material coordinates interpolating the results to the
simulation mesh. This allows us to directly leverage the
level set algorithms proposed in [26] for octree data
structures. The values of the level set function allow
us to regenerate the evolving embedded geometry when
necessary, and we use dynamic red-green refinement to
increase the resolution of the simulation mesh near the
boundary geometry as it changes over time. In fact,
due to the special structure of our red-green refinement,
the nodes of the simulation mesh correspond exactly
to a subset of the nodes of the octree grid reducing
interpolation to the trivial copying of data. Figure 1
shows examples of this technique applied to the burning
of a material sheet.

II. PREVIOUS WORK

[27] popularized the use of the incompressible three
dimensional Navier-Stokes equations in computer graph-
ics, and this work was subsequently extended with semi-
Lagrangian advection and vorticity confinement in [28]

and [9] respectively. Although it is not possible to discuss
all the varied research in this direction, variations have
been used to model fire [11], [29] and explosions [30],
[31] (with compressible flow in [32]), control [33], [34],
and flows on surfaces [35]. There is also the recent
work of [36] that hybridizes grid-based methods with
vortex particle techniques. Liquids have received a lot of
focused attention including the early work of [37], [38],
the particle and cell based approach of [39], [40], and
the hybridized particle and level set approaches in [10],
[41]. Additional work has been done on surface tension
[26], [42], control [7], [43]–[45], solid fluid coupling
[46], [47], contact angles [48], sand [49] and two phase
flow [50].

III. ERODING THIN SHELLS

We simulate solids as triangular or tetrahedral meshes,
and use standard element-based force computation and
collision algorithms properly adjusted for embedding
(see e.g. [16]). Since the solid is continuously eroding
into fluid during melting or burning, we need to dynami-
cally erode the mesh as material disappears while main-
taining a smooth surface for collisions and rendering.
Thus throughout the simulation, we adaptively refine the
boundary elements of the simulation mesh to improve
accuracy while preserving large elements elsewhere for
efficiency. For a thin shell such as cloth where every
element is on the surface requiring reasonable resolu-
tion, this adaptivity is primarily useful to resolve any
complicated features at the cloth’s edge (and was not
required for our examples). However, for volumetric
tetrahedral meshes, simulations are far more expensive if
the invisible interior of the object is not discretized with
larger elements. Since the algorithms and data structures
required for two dimensional shells are quite similar to
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Fig. 2. Red and green refinement of BCS triangles.

those for three dimensional volumetric solids, we focus
on the simpler case of thin shells first.

In order to support dynamic mesh adaptation, we begin
with the uniform body-centered square (BCS) triangular
lattice which is the two dimensional analog of the body-
centered cubic (BCC) lattice used in mesh generation by
[51], [52] (they also used red-green refinement similar
to what we propose here). The BCS lattice is given by
taking the vertices of a uniform square grid in space
together with the centers of each square (the vertices
of the dual grid), and placing four triangles in each
square by connecting the four edges to the center node
as shown in Figure 4 (upper left). We then perform
red-green refinement initially labeling all BCS triangles
as red. Any red triangle can then be red refined into
four red triangles of half the size as shown in Figure
2. The resulting smaller triangles are exactly the BCS
triangles from a grid of twice the resolution. After a
sequence of red refinements, T-junctions are removed
with green refinement which replaces a red triangle with
two green triangles of possibly lower quality (Figure 2).
Since we only allow one level of green refinement to
ensure high quality elements, the initial red refinement
is iterated until neighboring triangles are at most one
level apart and no triangle has more than one T-junction.
See Figure 4 (lower left) for an example of a red-green
refined mesh. Note that if a green triangle later requires
additional refinement, it and its sibling must be removed
and replaced with a red refinement of the parent red
triangle.

Fig. 3. A burning sheet of material rendered without the fire to
illustrate the smooth boundary of the solid (13K triangles).

Fig. 4. Starting with a uniform body-centered square mesh in
material space (upper left), we apply red-green refinement and discard
triangles completely outside the object (upper right). The simulation
is then performed on the red-green parent mesh (lower left). Level
set operations are performed by overlaying a quadtree grid on top of
the red-green structure, noting that each mesh vertex is also a node in
the quadtree grid (lower right). A major advantage of this approach
is that the front evolution is carried out on a quadtree mesh in the
two-dimensional material space even as the object deforms in three
spatial dimensions.

Since all triangles in a BCS mesh are aligned in a
Cartesian grid structure, refinement alone is not enough
to match a smooth boundary curve. [51], [52] solved
this problem by compressing the mesh to the boundary
before simulation. This is computationally infeasible in
the context of melting or burning, since it would have
to be performed after every step of the simulation.
Instead, we leave the simulation mesh unchanged, and
define the actual boundary of the object as the zero-
isocontour of a level set function which is stored on the
nodes of the simulation mesh. The surface of the object
can be extracted directly from the level set function
with marching triangles (the two-dimensional analog of
marching tetrahedra), and any simulation triangles lying
completely outside the level set can be removed. Figure
4 (upper right) shows the results obtained for a circular
piece of geometry.

With the ability to spatially adapt our mesh based
on the values of a level set function, simulating the
loss of solid material (to the liquid or gas phase) is
readily accomplished by smoothly increasing the nodal
values of the level set function (and remeshing on
the fly). However, calculating the change in level set
values due to combustion, phase change, etc. can be
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Fig. 5. A portion of the BCC lattice. The blue and the green connec-
tions depict the two interlaced grids, and the eight red connections
at each node lace these two grids together.

daunting on our adaptive red-green data structure, since
it typically requires the solution of partial differential
equations on an only partially structured non-Cartesian
BCS (or BCC) mesh. A key aspect of our approach is
to avoid the solution of partial differential equations on
arbitrary meshes with moving points, instead solving the
governing equations for level set evolution in material
space where the grid is static (i.e. grid points do not
move). Moreover, we solve these equations on a struc-
tured Cartesian background grid interpolating data back
and forth to the red-green simulation mesh. In fact, we
choose a quadtree grid that exactly matches the red-green
adaptive structure of the BCS mesh.

We emphasize that the match is exact, i.e., the vertices
of the red-green simulation mesh lie exactly on top of
the grid points of the quadtree grid as shown in Figure 4
(lower right). This means that there are no interpolation
errors for moving data back and forth between the red-
green mesh and the quadtree grid, and the computational
cost is limited to the simple copying of data. Although
all the red-green vertices correspond to quadtree nodes,
there are some extra nodes in the quadtree grid that do
not correspond to red-green vertices. Before computa-
tions can be carried out on the quadtree grid, values
for these nodes must be interpolated or extrapolated
from valid data on the red-green grid or the already
defined quadtree grid nodes. If a quadtree node lies
inside a red-green triangle, its value can be interpolated
using barycentric coordinates. The remaining nodes can
be filled in using the standard level set reinitialization
and extrapolation equations on the quadtree grid. This
background quadtree grid allows us to leverage all level
set algorithms implemented on quadtree data structures
including advection, motion by mean curvature, reini-
tialization, extrapolation of data across an interface or
isocontour, the particle level set method, elliptic solvers,
etc., see e.g. [26] and the references within. Note that
if adaptivity is not needed, the use of an unrefined BCS
mesh allows us to solve level set algorithms on an even

Fig. 6. Red refinement produces eight children that reside on a
BCC lattice of half the size (left). Three types of green refinement
are allowed in order to remove T-junctions (right).

simpler uniform grid.
While the red-green refinement strategy applies to

any mesh, the quadtree correspondence applies only to
grid aligned meshes. In particular, it does not hold for
equilateral triangle meshes. Also, while the back and
forth interpolation strategy used for updating the level
set function could be implemented with a different back-
ground grid, the matching quadtree grid gives an optimal
match for vertices and refinement structure minimizing
computational cost and interpolation error.

Once the red-green mesh and boundary are con-
structed, the simulation proceeds along standard lines.
Values such as world position and velocity are inter-
polated to new nodes as they are generated during
refinement. Values from the simulation mesh are also
interpolated to the embedded boundary, which is used
for collision, self-collision and fluid interaction.

IV. ERODING VOLUMETRIC SOLIDS

Two-dimensional geometric methods do not typically
carry over elegantly to three spatial dimensions. How-
ever, we designed our two-dimensional approach with
three dimensions in mind, and thus the method carries
over almost entirely. In three spatial dimensions, we
tile space with a body-centered cubic (BCC) lattice and
form tetrahedral elements by considering the vertices of
the uniform cubic grid together with the cell centers.

Fig. 7. An elastic torus bounces and rolls on the ground as it melts,
generating thin sheets of liquid (242x121x121 grid, 22K tetrahedra).
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Fig. 8. Ten rigid body simulated ice cubes are melted by a stream of hot water (1003 grid, 600K total surface triangles).

Space is divided into octahedrons by considering the
region connecting each cubic face to its neighboring
cell centers, and four tetrahedra are placed in each oc-
tahedron. See Figure 5. Red refinement of a tetrahedron
produces eight smaller BCC tetrahedra, and T-junctions
are removed using several varieties of green refinement
which result in two or four green children. See Figure
6. Overall, our approach is similar to that in [51], [52],
and we refer the reader to their work for further details.

Once again, we define a level set function on the nodes
of the red-green simulation mesh, and use marching
tetrahedra and embedded simulation technology similar
to that proposed in [16]. Most importantly, we implement
all our level set methods on an overlayed background
octree grid in material space. Just as in two spatial
dimensions, the nodes of the octree grid correspond
exactly to those of the tetrahedra in the adaptive red-
green simulation mesh. This makes the method both
computationally efficient and straightforward to imple-
ment leveraging on [26] and the references therein.

For ease of implementation, rigid body surfaces are
generated in the same manner as the deformable case,
even though the tetrahedral mesh is not used during rigid
body dynamics. This incurs no significant computational
cost, since the vast majority of the total simulation time
is spent solving for the fluid dynamics.

V. CREATING FLUIDS FROM SOLIDS

In the case of melting, the solid and liquid phase have
similar densities, so a given volume of solid material is
converted into approximately the same volume of liquid.
In contrast, the density ratio between a solid and its
gaseous products is typically several orders of magni-
tude, and a large volume of gas is released before any
noticeable amount of solid disappears. Thus, we simulate
the production of fluid from solid in very different ways

for the melting and burning cases. Moreover, we do not
consider burning volumetric solids, since it takes a long
time to see changes in the solid. Instead, we consider
burning shells where there is very little solid material,
and thus it erodes away quickly. In addition, we only
consider the melting of volumetric objects, since melting
shells produce only a small amount of liquid that is
difficult to resolve on a computational fluid dynamics
grid.

VI. CREATING LIQUID

We model the liquid phase using the particle level set
method of [10]. The bulk of the fluid is represented by
a level set function defined on the grid with negative
values denoting liquid and positive values denoting air.
The level set provides clean handling of topological
merging and breaking, but suffers from volume loss in
regions of high curvature due to numerical diffusion.

Fig. 9. The melting speed of the ice cubes is derived from a
temperature field advected with the liquid velocity.
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Fig. 10. Six elastic tori fall onto a hot surface causing them to quickly melt into liquid (181x61x181 grid, 160K total tetrahedra).

To alleviate this problem, [41] proposed the use of
particles passively advected with the fluid velocity to
replace liquid lost to dissipation. After each advection
step, each particle was treated as a small sphere and
added to the level set with a CSG union. [10] later
extended this technique by adding a layer of positive
particles outside the fluid in addition to the negative
particles inside, which reduces the opposite problem of
volume gain (air loss) due to dissipation in the other
direction. That and other proposed modifications made
the method accurate enough for scientific calculations
as well as visually compelling. Since particles exist only
in a thin band around the interface and do not need to
interact, they can be seeded at higher resolution than the
fluid grid to improve accuracy. The particle radii used for
level set modification are therefore much smaller than a
grid cell, which may result in particles failing to convert
a surrounding node to liquid and incorrectly crossing
over the the level set zero isocontour. These removed
particles move ballistically and collide with objects until
they occur in high enough density to convert grid nodes
into fluid. [41] rendered these removed particles as spray
droplets.

As the solid melts, we generate liquid at the surface
of the solid using techniques synergistic with the particle
level set method. At the beginning of the simulation, we
seed liquid particles inside the solid in material space
using the same particle density and radius distribution
used for the particle level set method when modeling the
liquid. Note that this seeding is readily implemented on
the quadtree or octree grid in material space. Then, as the
level set evolves on the material space quadtree or octree
grid, we make note of any particles that cross completely
over the level set based on their radii effectively moving
outside the solid. These particles are moved from ma-
terial space to world space (in the same way embedded

particles are carried along by the simulation mesh) and
used to generate fluid. Fluid is generated by adding these
particles directly to the particle level set simulation as
removed particles with an initial velocity determined as
if the particle were an embedded particle. Some of these
particles will be in free flight and generate new fluid (by
modifying the level set function in the usual manner),
while others will already be interior to the fluid and
thus immediately reincorporated into the particle level set
simulation as negative particles. This allows thin sheets
of melted liquid to form on the object surface before
it would be possible to resolve the flow on the fluid
dynamics grid. This process is illustrated in Figure 11.

The negative particles in the particle level set method
are used only to resolve the liquid interface, and do not
otherwise influence the physics of the liquid. Thus they
have no mass or volume information, and do not interact
with each other except through the Eulerian grid. If these
particles venture too far across the interface into the air
region and do not occur in dense enough populations to
create new liquid volume, they become removed particles
and are treated ballistically as droplets in free flight. This

Fig. 11. A melting solid partially immersed in liquid. Particles are
seeded throughout the solid with the same distribution and properties
as the particle level set particles (left). As the solid melts, particles
leave the solid and are converted to removed liquid particles. Some
of these particles are close enough to grid nodes to convert them
to liquid (middle). More liquid is generated as the solid continues
melting (right).
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Fig. 12. A predefined level set is used to prescore part of a thin material sheet as inflammable (121x193x85 grid, 37K triangles).

could likely be improved by modeling these removed
particles with a smoothed particle hydrodynamics (SPH)
method such as that proposed in [3], [53]. Additionally,
the negative particles interior to the liquid volume could
be used as boundary conditions for the removed parti-
cle SPH simulation. Regardless, even without this, our
approach produces compelling animations.

VII. CREATING GAS

We use the fire simulation method of [11], which
models fire as a blue core of unburnt fuel undergoing a
combustion reaction into hot gaseous products. A level
set is used to track the location of the blue core, and
the products are described by temperature and density
fields. Since the density of the gaseous fuel is higher
than the resulting products, the gas expands as it crosses
the level set interface and is converted from fuel to
products. The rate of this expansion can be derived by
solving the jump conditions for conservation of mass and
momentum as described in [11]. To model the sourcing
of fuel from kinematic solid objects, they constrain the
velocities at the boundary of the object to inject fuel at a
given rate (which can also be determined from the jump
conditions).

When a region of solid catches fire and begins burning,
we continuously source gaseous fuel around the burning
region while maintaining a reaction coordinate on the
vertices of the solid describing the progress of the
combustion reaction. This can also be used for browning
effects at render time. We model the expansion from
solid into gaseous fuel by generating a thin band of
fuel level set around the burning region and setting the
divergence in this region to a positive value when solving
for the pressure forcing the fuel to move outwards. The
amount of gas produced can be directly linked to the
rate at which the solid is disappearing, although the

animator can of course control this effect as desired.
Divergence sourcing was also used in [30] to model
suspended particle explosions by making each suspended
dust particle a small divergence source.

VIII. TWO WAY SOLID FLUID COUPLING

We follow the solid fluid coupling strategy proposed
in [4] which allows one to use their favorite (and pre-
viously implemented) methods for simulating the solid
and the fluid independent of the coupling strategy, unlike
[5] which requires special treatment of the solid, i.e.
treating it as some sort of fluid in order to obtain two
way coupling. Thus while [5] can only handle rigid
volumetric bodies that can be rasterized and represented
on the fluid grid, [4] showed full two way coupling for
deformable bodies as well as very thin objects such as
cloth. The main philosophical difference between the two
approaches is that [4] computes the effect of the fluid
on the solid via a force per vertex that can be added to
any solid simulation technique, while [5] allows the fluid
to completely determine the solid’s velocity overwriting
all internal dynamics (such as elastic deformation). In
addition, the final projection step of [5] takes the contin-
uous velocity field computed for the combined solid/fluid
domain and constrains the grid cells within the solid to
have a velocity consistent with rigid body motion. This
makes the velocity field discontinuous at the surface of
the solid, allowing fluid to flow directly into the solid and
disappear. In contrast, [4] applies Neumann boundary
conditions at the surface of the solid enforcing the fluid’s
normal velocity to be identical to that of the solid at the
solid/fluid interface.

[4] focused on thin objects, whereas we are also
interested in volumetric objects. Thus, we review some
of their techniques as well as propose a couple of algo-
rithmic improvements. Recall that the projection method
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Fig. 13. Rigid ice cubes floating and melting in water with full two-way force coupling (1003 grid, 600K total surface triangles).

for incompressible flow first computes an intermediate
velocity u∗ and then solves for the pressure p needed to
make the final velocity un+1 divergence free:

u∗ = un −∆t(un · ∇)un + ∆tg (1)

∇ · (∇p/ρ) = ∇ · u∗/∆t (2)

un+1 = u∗ −∆t∇p/ρ (3)

We use the new node based fluid solver of [4] which
stores the permanent velocity on the cell faces of a
MAC grid. At the beginning of each time step, the face
velocities are averaged to the nodes and used in Equation
1 to compute u∗ at the nodes. Then we calculate a
scaled force ∆u = u∗ − un at each node, average
this back to the faces, and use the scaled force at each
face to increment the face velocity to its intermediate
value. Finally, the standard MAC grid based pressure
solver is used to make this intermediate face velocity
divergence free. This scheme allows one to calculate the
intermediate velocity using a simple node based method,
while still using a standard MAC grid approach to solve
for the pressure. Moreover, it avoids direct averaging
of the velocity field significantly reducing numerical
dissipation that gives the fluid an unwanted viscous
appearance. When solving for the pressure, Neumann
boundary conditions are applied at cell faces located
within solid objects using the effective velocity of the
solid, which is calculated by evolving the solid forward
in time by the size of the next time step. Using the effec-
tive velocity (as opposed to the instantaneous velocity)
greatly reduces mass loss, especially when thin liquid
films interact with solid objects.

In [4], they first compute the intermediate fluid veloc-
ity u∗ using knowledge of the solid’s position at both
time n and time n + 1. Then they solve the variable
density Poisson equation ∇ · (∇p/ρ) = ∇ · uold/∆t for

the solid fluid coupling pressure. The density at each
face is set to either the fluid’s density or the solid’s
density, and uold is set to u∗ in the fluid region and to the
effective solid velocity inside the object. The resulting
pressure is interpolated to the barycenter of each triangle
and multiplied by the triangle area and normal to obtain
the net force on a face. For rigid bodies the force and
torque are calculated by accounting for all the triangles,
and for deformable objects one third of the net force is
distributed to each node. These forces are used when the
solid is evolved from time n + 1 to time n + 2, and that
motion is used to compute the effective velocity which is
used to project the intermediate fluid velocity u∗ to be
divergence free at time n + 1 concluding the time step
from n to n + 1.

The pressures are defined at the cell centers of a MAC
grid making interpolation to the barycenter of triangles
difficult near the boundaries of the domain. This can be
remedied by extrapolating pressure values into a one ring
of ghost cells surrounding the domain, but this causes
errors in the case of solid walls. We propose a new
method that accurately calculates pressure derivatives at
solid wall cell faces on the boundary of the domain, and
then we use those derivatives to fill in pressure values in
the ghost cells assuming a linear pressure profile across
each cell face. (Of course, this same method can be
used for kinematic interior boundaries as well.) To do
this we point out that the pressure calculated from the
variable density Poisson equation is typically used to
update the fluid velocity via equation 3, although we
do not do this since this pressure is merely used to
calculate the force the fluid applies to the solid. We
instead use the appropriate component of this equation
to solve for the pressure derivative at a wall using the
density of the fluid for ρ and the final known wall
velocity unew for the new velocity. For example, the
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Fig. 14. Burning cloth draped over an armadillo figurine (89x122x78 grid, 18K triangles).

pressure derivative across a face normal to the x-axis
would be px = ρ(uold − unew)/∆t. The old velocity is
calculated by updating the nodes on the wall to their u∗

values and averaging these values to the cell face. Note
that substituting this pressure derivative into the variable
density Poisson equation leads to the replacement of the
old velocity value with the new value, which is exactly
equivalent to the standard practice of setting the pressure
derivative to zero and using the new solid velocity value
on a face. Thus one does not need to calculate u∗ on the
cell face unless the true (nonzero) pressure derivative is
desired there.

Besides this improved treatment of the pressure near
kinematic boundaries, we also propose improving the
overall accuracy of the fluid to solid coupling forces. The
main idea is to compute a more accurate representation
for uold in the cells occupied by the object. For example,
consider a stationary neutrally buoyant object submerged
in a still fluid, where it should remain at rest. In order
for the variable density Poisson equation ∇ · (∇p/ρ) =
∇ · uold/∆t to give the correct coupling pressure, uold

inside the solid should be identical to the fluid’s u∗,
which is ∆tg. If uold = 0 was used inside the solid
region (corresponding to the solid’s instantaneous or
effective velocity), an incorrect coupling pressure would
arise due to the incompatibility between the solid and
fluid velocity causing the solid to incorrectly accelerate.
Instead of using the effective velocity of the solid which
represents the change in the solids position from time
n to time n + 1, we subtract out the effects of the
fluid to solid pressure coupling that was used to update
the solid from time n to time n + 1. This velocity is
more accurately in line with the intermediate u∗ velocity
computed for the fluid, which accounts for all the forces
except those due to the pressure.

IX. EXAMPLES

For all our examples, the additional cost of melting
or burning was small compared to the time required to
couple solid and fluid together without phase change.
The total computational cost averaged between 5 and 15
minutes per frame.

The single torus in Figure 7 was melted at a constant
rate by uniformly increasing the values of the level set
function on the octree grid in material space. For the
other melting examples, we set the melting velocity to
be a linear function of temperature multiplied by the
level set normal on the octree background grid. In the
multiple tori example (Figure 10), the temperature was
defined procedurally to be large in a band near the
table. In Figure 8, we inject hot water advecting the
temperature with the liquid volume (Figure 9). Figure 13
shows ice cubes melting after being dropped into warm
water. For rendering, we place a small ellipsoid around
both negative and removed negative particles and blend
it with the level set before ray tracing. The aspect ratios
of the ellipses are based on the velocity of the associated
particle.

To model the material catching on fire in Figures 1,
12 and 14 we store a temperature field on the nodes
of the simulation triangle mesh and gradually relax that
temperature towards the temperature of the surrounding
air, igniting the material when a prescribed ignition
temperature is reached. Then we use a bandwidth of 2
grid cells to generate a fuel level set around the solid,
and apply divergence sourcing in a band of 2.5 grid cells.
The solid level set function is set to φ = Y − Ymax,
where Y is the reaction coordinate and Ymax indicates
full combustion, causing the surface to erode once the
reaction completes.

Since we have complete control over the level set



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

function defining the boundary of the solid, we can
readily control the pattern of melting or burning. In
Figure 12, a region of the material is constrained to be
inflammable by performing a CSG union with a fixed
shape and sourcing fuel only from the flammable region.

X. CONCLUSIONS AND FUTURE WORK

We have presented a novel technique for simulating
the phase change of solid objects modeled by Lagrangian
meshes into fluids defined on Eulerian grids. Examples
were presented to demonstrate that this algorithm works
well for both the melting of volumetric solids into liquid
and the burning of thin sheets of material into gas. Sim-
ulation meshes for the solid are constructed by adaptive
red-green refinement starting with a BCS or BCC lattice,
and the boundary of the object is specified by a level set
function defined on the nodes of the simulation mesh
which is evolved on a background quadtree or octree
grid in material space. The most important benefit of the
method is the ability to use state of the art techniques for
both the solid and fluid without compromising simulation
quality in order to couple them together or convert one
into the other.

There are several areas for improvement for both the
solid and fluid phases. For solids, significant work is
needed to make embedded collision handling as accurate
as the nonembedded case. Moreover, while embedded
meshes allow for smooth changes in geometry, the mass
distribution changes discontinuously when simulation
nodes disappear, which can result in small popping arti-
facts. This could be alleviated by adjusting the masses of
boundary points as smoothly as possible while clamping
them away from zero for stability. Finally, the use of
the BCS-quadtree correspondence for arbitrarily curved
shells would require dividing the surface up into rectan-
gular patches. Fortunately, the quadtree correspondence
is unnecessary in the burning case (at least for our ad-hoc
model) since the level set is defined procedurally and all
other steps in the algorithm carry over to an irregular
mesh (including red-green refinement). In the case of
melting volumetric objects, the octree correspondence is
used frequently but does not restrict the class of objects
which can be simulated.

Both melting and burning require the representation
of details at close to the resolution of the grid, and
some aliasing is visible in the burning simulations. Some
of this is due to the use of linear interpolation during
rendering, and could be dramatically improved with
smoother thin shell-aware interpolation schemes. Further
improvement would require better object boundary con-
ditions for the fluid solver.
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control of smoke simulations,” ACM Trans. Graph. (SIGGRAPH
Proc.), vol. 22, no. 3, pp. 716–723, 2003.

[34] R. Fattal and D. Lischinski, “Target-driven smoke animation,”
ACM Trans. Graph. (SIGGRAPH Proc.), vol. 23, pp. 441–448,
2004.

[35] J. Stam, “Flows on surfaces of arbitrary topology,” ACM Trans.
Graph. (SIGGRAPH Proc.), vol. 22, pp. 724–731, 2003.

[36] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle
method for smoke, water and explosions,” ACM Trans. Graph.
(SIGGRAPH Proc.), vol. 24, no. 3, pp. 910–914, 2005.

[37] M. Kass and G. Miller, “Rapid, stable fluid dynamics for com-
puter graphics,” in Computer Graphics (Proc. of SIGGRAPH
90), vol. 24, no. 4, 1990, pp. 49–57.

[38] J. Chen and N. Lobo, “Toward interactive-rate simulation of
fluids with moving obstacles using the navier-stokes equations,”
Computer Graphics and Image Processing, vol. 57, pp. 107–
116, 1994.

[39] N. Foster and D. Metaxas, “Realistic animation of liquids,”
Graph. Models and Image Processing, vol. 58, pp. 471–483,
1996.

[40] N. Foster and D. Metaxas, “Controlling fluid animation,” in
Computer Graphics International 1997, 1997, pp. 178–188.

[41] N. Foster and R. Fedkiw, “Practical animation of liquids,” in
Proc. of ACM SIGGRAPH 2001, 2001, pp. 23–30.

[42] J.-M. Hong and C.-H. Kim, “Animation of bubbles in liquid,”
Comp. Graph. Forum (Eurographics Proc.), vol. 22, no. 3, pp.
253–262, 2003.

[43] A. McNamara, A. Treuille, Z. Popović, and J. Stam, “Fluid con-
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