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Introduction
We propose a novel approach to proportional derivative (PD) con-
trol that exploits the fact that these equations can be solved ana-
lytically for a single degree of freedom. The analytic solution tells
us what the PD controller would accomplish in isolation without in-
terference from neighboring joints, gravity and external forces, out-
board limbs, etc. Our approach to time integration uses an inverse
dynamics style formulation that automatically incorporates global
feedback so that the per joint predictions are achieved. Stiffness
is decoupled from control without the need for estimating external
forces as in [Neff and Fiume 2002] so that we obtain the desired tar-
get regardless of a joint’s stiffness, which merely determines when
a target angle is hit. Whereas PD is typically applied via torques al-
lowing drift, we follow [Guendelman et al. 2003] working with im-
pulse and velocity as opposed to force and acceleration. This also
allows for robust incorporation of collisions and contact. In partic-
ular, we use the framework of [Weinstein et al. 2005] making heavy
use of post-stabilization to implement our PD control method.

Description
We begin by discussing PD control in a generalized coordinate for-
mulation, where each coordinate represents a degree of freedom.
Given a sufficiently smooth target trajectory θo(t), the PD con-
trol law specifies the generalized acceleration as θ̈ = θ̈o − kp(θ −
θo)− kv(θ̇ − θ̇o) where kp and kv are the proportional (position)
and derivative (velocity) gains, respectively. Few authors include
θ̇o and θ̈o, instead targeting a zero velocity and acceleration. How-
ever, including these allows us to formulate a second order equation
for the error, Ë +kvĖ +kpE = 0 where E = θ −θo. Given errors in
both velocity and position, critical damping drives those errors to
zero most quickly. This is achieved by setting kv = 2

√
kp reducing

the choice of gains to a one dimensional family parameterized by
kp. Increasing kp causes the trajectory to be tracked more strongly.
A key point is that this PD formulation follows the trajectory via
a second order system compatible with the physics, in contrast to
Ferguson curves or other interpolation schemes.

We exploit the fact that one can integrate analytically to obtain
closed form expressions for the error E and thus the exact solu-
tion θE = θo + E at the end of a time step. Setting our angu-
lar velocity based on the secant to the exact solution curve gives
ω̂ = (θE −θ n)/∆t which guarantees that we achieve the exact so-
lution at the end of an Euler step.

We use the time discertization from [Guendelman et al. 2003],
ωn+1 = ωn + ∆tαn and θ n+1 = θ n + ∆tωn+1 (where α is angu-
lar acceleration), with the position update replaced by θ n+1 = θ n +
∆tω̂ . It can be shown that ω̂ is identically θ̇ n+1/2 up to O(∆t2),
and thus ω̂ naturally lives at time tn+1/2 and our modified posi-
tion update resembles central differencing. However, while central
differencing also includes a step to integrate ωn+1/2 to ωn+1, this
approach lacks such a step instead using ωn+1 = ω̂ . Consequently,
in the limit as ∆t → 0, only half of the acceleration −kpE− kvĖ is
accounted for, which is equivalent to using PD control with gains
k′p = kp/2 and k′v = kv/2.

This problem is trivially corrected by applying our method to a set
of PD equations with the gains doubled: k̂p = 2kp and k̂v = 2kv.
This becomes an overdamped system, but in the limit as ∆t → 0 the
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Figure 1: A skeleton performs push-ups with 228 muscles whose
forces were calculated via PD control (118 dof).
system behaves as though it were critically damped. Note that our
scheme remains unconditionally stable and drives the error to zero
even for large ∆t.

Since PD control is typically integrated into velocity as a force, we
incorporate our method into the post-stabilization step that imme-
diately follows the velocity update in the method proposed in [We-
instein et al. 2005]. Extending PD control to multiple joints signifi-
cantly complicates the situation, because each joint generates forces
that interfere with neighboring joints. We use inverse dynamics to
alleviate this problem solving for the impulses that take surrounding
joints into account by extending post-stabilization from a joint by
joint approach to a global approach for the entire articulated rigid
body. The global framework requires a matrix relating the impulses
at all joints to the change in velocities at all joints. We solve a least
squares problem which minimizes both the norm of the solution as
well as the residual of the overdetermined part of the equations.

Since global post-stabilization gives global feedback, joints do not
fight each other and instead move smoothly towards the target state.
Besides obtaining smooth motion, an advantage of dynamic con-
trollers (versus kinematic) is response to unanticipated forces. For
example, a character should easily move around their own limbs,
but struggle to lift a foreign object.

In addition to smaller examples used to illustrate many of the pre-
viously mentioned concepts, we created a skeleton from the Visi-
ble Human data set and animated the skeleton flailing in a net and
swinging a mace. The skeleton joint movement is defined by an
analytic function targeted via our PD control, while the mace and
net are freely moving unactuated joints. We also demonstrate an
optimization-based method for inverse muscle actuation with an ex-
ample of our skeleton performing a series of push-ups (Figure 1).
The push-up motion was created using analytic functions, and our
optimization method determines the muscle actuation required to
achieve the desired joint angles throughout the body. Unlike torque
actuation, muscle actuation is restricted to lie along the muscle’s
line of action, and inequality constraints are used to enforce bounds
on muscle force. Our method trivially handles muscles spanning
multiple joints. Even with the additional calculation of the muscu-
lar impulses, this simulation only required three minutes a frame.
Examples with lower degrees of freedom ran in interactive time.
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