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Abstract

This dissertation presents algorithms for the simulation of solids and fluids, and for

two-way coupling between the two. Physically-based simulation has a wide range

of applications, and the focus in this dissertation is on creating visually plausible

animation for computer graphics and visual effects.

Novel techniques for rigid body simulation are described first. These include a

new approach to time integration, merging it with the collision and contact process-

ing algorithms in a fashion that obviates the need for ad hoc threshold velocities. In

addition, a novel shock propagation algorithm allows for efficient use of the propa-

gation (as opposed to the simultaneous) method for treating contact. Examples are

given involving many nonconvex rigid bodies undergoing collision, contact, friction,

and stacking. An overview of existing techniques for simulation of thin deforming

shells (cloth) is also given.

A basic fluid simulator is described next, including techniques for both smoke

and free-surface water, following which a novel method is proposed for coupling in-

finitesimally thin solids to the fluid. The proposed method works for both rigid and

deformable shells. Leaks across the solid are prevented by using robust ray casting

and visibility. Incompressibility is properly enforced at the solid-fluid interface so

that fluid does not incorrectly compress (and appear to lose mass). Furthermore,

computation of a smoother pressure for coupling alleviates some of the stiffness as-

sociated with coupling to an incompressible fluid. Coupling to volumetric solids is

also described, and a more accurate approach to computing the coupling pressure is

suggested. Our framework treats the solids simulator as a black box, allowing any

alternative simulator to replace our choice.
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Chapter 1

Introduction

Computer simulations of physical phenomena have been in use since the early days

of computer technology. Over the years, increasing computational power has allowed

for improvements in both model complexity and solution accuracy. At the same

time, this has helped bring high quality simulation to the desktop computer and

to a wide variety of disciplines. Physically-based simulation started making its way

into computer graphics in the late 1980’s, and these days it is commonly used for

animation and visual effects in the entertainment industry.

This dissertation focuses on simulations of solids and fluids for computer graphics.

In targeting computer graphics rather than scientific simulation, we make a number of

compromises. First, we place more emphasis on visually plausible results rather than

on results matching experimental and theoretical data. We also care more about

algorithm simplicity (and extensibility) rather than on choosing the highest order

accurate method available. Finally, we aim for a general approach rather than a

problem-specific approach or one requiring extensive manual intervention to set up.

Despite these considerations, we expect that many of the techniques described in this

dissertation could be adapted by the engineering community into their more demand-

ing simulation environment. Scientific applications would require further validation

and error analysis, and Section 8.6 describes possible future work in this direction.

A computer animator uses physically-based simulation as a tool to create complex

1



2 CHAPTER 1. INTRODUCTION

animations that would otherwise be hard to create by hand. For example, the ani-

mator may use rigid body simulation to visualize a collapsing structure, deformable

body simulation to model skin and hair, and fluid simulation to generate water waves

and nuclear explosions.

It is worth additionally noting the variety of scientific applications in which solid

and fluid simulations (often coupled) play a key role. These include:

• Simulation of the human musculoskeletal system

• Aerodynamic simulation for design and testing of aircrafts and parachutes

• Investigation of animal propulsion for flying and swimming

• Simulation of blood flow through the heart and arteries

This dissertation is structured as follows. Chapter 2 describes a novel rigid body

simulator that is able to handle many nonconvex bodies undergoing collision, con-

tact, friction, and stacking. Chapter 3 follows with a brief description of the cloth

simulator of [17], which we use for some of our two-way coupled examples. Chapter 4

describes a basic fluid simulator for smoke and water which uses a novel node-based

discretization. Chapter 5 discusses some of the basic concepts underlying coupled

solid-fluid simulations. The subsequent two chapters describe coupling fluids to both

thin shells (Chapter 6) and volumetric solids (Chapter 7). A number of key con-

tributions are presented, including a scheme that prevents leaks across thin shells,

and novel approaches to reducing fluid mass loss and improving coupling stability.

Chapter 8 wraps up with conclusions and some directions for future work.

Much of the content presented in this dissertation is extracted from previous pub-

lications by myself and coauthors [51, 52, 83], and only parts I was directly involved

with have been included here.



Chapter 2

Rigid Body Simulation

2.1 Introduction

One can differentiate between highly deformable volumetric objects and those where

the deformation is either negligible or unimportant, and in the latter case efficiency

concerns usually lead to rigid body approximations. [22] notes the weakness of the

rigid body approximation to solids and discusses some known flaws in state of the art

collision models. Moreover, they discuss some common misconceptions mentioning

for example that the coefficient of restitution can be greater than one in frictional

collisions. [129] emphasizes the difficulties with nonunique solutions pointing out that

it is often impossible to predict which solution occurs in practice since it depends

on unavailable details such as material microstructure. He states that one should

repeat the calculations with random disturbances to characterize the potential set of

solutions. [13] exploited this indeterminacy by adding random texture and structured

perturbations to enrich and control the motion respectively. The goal of rigid body

simulation then becomes the construction of plausible motion instead of predictive

motion. While the physicist strives towards synthesizing a family of solutions that are

predictive in the sense that they statistically represent experimental data, the interest

in graphics is more likely to focus on obtaining a particularly appealing solution from

the set of plausible outcomes, e.g. see [24, 113].

3



4 CHAPTER 2. RIGID BODY SIMULATION

Figure 2.1: 1000 nonconvex rings (with friction) settling after being dropped
onto a set of 25 poles. Each ring is made up of 320 triangles, and each
pole is made up of 880 triangles.

With this in mind, we focus on the plausible simulation of nonconvex rigid bod-

ies emphasizing large scale problems with many frictional interactions. Although we

start with a triangulated surface representation of the geometry, we also construct a

signed distance function defined on a background grid (in the object frame) enabling

the use of fast inside/outside tests. The signed distance function also conveniently

provides a normal direction at points on and near the surface of the object. We take

a closer look at the usual sequence of simulation steps—time integration, collision

detection and modeling, contact resolution—and propose a novel approach that more

cleanly separates collision from contact by merging both algorithms more tightly with

the time integration scheme. This removes the need for ad hoc threshold velocities

used by many authors to alleviate errors in the contact and collision algorithms, and

correctly models difficult frictional effects without requiring microcollision approx-

imations [93, 94] (which also use an ad hoc velocity). We also introduce a novel
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algorithm that increases the efficiency of the propagation method for contact reso-

lution. The efficiency and robustness of our approach is illustrated with a number

of simple and complex examples including frictional interactions and large contact

groups as is typical in stacking.

The content of this chapter is taken from our publication [51], with some expanded

detail (e.g. Section 2.3.1 on creating an implicit surface from a triangulated surface),

and a slightly different approach for computing the contact graph (Section 2.8.1).

2.2 Previous Work

[54] considered rigid body collisions by processing the collisions chronologically back-

ing the rigid bodies up to the time of impact. [92] used a timewarp algorithm to back

up just the objects that are involved in collisions while still evolving non-colliding ob-

jects forward in time. This method works well except when there are a large number of

bodies in contact groups, which is the case we are concerned with here. [54] processed

collisions with static friction if the result was in the friction cone, and otherwise used

kinetic friction. If the approach velocity was smaller than a threshold, the objects

were assumed to be in contact and the same equations were applied approximating

continuous contact with a series of “instantaneous contacts”. [97] instead proposed

the use of repulsion forces for contact only using the exact impulse-based treatment

for high velocity collisions.

[4] proposed a method for analytically calculating non-colliding contact forces

between polygonal objects obtaining an NP-hard quadratic programming problem

which was solved using a heuristic approach. He also points out that these ideas

could be useful in collision propagation problems such as one billiard ball hitting

a number of others (that are lined up) or objects falling in a stack. [5] extended

these concepts to curved surfaces. [6] advocated finding either a valid set of contact

forces or a valid set of contact impulses stressing that the usual preference of the

latter only when the former does not exist may be misplaced. For more details,

see [7]. [8] proposed a simpler, faster, and more robust algorithm for solving these

types of problems without the use of numerical optimization software. [107] modeled
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local surface deformation for contacting “quasi-rigid” bodies represented using point

clouds.

[16] discussed the nonlinear differential equations that need to be numerically

integrated to analyze the behavior of three-dimensional frictional rigid body impact

and pointed out that the problem becomes ill-conditioned at the sticking point. Then

they use analysis to enumerate all the possible post-sticking scenarios and discuss

the factors that determine a specific result. [94] integrated these same nonlinear

differential equations to model both contact and collision proposing a unified model

(as did [54]). They use the velocity an object at rest will obtain by falling through the

collision envelope (or some threshold in [93]) to identify the contact case and apply a

microcollision model that reverses the relative velocity as long as the required impulse

lies in the friction cone. This solves the problem of blocks erroneously sliding down

inclined planes due to impulse trains that cause them to spend time in a ballistic

phase.

Implicitly defined surfaces were used for collision modeling by [136] to create

repulsive force fields around objects and [108, 122] who exploited fast inside/outside

tests. We use a particular implicit surface approach defining a signed distance function

on an underlying grid. Grid-based distance functions have been gaining popularity,

see e.g. [39, 56] who used them to treat collision between deformable bodies, and [71]

who used them to keep hair from interpenetrating the head. Although [48] pointed

out potential difficulties with spurious minima in concave regions, we have not noticed

any adverse effects, most likely because we do not use repulsion forces.

[89] used position based physics to simulate the stacking of convex objects and

discussed ways of making the simulations appear more physically realistic. [90] consid-

ered stacking with standard Newtonian physics using an optimization based method

to adjust the predicted positions of the bodies to avoid overlap. One drawback is

that the procedure tends to align bodies nonphysically. Quadratic programming is

used for contact, collision and the position updates. They consider up to 1000 fric-

tionless spheres, but nonconvex objects can only be considered as unions of convex

objects and they indicate that the computational cost scales with the number of con-

vex pieces. Their only nonconvex example considered 50 jacks that were each the
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Figure 2.2: Some nonconvex geometry from our simulations: the cranium,
pelvis and femur have 3520, 8680, and 8160 triangles respectively.

union of 3 boxes. [120] described a freezing technique that identifies when objects

can be removed from the simulation, as well as identifying when to add them back.

This allows the stacking of 1000 cubes with friction in 1.5 days as opposed to an

estimated 45 days for simulating all the cubes. In a more recent paper, [70] proposed

a linear time algorithm that used optimization to resolve all frictional contact for

each body individually rather than iterating through pairwise contacts. Using this

efficient approach they were able to produce fast simulations of 1000 stacking, non-

convex rigid bodies, but with only approximate momentum conservation. Large scale

simulations of granular materials, consisting of rigid grains made up of spheres, were

recently presented by [14].

2.3 Geometric Representation

Since rigid bodies do not deform, they are typically represented with triangulated

surfaces, see Figure 2.2. In cases where a rigid body is originally represented vol-

umetrically, surface meshing methods such as marching cubes [81], dual contouring

[67], or even the tetrahedral meshing of [96] (keeping only the surface mesh) may be

used to obtain a triangulated surface.

Starting with either the density (or mass), algorithms such as [91] can then be

used to compute the volume, mass and moments of inertia. For efficiency, we store the

object space representation with the center of mass at the origin and the axes aligned
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with the principal axes of inertia resulting in a diagonal inertia tensor simplifying

many calculations, e.g. finding its inverse.

In addition to a triangulated surface, we also store an object space signed distance

function for each rigid body. This is stored on either a uniform grid [105] or an

octree grid [44] depending on whether speed or memory, respectively, is deemed to

be the bottleneck in the subsequent calculations. Discontinuities across octree levels

are treated by constraining the fine grid nodes at gradation boundaries to take on

the values dictated by interpolating from the coarse level, see e.g. [146]. We use

negative values of φ inside the rigid body and positive values of φ outside so that

the normal is defined as n = ∇φ. This embedding provides approximations to the

normal throughout space as opposed to just on the surface of the object allowing us

to accelerate many contact and collision algorithms. Section 2.3.1 describes in more

detail the construction of a signed distance function from a triangulated surface.

Using both a triangulated surface and a signed distance function representation

has many advantages. For example, one can use the signed distance function to

quickly check if a point is inside a rigid body, and if so intersect a ray in the n = ∇φ

direction with the triangulated surface to find the surface normal at the closest point.

This allows the treatment of very sharp objects with their true surface normals,

although signed distance function normals provide a smoother and less costly repre-

sentation if desired. For more details on collisions involving sharp objects, see [106].

2.3.1 Constructing an Implicit Surface

A variety of techniques exist for computing a signed distance function from a trian-

gulated surface, such as the closest point transform in [86], the level set generation

method in [61], the volume construction phase of volumetric model repair in [66], and

the method described in [2]. Our approach, while not a novel aspect of our work, is

described next for completeness.

The rasterization procedure takes as input a closed triangulated surface with con-

sistently oriented boundary triangles (all triangle normals point outside). Addition-

ally, we assume a uniform grid is specified, although this approach can be easily
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Figure 2.3: Flood fill is used to find connected regions on the grid, with
crossing edges (drawn thickened) denoting flood fill boundaries. In this
example, two regions are found, indicated by the different node colors, and
it is sufficient to check inside/outside for one representative node from each
region.

adapted to octrees by refining the octree near object boundaries. The signed distance

function will be stored on the nodes of this grid, and as mentioned above a negative

sign will denote inside, while a positive sign will denote outside. Note that this whole

procedure is a one time cost in constructing a rigid body model.

First, all nodes on the grid need to be flagged as being either inside or outside

the object. For a given node, this can be determined by casting a ray in an arbitrary

direction and marking the node as inside only if that ray intersects the surface and

lies on the interior relative to the intersected triangle. As noted in [2], special care

must be taken if the ray intersects a vertex or an edge rather than the interior of a

triangle. For robustness, we intersect against thickened triangles as in [17] (also used

in Chapter 6).

Rather than ray casting from each node individually, a more efficient approach

first computes connected regions in the grid using a flood fill algorithm. Since all

nodes in a connected region have the same sign, it is sufficient to compute the sign

of a single representative node for each such region (Figure 2.3). When computing

connected regions, the flood fill spreads from a node to its edge-connected neighbors

as long as the connecting edge does not intersect the surface. Similar to [66], edges

which do intersect the surface are marked as crossing edges. One way to find crossing
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edges efficiently in a pre-processing step is by iterating over all triangles in the mesh,

and only checking for intersections between a triangle and grid edges which overlap

that triangle’s axis-aligned bounding box.

For triangulated surfaces which are not strictly closed, for example containing gaps

between some surface triangles, flood fill cannot be reliably used to compute connected

regions. Furthermore, the ray intersection approach to determining whether a node

is inside or outside is sensitive and error-prone, as the ray may pass through a gap.

Of course, an object with an open boundary does not actually have a well-defined

“inside”. However, we would still like our method to give reasonable results even

in the presence of a few small gaps. Our approach to handling these cases is to

cast multiple rays from a node, instead of just one, and using a “majority vote” to

determine whether the node should be flagged as inside or outside. This alleviates

some of the sensitivity of this scheme, since it is less likely for multiple rays to pass

through the gaps, and generally gives reasonable results for surfaces that are mostly

closed. For our particular choice of ray directions, we cast rays in the 6 axis-aligned

directions, and flag the node as inside if at least 3 of the 6 rays determine it to be

inside. Casting multiple rays from each node would be expensive, but we reduce the

number of rays cast by observing that many of the ray intersections are redundant.

For example, if there are no crossing edges along the x direction between nodes (i, j, k)

and (i′, j, k), then casting a ray in the x direction (either positive or negative) from

either node will yield the same intersection result.

Having assigned a sign to each node, the next step is to initialize all nodes near

the surface (those with opposite sign neighbors) with their shortest distance to the

surface. Once this is done, the full signed distance function can be calculated quickly

using a marching method [139, 124].

2.4 Interference Detection

[45, 29] found intersections between two implicitly defined surfaces by testing the

sample points of one with the inside/outside function of the other. We follow the

same strategy using the vertices of the triangulated surface as our sample points.
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Figure 2.4: Only looking for vertices inside an implicit surface may be in-
sufficient for bodies with coarse triangulated surfaces, as shown here. Ad-
ditionally intersecting edges against the implicit surface may be used to
correctly detect penetration in such cases.

This test is not sufficient to detect all collisions, as edge-face collisions are missed

when both edge vertices are outside the implicit surface (Figure 2.4). Since the errors

are proportional to the edge length, they can be ignored in a well resolved mesh

with small triangles. However, when substantial, e.g. when simulating cubes with

only 12 triangles, we intersect the triangle edges with the zero isocontour and flag

the deepest point on the edge as an interpenetrating sample point. Since we do

not consider time dependent collisions, fast moving objects might pass through each

other. We alleviate this problem by limiting the size of a time step based on the

translational and rotational velocities of the objects and the size of their bounding

boxes, although methods exist for treating the entire time swept path as a single

implicit surface [121].

A number of accelerations can be used in the interference detection process. For

example, the implicit surface inside/outside tests can be accelerated by labeling the

voxels that are completely inside and completely outside (this is done for voxels at each

level in the octree representation as well) so that φ interpolation can be avoided except

in cells which contain part of the interface. Labeling the minimum and maximum

values of φ in each voxel can also be useful. Bounding boxes and spheres are used

around each object in order to prune points before doing a full inside/outside test.

Moreover, if the bounding volumes are disjoint, no inside/outside tests are needed.

For rigid bodies with a large number of triangles, we found an internal box hierarchy
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with triangles in leaf boxes to be useful especially when doing edge intersection tests.

Also, we use a uniform spatial partitioning data structure with local memory storage

implemented using a hash table in order to quickly narrow down which rigid bodies

might be intersecting. Similar spatial partitioning was used, for example, in [94].

Again, we stress our interest in nonconvex objects and refer the reader to [112, 72] for

other algorithms that treat arbitrary nonconvex polyhedral models. For more details

on collision detection methods, see e.g. [141, 79, 118].

2.5 Time Integration

The equations for rigid body evolution are

dx

dt
= v,

dq

dt
=

1

2
ωq (2.1)

dv

dt
= f/m,

dL

dt
= τ (2.2)

where x and q are the position and orientation (a unit quaternion), v and ω are the

velocity and angular velocity, f and τ are the net force and torque, m is the mass,

and L = Iω is the angular momentum with inertia tensor I (all quantities in world

space). As mentioned above, we store an object space, diagonal inertia tensor D, and

compute the world space inertia tensor using I = RDRT (where R is the orientation

matrix corresponding to q). For simplicity we will consider f = mg (where g is

the downward pointing gravity vector) and thus dv
dt

= g throughout the text, but

our algorithm is not restricted to this case. While there are a number of highly

accurate time integration methods for noninteracting rigid bodies in free flight, see

e.g. [19], these algorithms do not retain this accuracy in the presence of contact and

collision. Thus, we take a different approach to time integration instead optimizing

the treatment of contact and collision. Moreover, we use a simple forward Euler time

integration for Equations (2.1) and (2.2).1

1We use forward Euler for orientation: qn+1 = qn + 1

2
∆tωnqn (followed by renormalization of

qn+1). An alternative approach (see e.g. [144]) is to use qn+1 = q̂(∆tωn)qn where q̂(w) is a unit
quaternion representing a rotation by |w| radians about the axis w/|w|.
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The standard approach is to integrate Equations (2.1) and (2.2) forward in time,

and subsequently treat collision and then contact. Generally speaking, collisions

require impulses that discontinuously modify the velocity, and contacts are associated

with forces and accelerations. However, friction can require the use of impulsive forces

in the contact treatment, although the principle of constraints requires that the use

of impulsive forces be kept to a minimum [85]. [6] suggested that this avoidance

of impulsive behavior is neither necessary nor justified and stressed that there are

algorithmic advantages to using impulses exclusively. This naturally leads to some

blurring between collision and contact handling, and provides a sense of justification to

the work of [54] where the same algebraic equations were used for both and the work of

[94] who integrated the same nonlinear differential equations for both. However, other

authors such as [97, 126, 73] have noted difficulties associated with this blurring and

proposed that an impulse based treatment of collisions be separated from a penalty

springs approach to contact. They used the magnitude of the relative velocity to

differentiate between contact and collision. [94] used the velocity an object at rest

will obtain by falling through the collision envelope (or some threshold in [93]) to

identify the contact case and applied a microcollision model where the impulse needed

to reverse the relative velocity is applied as long as it lies in the friction cone. They

showed that this solves the problem of blocks erroneously sliding down inclined planes

due to impulse trains that cause them to spend time in a ballistic phase.

A novel aspect of our approach is the clean separation of collision from contact

without the need for threshold velocities. We propose the following time sequencing:

• Collision detection and modeling

• Advance the velocities using Equation (2.2)

• Contact resolution

• Advance the positions using Equation (2.1)

The advantages of this time stepping scheme are best realized through an example.

Consider a block sitting still on an inclined plane with a large coefficient of restitution,

say ǫ = 1, and suppose that friction is large enough that the block should sit still.
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(a) (b) (c) (d)

Figure 2.5: A block with friction resting on an inclined plane incorrectly
starting to bounce using the standard time stepping scheme. Figure shows
the block (a) initially resting, (b) after position and velocity update, (c)
after colliding with the inclined plane, and (d) bouncing during the next
position update.

In a standard time stepping scheme, both position and velocity are updated first,

followed by collision and contact resolution (Figure 2.5). During the position and

velocity update, the block starts to fall under the effects of gravity. Then in the

collision processing stage we detect a low velocity collision between the block and

the plane, and since ǫ = 1 the block will change direction and bounce upwards at an

angle down the incline. Then in the contact resolution stage, the block and the plane

are separating so nothing happens. The block will eventually fall back to the inclined

plane, and continue bouncing up and down incorrectly sliding down the inclined plane

because of the time it spends in the ballistic phase. This is the same phenomenon

that causes objects sitting on the ground to vibrate as they are incorrectly subjected

to a number of elastic collisions. Thus, many authors use ad hoc threshold velocities

in an attempt to prune these cases out of the collision modeling algorithm and instead

treat them with a contact model.

Our new time stepping algorithm automatically treats these cases (Figure 2.6).

All objects at rest have zero velocities (up to round-off error), so in the collision

processing stage we do not get an elastic bounce (up to round-off error). Next,

gravity is integrated into the velocity, and then the contact resolution algorithm

correctly stops the objects so that they remain still. Thus, nothing happens in the

last (position update) step, and we repeat the process. The key to the algorithm

is that contact modeling occurs directly after the velocity is updated with gravity.

If instead either the collision step or a position update were to follow the velocity
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(a) (b) (c) (d)

Figure 2.6: A block with friction resting on an inclined plane correctly sim-
ulated using our new time stepping scheme. Figure shows the block (a)
initially resting (no collision to process), (b) after velocity update (can-
didate position drawn), (c) after frictional contact, and (d) after position
update.

update, objects at rest will either incorrectly elastically bounce or move through the

floor, respectively. On the other hand, contact processing is the correct algorithm

to apply after the velocity update since it resolves forces, and the velocity update is

where the forces are included in the dynamics.

One must use care when updating the velocity in between the collision and con-

tact algorithms to ensure that the same exact technique is used to detect contact as

was used to detect collision. Otherwise, an object in free flight might not register

a collision, have its velocity updated, and then register a contact causing it to in-

correctly receive an inelastic (instead of elastic) bounce. We avoid this situation by

guaranteeing that the contact detection step registers a negative result whenever the

collision detection step does. This is easily accomplished by ensuring that the velocity

update has no effect on the contact and collision detection algorithms (discussed in

Section 2.6).

We repeated the experiment of a block sliding down an inclined plane from [94]

using the methods for collision and contact proposed throughout this chapter and our

newly proposed time step sequencing. We used a coefficient of restitution ǫ = 1 in

order to accentuate difficulties with erroneous elastic bouncing. Using our new time

stepping scheme the decelerating block slides down the inclined plane coming to a

stop matching theory, while the standard time stepping scheme performs so poorly

that the block bounces down the inclined plane as shown in Figure 2.7. Of course,

these poor results are accentuated because we both set ǫ = 1 and do not back up the
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Figure 2.7: The block and inclined plane test with standard time integration
(the block erroneously tumbling) and our new time integration sequencing
(the block correctly at rest).

simulation to the time of collision (which would be impractical and impossible for

our large stacking examples). Figure 2.8 shows a comparison between theory and our

numerical results. For both the acceleration and deceleration cases, our numerical

solution and the theoretical solution lie so closely on top of each other that two

distinct lines cannot be seen. Moreover, our results are noticeably better than those

depicted in [94] even though we do not use a threshold velocity or their microcollision

model.

2.6 Collisions

When there are many interacting bodies, it can be difficult to treat all the collisions

especially if they must be resolved in chronological order. Thus instead of rewinding

the simulation to process collisions one at a time, we propose a method that simulta-

neously resolves collisions as did [130, 90]. While this does not give the same result

as processing the collisions in chronological order, there is enough uncertainty in the

collision modeling that we are already guaranteed to not get the exact physically

correct answer. Instead we will obtain a physically plausible solution, i.e. one of

many possible physically correct outcomes which may vary significantly with slight

perturbations in initial conditions or the inclusion of unmodeled phenomena such as
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material microstructure.
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Figure 2.8: Theoretical and our numerical results for two tests of a block
sliding down an inclined plane with friction. As in [94], inclined plane is
at 20◦, accelerating block starts at rest with µ = 0.5, and decelerating block
starts at v0 = 1.25 m/s with µ = 0.25. The curves lie on top of each other
in the figures due to the accuracy of our new time sequencing algorithm.

Collisions are detected by predicting where the objects will move to in the next

time step, temporarily moving them there, and checking for interference. The same

technique will be used for detecting contacts, and we want the objects to be moved to

the same position for both detection algorithms if there are no collisions (as mentioned

above). In order to guarantee this, we use the new velocities to predict the positions

of the rigid bodies in both steps. Of course, we still use the old velocities to process

the collisions and the new velocities to process the contacts. For example, for the

collision phase, if an object’s current position and velocity are x and v, we test for

interference using the predicted position x′ = x + ∆t(v + ∆tg), and apply collision

impulses to (and using) the current velocity v. During contact processing, we use the
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Figure 2.9: A billiard ball hits one end of a line of billiard balls, and the
collision response propagates to the ball on the far right which then starts
to roll.

predicted position x′ = x + ∆tv′ and apply impulses to this new velocity v′. Since

v′ = v + ∆tg was set in the velocity update step, the candidate positions match and

the interference checks are consistent.

The overall structure of the algorithm consists of first moving all rigid bodies to

their predicted locations, and then identifying and processing all intersecting pairs.

Since collisions change the rigid body’s velocity, v, new collisions may occur between

pairs of bodies that were not originally identified. Therefore we repeat the entire

process a number of times (e.g. five iterations) moving objects to their newly pre-

dicted locations and identifying and processing all intersecting pairs. Since pairs are

considered one at a time, the order in which this is done needs to be determined.

This can be accomplished by initially putting all the rigid bodies into a list, and then

considering rigid bodies in the order in which they appear. To reduce the inherent

bias in this ordering, we regularly mix up this list by randomly swapping bodies two

at a time. This list is used throughout our simulation whenever an algorithm requires

an ordering.

For each intersecting pair, we identify all the vertices of each body that are inside

the other (and optionally the deepest points on interpenetrating edges as well). Since

we do not back up the rigid bodies to the time of collision, we need a method that can

deal with nonconvex objects with multiple collision regions and multiple interfering

points in each region. We start with the deepest point of interpenetration that has

a nonseparating relative velocity as did [97], and use the standard algebraic collision

laws (below) to process the collision. Depending on the magnitude of the collision,
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this may cause the separation of the entire contact region. If we re-evolve the position

using the new post-collision velocity, this collision group could be resolved. Whether

or not it is resolved, we can once again find the deepest non-separating point and

repeat the process until all points are either non-interpenetrating or separating. While

this point sampling method is not as accurate as integrating over the collision region

as in [56], it is much faster and scales well to large numbers of objects.

We developed an aggressive optimization for the point sampling that in many

cases gives similarly plausible results (see e.g. Figure 2.9).2 As before, one first labels

all the non-separating intersecting points and applies a collision to the deepest point.

But instead of re-evolving the objects and repeating the expensive collision detection

algorithm, we simply keep the objects stationary and use the same list of (initially)

interfering points for the entire procedure. After processing the collision, all separat-

ing points are removed from the list. Then the remaining deepest nonseparating point

is identified and the process is repeated until the list is empty. In this manner, all

points in the original list are processed until they are separating at least once during

the procedure. The idea of lagging collision geometry was also considered by [9] in a

slightly different context.

At the collision point, a rigid body’s local velocity is u = v + ω × r where r is a

radial vector from the center of mass to the collision point. Applying an impulse j at

the collision point changes both linear and angular velocities according to

v′ = v + j/m (2.3)

and

ω
′ = ω + I−1(r × j). (2.4)

The new velocity at the point of collision becomes

u′ = u + Kj, (2.5)

2In our experience, this optimization appears to be less appropriate for collisions with a very low
coefficient of restitution. Greater accuracy is typically desired in these cases, just as it is needed for
contact.



20 CHAPTER 2. RIGID BODY SIMULATION

where K = δ/m+r∗T I−1r∗ with δ the identity matrix and the “∗” superscript indicat-

ing the cross-product matrix.3 K is the rigid body’s inverse effective inertia matrix

at the point of collision, playing a role analogous to 1/m in Equation (2.3). Bodies

which have infinite inertia, including immovable bodies such as the ground as well as

bodies whose motion is kinematically prescribed, can be treated by setting K = 0.

Let urel = u1 −u2 be the relative velocity at the point of collision between body 1

and body 2, and assume we apply an equal and opposite impulse to the two bodies:

+j to body 1 and −j to body 2. Then subtracting Equation (2.5) for the two bodies,

we get

u′

rel = urel + KT j, (2.6)

where KT = K1 + K2.

The relative velocity can be decomposed into normal and tangential components,

urel,n = urel · n and urel,t = urel − urel,nn respectively. Each body is assigned a

coefficient of restitution, and when two bodies collide we use the minimum between

the two coefficients as did [97] to process the collision. Note that, strictly speaking,

the coefficient of restitution is a collision property rather than a material property (for

example, it may vary by collision speed), so our approach of storing it per body is a

simplification. Taking the dot product of Equation (2.6) with n, and assuming j = jnn

(a frictionless impulse only acting in the normal direction) and u′

rel,n = −ǫurel,n

(Newton’s law of restitution), we get −ǫurel,n = urel,n +nT KTnjn. We can then solve

for jn,

jn =
−(ǫ + 1)urel,n

nT KTn
, (2.7)

and thus determine the frictionless collision impulse j.

2.7 Static and Kinetic Friction

The collision algorithm above needs to be modified to account for kinetic and static

friction. Each body is assigned a coefficient of friction, µ, and we use the maximum

3For r = (rx, ry, rz), r∗ =





0 −rz ry

rz 0 −rx

−ry rx 0



, so that r∗j = r × j
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of the two possible coefficients when processing a collision as did [97]. Like [54, 97],

we first assume that the bodies are stuck at the point of impact due to static friction

and solve for the impulse. That is, we set u′

rel,t = 0, so that u′

rel = −ǫurel,nn, which

allows us to solve Equation (2.6) for the impulse j by inverting the symmetric positive

definite matrix KT . Then if j is in the friction cone, i.e. if |j − (j · n)n| ≤ µj · n, the

point is sticking due to static friction and j is an acceptable impulse. Otherwise, we

apply sliding friction.

Define t = urel,t/|urel,t| so that the kinetic friction can be computed with the

impulse j = jnn−µjnt = jn(n−µt). By a similar derivation to that of Equation (2.7),

we can determine the kinetic friction impulse j by solving

jn =
−(ǫ + 1)urel,n

nT KT (n − µt)
.

2.8 Contact

After a few iterations of the collision processing algorithm, the rigid bodies have

been elastically bounced around enough to obtain a plausible behavior. So even

if collisions are still occurring, we update the velocities of all the rigid bodies and

move on to contact resolution. Since the contact modeling algorithm is similar to

the collision modeling algorithm except with a zero coefficient of restitution, objects

still undergoing collision will be processed with inelastic collisions. This behavior is

plausible since objects undergoing many collisions in a single time step will tend to

rattle around and quickly lose energy.

The goal of the contact processing algorithm is to resolve the forces between

objects. As in collision detection, we detect contacts by predicting where the objects

will move to in the next time step disregarding the contact forces, temporarily moving

them there, and checking for interference. For example, objects sitting on the ground

will fall into the ground under the influence of gravity leading to the flagging of these

objects for contact resolution. All interacting pairs are flagged and processed in the

order determined by our list. Once again, multiple iterations are needed especially for

rigid bodies that sit on top of other rigid bodies. For example, a stack of cubes will
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(a) (b) (c) (d)

Figure 2.10: Processing contact in a stack may take many iterations using
the propagation model. (a) The initial stack. (b) Candidate positions
during contact processing. (c) Contact is resolved between bottom block
and ground. (d) Resolving contact between the bottom two blocks pushes
the bottom one back into the ground.

all fall at the same speed under gravity and only the cube on the bottom of the stack

will intersect the ground and be flagged for contact resolution (Figure 2.10 (b)). The

other cubes experience no interference in this first step. However, after processing

the forces on the cube at the bottom of the stack, it will remain stationary and be

flagged as interpenetrating with the cube that sits on top of it in the next sweep of

the algorithm (Figure 2.10 (c)). This is a propagation model for contact as opposed

to the simultaneous solution proposed in [4].

The difficulty with a propagation model is that it can take many iterations to

converge. For example, in the next iteration the cube on the ground is stationary and

the cube above it is falling due to gravity. If we process an inelastic collision between

the two cubes, the result has both cubes falling at half the speed that the top cube

was falling (Figure 2.10 (d)). That is, the cube on top does not stop, but only slows

down. Even worse, the cube on the ground is now moving again and we have to

reprocess the contact with the ground to stop it. In this sense, many iterations are

needed since the algorithm does not have a global view of the situation. That is, all

the non-interpenetration constraints at contacts can be viewed as one large system

of equations, and processing them one at a time is similar to a slow Gauss-Seidel
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approach to solving this system. Instead, if we simultaneously considered the entire

system of equations, one could hope for a more efficient solution, for example by

using a better iterative solver. This is the theme in [90] where an optimization based

approach is taken. We propose a more light-weight method in Section 2.8.2.

Similar to the collision detection algorithm, for each intersecting pair, we identify

all the vertices of each body that are inside the other (and optionally the deepest

points on edges as well). Although [4] pointed out that the vertices of the contact

region (which lie on the vertices and edges of the original model) need to be considered,

we have found our point sampling method to be satisfactory. However, since we have

a triangulated surface for each object, we could do this if necessary. As in [54, 94]

we use the same equations to process each contact impulse that were used in the

collision algorithm, except that we set ǫ = 0. We start with the deepest point

of interpenetration that has a non-separating relative velocity, and again use the

standard algebraic collision laws. Then a new predicted position can be determined

and the process repeated until all points are either non-overlapping or separating.

Although the aggressive optimization algorithm that processes all points until they

are separating at least once could be applied here as well, it is not as attractive for

contact as it is for collision since greater accuracy is usually desired for contacts.

For improved accuracy, we propose the following procedure. Rather than applying

a fully inelastic impulse of ǫ = 0 at each point of contact, we gradually stop the object

from approaching. For example, on the first iteration of contact processing we apply

impulses using ǫ = −.9, on the next iteration we use ǫ = −.8, and so on until we

finally use ǫ = 0 on the last iteration. A negative coefficient of restitution simply

indicates that rather than stop or reverse an approaching object, we only slow it

down.

In the collision processing algorithm, we used the predicted positions to determine

the geometry (e.g. normal) of the collision. Although it would have been better to use

the real geometry at the time of collision, the collision time is not readily available and

furthermore the accuracy is not required since objects are simply bouncing around.

On the other hand, objects should be sitting still in the contact case, and thus more

accuracy is required to prevent incorrect rattling around of objects. Moreover, the
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correct contact geometry is exactly the current position (as opposed to the predicted

position), since the contact forces should be applied before the object moved. Thus,

we use the current position to process contacts.

2.8.1 Contact graph

Before updating the velocities of the rigid bodies we construct a contact graph similar

to [54, 1] with the intention of identifying which bodies or groups of bodies are resting

on top of others and determining a useful ordering for contact processing. We perform

the following steps:4

Compute graph For each rigid body B:

• Compute the candidate position of B using its new velocity, v′ = v +

∆tg, and the candidate positions of the remaining bodies using their old

velocities.

• For each body B′ intersected by B in these candidate positions, add a

directed edge B′ → B to indicate that B is resting on B′.

Remove cycles Find all strongly connected components in the resulting graph and

collapse each component into a single node representing the bodies in that

component. The resulting graph is acyclic.

Assign ordering Use topological sort to assign each node a unique order or “level”

for contact processing.

For a stack of cubes, we get a contact graph that points from the ground up one

cube at a time to the top of the stack (Figure 2.11 (a)). For difficult problems such

as a set of dominoes arranged in a circle on the ground with each one resting on top

of the one in front of it, we simply get the ground in one level of the contact graph

and all the dominoes in a second level. Roughly speaking, objects are grouped into

the same level if they have a cyclic dependence on each other (Figure 2.11 (b)).

4Note that this differs slightly from the method we described in [51], where one body was moved
with gravity while the rest were kept stationary. The method described here handles more general
scenarios such as moving contact, e.g. a block resting on the floor of an ascending elevator.
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(a) (b)

Figure 2.11: Examples of contact graphs and associated orderings. (a) A
basic stack, bodies are ordered from bottom to top, starting with the
ground as number 1. (b) Example with a cycle, multiple bodies assigned
to level 2.

The purpose of the contact graph is to suggest an order in which contacts should

be processed, and we wish to sweep up and out from the ground and other static

(non-simulated) objects in order to increase the efficiency of the contact propagation

model. When considering objects in level i, we gather all contacts between objects

within level i as well as contacts between objects in this level and ones at lower-

numbered levels. With the latter type of contact pairs, the object in level i is, as a

result of the way we constructed the contact graph, necessarily “resting on” the lower

level object and not the other way around. The contact pairs found for level i are

put into a list and treated in any order iterating through this list a number of times

before moving on to the next level. Additionally, we sweep along the graph through

all levels multiple times for improved accuracy.

2.8.2 Shock propagation

Even with the aid of a contact graph, the propagation model for contact may require

many iterations to produce visually appealing results especially in simulations with

stacks of rigid bodies. For example, in the cube stack shown in Figure 2.10. To

alleviate this effect, we propose a shock propagation method that can be applied on

the last sweep through the contact graph. After each level is processed in this last

sweep, all the objects in that level are assigned infinite mass (their K matrix is set

to zero). Here, the benefit of sorting the objects into levels becomes most evident. If
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(a) (b) (c) (d) (e)

Figure 2.12: A single sweep of shock propagation correctly resolves contact
in this stack. (a) The initial stack. (b) Candidate positions during contact
processing. (c) Contact is resolved between bottom block and ground. (d)
Bottom block is set to have infinite inertia, and contact is resolved between
bottom two blocks (the bottom one does not move). (e) Middle block is
set to infinite inertia and contact is resolved between top two blocks.

an object of infinite mass is later found to be in contact with a higher-level object,

its motion is not affected by the impulses applied to resolve contact, and the higher

level object will simply have to move out of the way! Once assigned infinite mass,

objects retain this mass until the shock propagation phase has completed. As in

contact, we iterate a number of times over all contact pairs in each level, but unlike

contact we only complete one sweep through all of the levels. Note that when two

objects at the same level are in contact, neither has been set to infinite mass yet,

so shock propagation in this case is no different than our usual contact processing.

However, the potentially slow convergence of the usual contact processing has now

been localized to the smaller groups of strongly connected components in the scene.

To see how this algorithm works, consider the stack of objects in Figure 2.12.

Starting at the bottom of the stack, each object has its velocity set to zero during

contact processing, and its mass subsequently set to be infinite. As we work our

way up the stack, the falling objects cannot push the infinite mass objects out of the

way so they simply get their velocity set to zero as well. In this fashion, the contact

graph allows us to shock the stack to a zero velocity in one sweep. Without a final

shock propagation sweep, regular contact iterations would require many iterations to

converge to the stationary stack solution (recall Figure 2.10).
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Figure 2.13: Although the propagation treatment of contact and collision
allows the stacking and flipping of boxes as shown in the figure, our shock
propagation algorithm makes this both efficient and visually accurate.

In order to demonstrate why the propagation model for contact is still used for a

few iterations before applying shock propagation, we drop a larger box onto a plank

supporting a stack of blocks as shown in Figure 2.13. Here the contact graph points

up from the ground through all the objects, and when the larger box first comes

in contact with the plank, an edge will be added pointing from the plank to the

box. If shock propagation was applied immediately the box on the ground and then

the plank would have infinite mass. Thus the large falling box would simply see an

infinite mass plank and be unable to flip over the stack of boxes. However, contact

propagation allows both the plank to push up on the falling box and the falling box

to push back down. That is, even though “pushing down” increases the number of

iterations needed for the contact algorithm to converge, without this objects would

not feel the weight of other objects sitting on top of them. Thus, we sweep though our

contact graph a number of times in order to get a sense of weight, and then efficiently

force the algorithm to converge with a final shock propagation sweep. This allows the

stack of boxes to flip over as shown in Figure 2.13 (right).

Figure 2.14 shows another test where a heavy and a light block are both initially

at rest on top of a see-saw. When the simulation starts the weight of the heavier block

pushes down tilting the see-saw in that direction. Eventually it tilts enough for the

heavy block to slide off, and then the see-saw tilts back in the other direction under

the weight of the lighter block. Our combination of contact propagation followed by

shock propagation correctly and efficiently handles this scenario. On the other hand,
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Figure 2.14: A heavier block on the right tips the see-saw in that direc-
tion, and subsequently slides off. Then the smaller block tips the see-saw
back in the other direction. The propagation treatment of contact allows
the weight of each block to be felt, and our shock propagation method
keeps the blocks from interpenetrating without requiring a large number
of contact processing iterations.

if we run shock propagation only (i.e. omitting the contact propagation phase), the

see-saw either sits still or tips very slowly since it does not feel the weight of the heavy

block.

2.9 Rolling and Spinning Friction

Even when a rigid body has a contact point frozen under the effects of static friction,

it still has freedom to both roll and spin. [77, 119] damped these degrees of freedom

by adding forces to emulate rolling friction and air drag. Instead, we propose an

approach that treats these effects in the same manner as kinetic and static friction.

Let µr and µs designate the coefficients of rolling and spinning friction, and note that

these coefficients should depend on the local deformation of the object. This means

that they should by scaled by the local curvature with higher values in areas of lower

curvature. Thus for a sphere, these values are constant throughout the object.

Both rolling and spinning friction are based on the relative angular velocity, ωrel,

with normal and tangential components ωrel,n = ωrel · n and ωrel,t = ωrel − ωrel,nn.

The normal component governs spinning and the tangential component governs rolling

about ωrel,t/|ωrel,t|. We modify these by reducing the magnitude of the normal and
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tangential components by µsjn and µrjn respectively. To keep the object from re-

versing either its spin or roll direction, both of these reductions are limited to zero

otherwise preserving the sign. At this point we have a new relative angular velocity

ω
′

rel, and since the objects are sticking the relative velocity at the contact point is

u′

rel = 0. Next, we construct an impulse to achieve both proposed velocities.

If we apply the impulse at a point, specifying the desired relative velocity de-

termines the impulse j (through Equation (2.6)) and we are unable to also specify

the relative angular velocity. Thus, we assume that the impulse is applied over an

area, giving rise to an additional angular impulse contribution of jτ , separate from

the angular impulse r × j due to j. We still have v′ = v + j/m, but the change in

angular velocity is now ω
′ = ω +I−1(jτ + r× j). We can relate the linear and angular

impulses to the resulting linear and angular velocities at the point of collision using

the equation
(

u′

ω
′

)

=

(

u

ω

)

+ KS

(

j

jτ

)

,

where

KS =

[

δ/m + r∗T I−1r∗ r∗T I−1

I−1r∗ I−1

]

=

[

δ r∗T

0 δ

][

m−1δ 0

0 I−1

][

δ 0

r∗ δ

]

is the inverse spatial inertia matrix for the rigid body at the point of collision. KS is

similar to K in Equation (2.5) but incorporates angular effects. Letting KS
T = KS

1 +KS
2 ,

we get the equations for the change in relative velocities:

(

u′

rel

ω
′

rel

)

=

(

urel

ωrel

)

+ KS
T

(

j

jτ

)

. (2.8)

Viewing this as two (vector) equations in two unknowns, j and jτ , we can solve one

equation for j in terms of jτ , plug it into the other, and solve for jτ . This requires

inverting two 3 × 3 matrices.

It should be noted that these equations also form the basis for the post-stabilization

step of the articulated rigid bodies method of [144]. In that paper, the equations are
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used to compute internal joint impulses which project joint motion to the space of

allowed motions (see Section 8.1).

2.10 Pushing Apart Rigid Bodies

After the positions have been updated, interpenetration may still occur due to round-

off errors and cyclic dependencies in the contact graph. We experimented with the

use of first order physics (similar to [9]) to compute a “first order impulse” which

is applied to the objects’ positions and orientations to effect separation (without

modifying their velocities). As in shock propagation, we proceeded level by level

through the contact graph doing multiple iterations of separation adjustments within

each level before assigning infinite masses to each level in preparation for the next. To

reduce bias, we gradually separated objects within a level, each iteration increasing

the fraction of interpenetration that is corrected.

It should be noted that changing position without modifying velocity will in gen-

eral fail to conserve total angular momentum (with respect to a fixed point). Thus,

we plan to investigate further whether alternative strategies exist that reduce inter-

penetration while still conserving momentum.

2.11 Summary

To summarize, once a time step ∆t has been chosen (see Section 2.4), the main steps

of the algorithm are:

• Detect interference and apply collision impulses (Section 2.6)

• Compute contact graph (Section 2.8.1)

• Update velocity with gravity and any other external forces (Equation (2.2))

• Detect interference and apply (inelastic) contact impulses (Section 2.8)

• Apply a final sweep of shock propagation (Section 2.8.2)

• Advance bodies to their new positions (Equation (2.1))
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Figure 2.15: 500 nonconvex bones falling into a pile after passing through a
funnel. Exact triangle counts are given in Figure 2.2.

2.12 Results

Besides the basic tests that we discussed throughout the text, we also explored the

scalability of our algorithm addressing simulations of large numbers of nonconvex

objects with high resolution triangulated surfaces falling into stacks with multiple

contact points. While the CPU times for the simple examples were negligible, the

simulations depicted in Figures 2.1, 2.15, and 2.16, had a significant computational

cost. Dropping 500 and 1000 rings into a stack averaged about 3 minutes and 7

minutes per frame, respectively. Dropping 500 bones through a funnel into a pile

averaged about 7 minutes per frame, and we note that this simulation had about 2.8

million triangles total. All examples were run using 5 collision iterations, 10 contact

iterations, and a single shock propagation iteration, and all used friction.
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Figure 2.16: The complexity of our nonconvex objects is emphasized by
exposing their underlying tessellation.

2.13 Conclusions

We proposed a mixed representation of the geometry, combining triangulated surfaces

with signed distance functions defined on grids, and illustrated that this approach

has a number of advantages. We also proposed a novel time integration scheme that

removes the need for ad hoc threshold velocities and matches theoretical solutions

for blocks sliding and stopping on inclined planes. Finally, we proposed a new shock

propagation method that dramatically increases the efficiency and visual accuracy of

stacking objects. So far, our rolling and spinning friction model has only produced

good results for spheres and we are currently investigating more complex objects.

2.14 Thin Rigid Shells

The simulator described above specified that each rigid body had a dual represen-

tation consisting of a triangulated surface and an implicit surface. In fact, since
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collisions are detected based on nodes of one body penetrating the implicit surface

of another body, the algorithm will correctly handle collisions between a body with

only a triangulated surface representation and a body with only an implicit represen-

tation. In particular, it can correctly simulate a rigid shell interacting with a rigid

volumetric solid. This allows us to handle the boat example in Chapter 6 which cou-

ples a fully dynamic rigid shell (boat) to water and includes collision between boat

and ground (Figure 6.11). The other two rigid shell examples in that chapter, the

cup and “Buddha cup”, are scripted rather than dynamic.

On the other hand, for simulations of multiple rigid shells, an algorithm for han-

dling collisions between triangulated surfaces must be implemented. Recent work

described in [3] applied the geometric collisions framework used for cloth in [17] to

handle rigid shell collisions. The basic approach is to process collisions between the

two rigid triangulated surfaces by temporarily allowing them to deform and comput-

ing cloth-like collision impulses. The computed collision impulses are subsequently

applied to the rigid shells in order to update their position. Unlike cloth, nonpen-

etration is not guaranteed, although it may be reduced by repeating this collision

processing for a number of iterations.



Chapter 3

Deformable Body Simulation

3.1 Introduction

For many solids, the rigid body assumption cannot be applied, and fully deformable

models must be used. Various techniques exist for physically-based simulation of

deformable solids, including masses and springs, the finite element method, and the

finite volume method. Masses and springs are easier to implement, typically run

faster, and often produce visually plausible results for computer graphics. However,

they represent a discrete, heuristic model which is not grounded in continuum me-

chanics, making it harder to implement arbitrary constitutive models. Both finite

element and finite volume methods are based on continuum mechanics, and are thus

more popular for scientific applications. For more details on these various approaches

we refer the reader to [135, 64] and to the survey paper [100].

This chapter gives a brief overview of cloth simulation, and is included for com-

pleteness since cloth is used in some of the examples in Chapter 6. However, we

simply used the previously published approach of [17, 18]. Thus we emphasize that

this chapter reviews existing work, and does not include any novel contributions.

34
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Figure 3.1: The cloth triangle mesh forms a “herring-bone” pattern of al-
ternating diagonals.

3.2 Cloth Simulation

We use the basic cloth model of [18] including their bending formulation (see also [50]),

and the self-collision algorithm of [17]. A brief overview of the basic components of

this simulator is given below, and the reader is referred to the original papers for more

details. We note that there are many other interesting strategies for cloth including

the dynamics model proposed in [11], the bending model proposed in [25], and the

self-interference untangling strategy of [12].

3.2.1 Cloth Dynamics

The cloth mesh is represented by a rectangular grid of particles, with each rectangle

split into two triangles in a “herring-bone” pattern that splits neighboring triangles

using opposite diagonals (see Figure 3.1). The mass of each particle is computed by

adding one third of the mass of all of its incident triangles.

External and internal force contributions are computed for each cloth node. Since

collision and contact are handled separately, the only external force considered here

is gravity. Internal cloth forces consist of the following three components:

Edge Springs These springs connect particles sharing an edge in the triangle mesh,

and are used to model the general “strechiness” of the material. The force

includes both an elastic (Hookean) component and a damping component.
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Altitude Springs These springs are used to help preserve the shape of the triangle

elements, in particular trying to keep them from compressing in-plane. Each

triangle has three altitude springs (coinciding with their geometric altitudes),

but each time step only the force due to the shortest of the three is included in

the dynamics.

Bending Elements Bend between adjacent triangles is measured by the dihedral

angle, and [18] describes the formulation of forces that resist surface bending

while conserving linear and angular momentum and remaining decoupled from

in-plane motion.

The strain and strain-rate limiting approach of [17] was also used in order to avoid

instabilities and oscillations while allowing large time steps to be taken.

3.2.2 Collision and Contact

In the previous chapter, we were able to create plausible simulation of many rigid

bodies interacting. As mentioned in Section 2.10, our algorithm does not guarantee

nonpenetration between bodies, and interpenetration may occur in some situations.

Interpenetration between volumetric solids, while undesirable, can generally be visu-

ally tolerated and potentially corrected as the simulation progresses. This is due to

the fact that it is easy to detect when a point is inside a solid, making it possible to

continually try to drive that point towards the surface of the penetrated solid. On

the other hand, self-intersecting cloth can be very difficult to automatically untangle

(see [12]), and ideally self-penetration should be prevented from occurring in the first

place.

We use the cloth self-collision algorithm of [17] which combines repulsions and

geometric collisions in order to guarantee no self-penetration. Repulsion forces help

maintain separation between the cloth elements by pushing apart nodes, edges, and

triangles that get too close to one another. Geometric collisions detect cross-overs

between moving point-triangle pairs or edge-edge pairs, and collision impulses are

used to prevent intersection. The repulsion step is useful because it helps resolve
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many near-collisions before they occur using a computationally cheaper penalty force

approach. In addition, since geometric collisions will catch any intersections not

resolved by repulsion alone, the repulsion force stiffness can be kept reasonably low

so that the time step is not significantly affected. Through the additional use of

adaptive time stepping and rigid impact zones, [17] was able to eliminate all cloth

self-collision.

3.2.3 Time Step

The basic cloth update loop (taken from [17]) is:

• Compute candidate positions and velocities (x̄n+1, v̄n+1) using internal cloth

dynamics

– A mixed implicit/explicit time integration scheme is used

– Cloth nodes with fixed positions (e.g. tacks used to hang cloth) have their

velocities manually fixed at zero

• Compute the effective velocity v̄n+1/2 = (x̄n+1 − xn) /∆t

• Apply repulsions and geometric collisions to v̄n+1/2 to get the final velocity

vn+1/2

• Compute xn+1 = xn + ∆tvn+1/2

• Compute vn+1 from either v̄n+1 (if no repulsions or collisions) or by advancing

vn+1/2

For simulations coupling cloth to a fluid, we found it useful to allow the hanging

cloth to reach an equilibrium before starting to hit it with fluid. Typically we ran

a cloth-only simulation for a number of “preroll” frames before starting the fully

coupled simulation. Since the object of preroll is to bring the cloth to an equilibrium,

dynamic effects are unimportant, and adding additional damping helps reach steady-

state with fewer oscillations. In our case, a simple drag force was added to all cloth

nodes for the duration of the preroll.
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Fluid Simulation

4.1 Introduction

Simulations of water, smoke, and fire are becoming increasingly important in com-

puter graphics applications such as feature films, since it is often costly, dangerous,

or simply impossible to film the desired interactions between these fluids and their

surroundings. In addition, simulation of these phenomena has been pervasive in the

engineering and computational physics communities for some time. Thus, while sim-

ulations of explosions or tidal waves may be performed for prediction and analysis in

the engineering community, they may also be used for visual effects in films.

This chapter introduces a basic fluid simulator which will be augmented for cou-

pling in the chapters that follow. The focus will be on simulation of smoke and water,

although it can be extended to support fire simulation as well. In fluid simulation,

we are concerned with the time evolution of a set of variables. The main variable of

interest is the fluid’s velocity field u, and the Navier-Stokes equations governing its

evolution are given in Section 4.3. For smoke simulation, we treat the smoke as a

collection of tracer particles being carried with the underlying air flow, and we track

both its density, ρsmoke, and the temperature of the underlying fluid, T , in order to

incorporate buoyancy effects (see Section 4.4.3) and for use in visualization. While

gases fill the simulation domain, liquids can take on arbitrary shape and we need

to track their moving boundary. We use the particle level set method to track the

38



4.2. PREVIOUS WORK 39

water-air interface, which makes use of both particles and a signed distance function

φ as described in Section 4.5.1. Note that for our water simulation, the “air” portion

of the computational domain is not simulated, and is modeled as having no effect on

the water surface through appropriate boundary conditions (Section 4.5).

The content of this chapter is based on the basic fluid simulation portion of our

work published in [52]. For the most part we use previously published techniques [31,

37], although the key contribution of this chapter is our novel node-based approach

(Section 4.4.1).

4.2 Previous Work

Simulation of the incompressible three dimensional Navier-Stokes equations was pop-

ularized by [43] and later made more efficient by [127] via the use of semi-Lagrangian

advection techniques. [37] increased the small scale details with the use of a vorticity

confinement term. There is also the recent work of [123] that hybridizes grid-based

methods with vortex particle techniques. These equations have also been augmented

to model fire [76, 101], particle explosions [38], and even the interior of deformable

objects [102]. [117] combined interpolation with two dimensional simulations to cre-

ate three dimensional nuclear explosions, [138, 34] proposed methods for control, and

[128] solved these equations on surfaces creating beautiful imagery.

Previous work addressing liquid simulation includes [69], which solved a linearized

form of the three dimensional Navier-Stokes equations for water that interacted with

a variable height terrain. [23] solved the two dimensional Navier-Stokes equations

using the pressure to define a heightfield. The full three dimensional Navier-Stokes

equations were solved in [41, 42] using a particle in cell approach. A hybrid particle

and implicit surface approach to simulating water was proposed in [40], which led to

the particle level set method of [31]. Additional work includes the modeling of surface

tension [32, 59, 27, 82], viscoelastic fluids [49], sand [155], multiphase flow [60, 84],

control [87, 88, 125], and adaptive data structures [82, 63]. Level set methods for

simulating liquids have enjoyed popularity in recent films including “Terminator 3”

[116], “Pirates of the Caribbean” [116], “The Day After Tomorrow” [65], “The Cat
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in the Hat” [27], and “Scooby Doo 2” [147, 62].

4.3 Equations

As proposed in [37], we ignore viscous effects and use the inviscid form of the Navier-

Stokes equations,
∂u

∂t
+ (u · ∇)u = −∇p + f , (4.1)

where u = (u, v, w) is the velocity field, f accounts for acceleration due to external

forces, and the fluid density has been absorbed into the pressure p. ∇ is the gradient

operator, e.g. ∇ = (∂/∂x, ∂/∂y, ∂/∂z) in 3D. Equation (4.1) is simply a statement of

Newton’s second law, “a = F/m”, for the fluid. In our case, the fluid acceleration “a”

equals the material (or total) time derivative of the velocity, Du/Dt, which expands

to precisely the left hand side of Equation (4.1).

Additionally, we assume the fluid is incompressible, which is a reasonable assump-

tion for water and for gases (in an open space) at velocities well below the speed of

sound. Incompressibility, together with conservation of mass, give rise to the equation

∇ · u = 0, (4.2)

which is sometimes referred to as the “divergence free condition” for the velocity field.

In 3D, ∇ · u = ∂u/∂x + ∂v/∂y + ∂w/∂z.

We solve these equations using the projection method due to Chorin [26], which is

commonly used in the computer graphics community. The time derivative in Equa-

tion (4.1) is discretized using basic forward Euler: ∂u

∂t
≈ u

n+1
−u

n

∆t
. The resulting

semi-discrete PDE is split into the following fractional steps:

• Compute an intermediate velocity u∗ which incorporates advection and external

forces but does not satisfy the incompressibility constraint (Equation (4.2)):

u∗ − un

∆t
= − (un · ∇)un + f . (4.3)
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(a) (b)

Figure 4.1: (a) The standard staggered (MAC) grid stores velocities on
faces and pressure in the cell center. (b) Our node-based scheme keeps
velocity as well as other fluid scalars on the nodes. However, we still use
the staggered representation during the projection step.

• Project u∗ to get a final, divergence free velocity field un+1:

un+1 − u∗

∆t
= −∇p. (4.4)

This requires solving a separate equation for pressure (Section 4.4.4).

Below we describe in more detail how each of these steps is solved. First we discuss

our novel node-based approach for fluid simulation.

4.4 Fluid Solver

4.4.1 Node-Based Fluid Solver

We have implemented our algorithm on both uniform and octree grids, although this

exposition is primarily geared towards uniform grids with octree grids discussed only

when the extension is not obvious. Otherwise, we refer the reader to [82] for more

details.

Fluid simulation on uniform grids typically uses a staggered grid configuration,

sometimes referred to as a “MAC grid” as it was first used with the marker-and-

cell (MAC) technique of [55]. As shown in Figure 4.1 (a), the staggered approach
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places velocity components on faces and pressure values in the cell centers. The main

advantage of this configuration is that it lends itself to a straightforward discretization

of the projection equation utilizing compact, second order velocity divergence and

pressure gradient operators. The main drawback from our perspective is that storing

velocity components on separate faces makes it harder to interpolate velocity values

at arbitrary locations. In particular, while it can be done for uniform grids using

staggered, component-wise interpolation, it is much more complex in the case of

octrees. On octrees, it is most natural to interpolate nodal values, and our desire to

maintain consistency between both uniform and octree grids led us to devise a novel

node-based fluid solver with the velocity, temperature, smoke density, and level set

values all defined on the nodes (Figure 4.1 (b)).

We would still like to solve for the pressure on the standard MAC grid, due to the

advantages of this configuration. This could be done by averaging the nodal velocities

to the faces, projecting the face velocities to be divergence free, and then averaging

the result back to the nodes. However, these extra averaging steps deteriorated the

quality of our results so we designed an alternate method. We start by defining the

initial velocity field on the faces instead of the nodes. Then at each step, we first

average the face values to the nodes before computing the intermediate velocity u∗

on the nodes as will be described below. Then, instead of averaging this intermediate

velocity back to the faces, we compute a scaled force on each node as ∆u = u∗ − un

and average this scaled force back to the faces instead. The scaled force is then

used to increment the persistent face velocities to obtain the intermediate velocity on

the faces. This alternative method smears out the incremental forces instead of the

persistent velocities, and thus leads to excellent results competitive with the standard

MAC scheme. To understand the difference, consider that averaging velocities back

and forth causes dissipation independent of ∆t and even leads to dissipation when

∆t = 0. On the other hand, the smearing of our forces is scaled by ∆t and vanishes

as ∆t approaches 0. Overall, this method allows us to combine a simple and efficient

node-based scheme for computing the intermediate velocity with a robust face based

scheme for making the intermediate velocity divergence free. The advantage of our

strategy over straight back-and-forth averaging is very similar to the advantage of
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Figure 4.2: The first order semi-Lagrangian scheme determines the new
value at x by tracing back to xo and interpolating.

fluid-implicit-particle (FLIP) over particle-in-cell (PIC) averaging, which was recently

discussed in [155].

4.4.2 Semi-Lagrangian Advection

Advection refers to the process by which some quantity is transported from one place

to another, in our case carried along with the fluid flow. An advection equation for a

scalar ϕ is of the form ∂ϕ/∂t+u ·∇ϕ = 0, or equivalently Dϕ/Dt = 0, which can be

interpreted as the statement that ϕ remains unchanged as it is transported along the

velocity field u. The quantities to be advected are the smoke density, temperature,

the water level set, and even the fluid velocity itself (as one part of computing the

intermediate velocity u∗).

We solve these advection equations using the semi-Lagrangian method, introduced

by [28] to the atmospheric science community, and popularized in computer graphics

by [127]. Its popularity stems from the fact that it is unconditionally stable, allowing

for arbitrarily large time steps. The idea behind the method is to trace back along

characteristics (flow lines) to determine where the fluid parcel currently at location x

was in the previous time step (at time t−∆t). With no diffusion or source terms, this

quantity is assumed to be transported unchanged, and so assuming the parcel came

from xo, we set ϕ(x, t) = ϕ(xo, t − ∆t). The first order semi-Lagrangian method

approximates the characteristic path by a straight line, using xo = x − ∆tu(x),
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as shown in Figure 4.2. Since xo will not, in general, coincide with a grid node,

interpolation is used to compute ϕ at that location.

Note that besides simplifying interpolation on octree grids, our node-based solver

also adds the side benefit of requiring the computation of fewer semi-Lagrangian back-

traces. This is because typically semi-Lagrangian advection of velocity on staggered

grids traces back characteristics from faces, which outnumber nodes by a factor of

3. This will be particularly beneficial when we couple to thin solids, as each semi-

Lagrangian backtrace will involve performing an actual intersection test against the

solids (see Section 6.3.2).

4.4.3 Computing the Intermediate Velocity

In order to compute the intermediate velocity u∗ in Equation (4.3), we first update the

velocity field with the contribution due to the velocity advection term − (un · ∇)un.

As described above, we use the semi-Lagrangian method to accomplish this. We

use un (averaged from faces to nodes as described in Section 4.4.1) to compute the

semi-Lagrangian characteristics.

The second term added as part of computing u∗ is the external force f . For water,

gravity is simply added to each nodal velocity in the usual manner. For smoke, we

add weight and buoyancy terms that depend on the smoke’s density and the fluid’s

temperature: f = −αρsmokez + β(T − Ta)z, where z is the upward direction, α and β

are tunable parameters, and Ta is the ambient temperature.

Vorticity confinement can also be added to amplify small scale detail in the flow.

To compute the vorticity confinement force at each grid node, we calculate the curl

of the velocity field ω = ∇ × u using the six adjacent nodal velocity vectors. Then

we compute the vorticity magnitude. Its gradients, ∇|ω|, are computed using central

differencing of the six neighboring values of the vorticity. These gradients are nor-

malized to obtain the vorticity location vectors, N, which are then used to compute

the source term due to vorticity at the node, f = ǫ̂∆x(N × ω) (as in [37]).
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4.4.4 Solving for the Pressure

After obtaining face velocities from the nodal ones as described in Section 4.4.1, the

intermediate face velocity is made divergence free via

un+1 = u∗ − ∆t∇p, (4.5)

where the cell-centered pressure values are calculated by solving a Poisson equation

of the form

∇2p =
∇ · u∗

∆t
. (4.6)

The Laplacian operator ∇2 is simply shorthand for ∇·∇, and in 3D ∇2p = ∂2p/∂x2+

∂2p/∂y2 + ∂2p/∂z2. This equation can be derived by taking the divergence of Equa-

tion (4.5) and setting ∇ · un+1 = 0.

We solve Equation (4.6) by assembling a symmetric system of linear equations,

one for each MAC grid cell (that contains fluid) with the pressure defined at the

cell center. Boundary conditions need to be specified for cells along the edges of the

computational domain and water cells adjacent to air. In the case of water, we set

Dirichlet p = 1 boundary conditions in air cells. A Neumann boundary condition

implies that the pressure derivative at a cell face is zero (∂p/∂n = 0, where n is the

direction normal to the face), and thus the intermediate velocity is not modified as

can be seen in Equation (4.5). By additionally setting u∗ = ufixed on a face, a fixed

velocity can be enforced, and this is used at walls and other solid boundaries.1

Conjugate gradient with incomplete Cholesky preconditioning is used to solve the

resulting matrix system. We refer the reader to [40] and [82] for more information on

the discretization on uniform and octree grids, respectively. Furthermore, a second

order accurate pressure boundary condition was introduced in [47] and used for water

simulation in [32]. We used this higher order discretization for one of our examples,

and the end of Section 6.3.4 highlights the improved results.

1An equivalent way to think about it is that in order to achieve the desired velocity ufixed we

need to set the pressure gradient to be equal to the necessary acceleration: ∇p = u
fixed

−u
∗

∆t
.
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4.5 Water

For water simulation, we need to keep track of the water-air interface. We use the

particle level set method of [31], where the interface is identified with the zero level

set of a signed distance function φ, and φ ≤ 0 denotes water and φ > 0 denotes air.

Since we only solve for velocity values in the water, each time step we extrapolate

the nodal velocities across the interface into a 3-5 grid cell band to obtain velocity

boundary conditions. To do this, we first order all the grid cells in the band based

on their values of φ, noting that this ordering is only valid after reinitializing φ to

be a signed distance function (see Section 4.5.1). Then we solve the vector equation

∇φ · ∇u = 0 for the nodes in φ increasing order (see [31] for more details).

4.5.1 Level Set Method

[30] showed that the particle level set method relies primarily on the particles for

accuracy whereas the role of the level set is to provide connectivity and smoothness.

Thus, they showed that high order accurate level set advection could be replaced

with a semi-Lagrangian characteristic based scheme without adversely affecting the

accuracy.

The level set is maintained to be a signed distance function using the fast marching

method (see e.g. [105]). Initially, the nodes adjacent to the water interface are found

by checking for sign changes between neighbors in the Cartesian grid directions (or

along edges in the octree grid). Then each node in this list is given an initial φ value

by considering how far it is from the interface in each of the Cartesian grid directions

that have a sign change. After initialization, fast marching fills the remaining nodes

by marching out from the interface.

4.5.2 Particle Level Set Method

The particle level set method makes use of particles, seeded within a band of the

interface, to improve the accuracy of the interface by reducing the volume loss in

regions of high curvature resulting from numerical diffusion inherent to the advection
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scheme. Particles carry a sign denoting which of the two sides of the interface they

represent: positive particles represent air, and negative particles represent water.

When a particle is close to the interface, it locally adjusts the interface based on its

radius – i.e. how far that particle expects the interface to be. It accomplishes this by

modifying level set values on nearby grid nodes using a CSG union operation which

treats the particle as a small sphere. Since particles exist only in a thin band around

the interface and do not need to interact, they can be seeded at higher resolution than

the fluid grid to improve accuracy. The particle radii used for level set modification

are therefore much smaller than a grid cell, which may result in particles failing to

convert a surrounding node to liquid and incorrectly crossing over the the level set

zero isocontour. Such particles are flagged as “removed”, and no longer play a role

in correcting the interface. One approach is to delete removed particles. However,

keeping them around is an option which serves two purposes. First, removed particles

may return to the correct side of the interface, allowing them to be “reincorporated”

and once again help reduce interface capturing errors. Second, removed positive

particles may be used to emulate small bubbles in the fluid while removed negative

particles may be advanced using ballistic motion in order to emulate water droplets in

air. For our simulations we chose to keep removed negative particles, even rendering

them as described in Section 6.8, but delete positive particles which become removed.

[30] used a second order Runge-Kutta scheme to advance the particles in the

particle level set method. In our case, when advancing the particles to their time

n + 1 positions, we have un but do not yet know the time n + 1 fluid velocity field,

un+1. Thus, we advance a particle’s position using

xn+1 = xn +
∆t

2
(un(xn) + un(xn + ∆tun(xn))) , (4.7)

which is similar to a second order Runge-Kutta update, but uses a frozen velocity

field by replacing what should be un+1 in the second term with un. Interpolation is

used to evaluate un at arbitrary locations. Periodically, every 10-20 frames, particles

are reseeded to get a better representation of the interface.
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4.6 Algorithm Summary

Sequentially, the overall algorithm to advance from time n to n+1 proceeds as follows.

• Update fluid scalars:

Smoke: Update smoke density and fluid temperature (Section 4.4.2)

Water: Update level set and particles (Section 4.5)

• Compute intermediate fluid velocity u∗ (Section 4.4.3)

• Project u∗ to get a divergence-free un+1 (Section 4.4.4)

This algorithm is unconditionally stable due to our use of the semi-Lagrangian

advection scheme. Still, the semi-Lagrangian scheme does suffer from dissipation so

in the interest of accuracy we typically try to pick ∆t small enough so information

does not flow more than a few grid cells in one time step. For coupled simulations,

this will be restricted to no more than one grid cell (see Section 6.6).



Chapter 5

Solid-Fluid Coupling Overview

5.1 Introduction

Water and smoke both possess a large number of degrees of freedom and thus produce

visually rich motion especially when interacting with solid objects. This makes these

media both interesting and popular from a storytelling or entertainment perspective.

Often, two-way coupling between fluids and solids is not desirable, since the animator

does not want the fluid changing or resisting their artistic development. On the other

hand, animators have difficulty when the solid has many degrees of freedom, e.g.

cloth, and have resorted to simulation to obtain the desired effects. Moreover, thin

or light weight objects need to feel the effect of the fluid, especially heavy fluids such

as water, in order to make their animation plausible. Thus, the two-way interaction

of thin deformable high degree of freedom solids and heavy liquids with interfaces

is highly desirable, and will be examined in Chapter 6. In addition, coupling to

volumetric solids will be covered in Chapter 7. In this chapter, some previous work

as well as general issues underlying two-way coupled simulations of solids and fluids

will be discussed.

49
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5.2 Previous Work

Various authors have used simplified fluid dynamics to blow around solid objects, e.g.

[145, 142], and many have used simplified wind models to simulate flags flapping in

the wind, e.g. [80]. [23] simulated one-way coupling (separately in both directions)

between moving obstacles and heightfield water, while two-way coupling was achieved

in the heightfield water model of [104]. [53] used gridless smoothed particle hydro-

dynamics (SPH) techniques to couple air flows to hair simulation, but since hair is

one-dimensional it does not restrict or contain the fluid as shells and volumetric solids

do.

SPH models for water were considered in [114, 98], and methods of this type

were coupled to deformable solids in [99] using virtual boundary particles. [46] also

used inter-particle forces, coupling the MAC fluid particles to the solid particles. [74]

coupled an SPH model for water to thin deformable cloth pointing out that particle

based fluid methods can be coupled without leaking using robust point face collisions,

although their method will leak if the time step is not chosen sufficiently (sometimes

severely) small. Of course, this can be alleviated with a more robust point face

collision method as in [17].

The drawback of using SPH methods is that it is difficult to obtain the smooth liq-

uid surfaces characteristic of level set methods, and recently [20] proposed a method

for the two-way coupling of rigid bodies to level set based fluid simulations. They

first rasterize the rigid body velocity onto the grid, and then solve the fluid equa-

tions everywhere treating the rasterized rigid body velocities as if they were fluid

(this was also done in [40] for modeling slip boundary conditions). Then they modify

the velocities in the rigid body region to account for collisions and buoyancy before

averaging them to a valid rigid body velocity with a constant translational and rota-

tional component. The authors point out that their method leaks if the objects are

too thin (whereas we will consider arbitrarily thin objects in the next chapter), and

deformable materials were not considered.

At least as far back as [103] (see also [15] for a review), two-way coupling has

been carried out with the fluid’s pressure providing forces to the solid, and the solid’s
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velocity providing boundary conditions for the fluid. This commonly used approach

was also used in [132, 131] for coupling rigid bodies to liquids and in [151] to couple

solids to a compressible fluid. Our coupling strategy is based on this approach.

5.3 Eulerian and Lagrangian Schemes

There are various computational methods for simulating fluids, solids and their cou-

pling. Typically fluids such as water (e.g. [40, 31]) are simulated using Eulerian

numerical methods with a fixed mesh that material moves through, whereas solids

such as cloth (e.g. [17, 25, 12]) are simulated with a Lagrangian numerical method

where the mesh moves with the material.

Using a moving mesh for solids has the advantage that material quantities are

automatically transported along with the object’s motion, making it easier to track

strain history, for example. This is harder in an Eulerian framework because advection

schemes are not accurate enough, making fixed-mesh simulation of volumetric solids

less desirable, and simulation of thin shells virtually impossible. Furthermore, lack of

a body-conforming mesh makes it harder to compute accurate self-collision, rolling,

etc. Nevertheless, [149] simulated solids and fluids together on a fixed uniform grid

in order to unify treatment of multiple phases of matter. There has also been some

interesting recent work with high viscosity and viscoelastic fluids [21, 116, 49], in

which the fluid’s behavior approaches that of a solid.

Lagrangian, mesh-based simulations of fluids do exist (e.g. [58, 115]), their primary

advantage being that it is easier to specify boundary conditions on the fluid since

the fluid mesh conforms to the shape of the boundary. However, fluids undergo

extreme deformation and (in the case of liquids) topological change due to pinching

and merging. As a result, such schemes require expensive, automated remeshing,

which makes them less attractive than fixed-mesh approaches. There also exist mesh-

free approaches to fluid simulation such as particle-based techniques (e.g. [155, 98,

114]). Unfortunately, particle methods have not yet reached the quality and efficiency

of specialized techniques for fluid simulation. High particle densities are typically

required to achieve good accuracy for fluids, and it is often difficult to generate a
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smooth renderable surface from the resulting set of points.

Somewhere in between purely Eulerian and purely Lagrangian simulations lies the

arbitrary Lagrangian Eulerian (ALE) method (e.g. [57]). An ALE mesh combines

fixed (Eulerian) regions and moving (Lagrangian) regions, including regions whose

elements move at intermediate speeds not generally equal to the material speed.

We choose to take the more typical approach of Lagrangian solids (Chapters 2 and

3) and Eulerian fluids (Chapter 4). With separate representations for the solid and

the fluid, our coupling algorithm must address how the effect of each will be imposed

on the other. Since we use basic uniform or octree grids which do not conform to the

boundaries of submerged solids, we will need to take care of dealing with “cut cells”

(fluid cells overlapped by a solid), crossed-over nodes, etc.

5.4 Strong and Weak Coupling

In algorithms for solid-fluid coupling, a distinction is often made between “strong”

and “weak” coupling (see e.g. [153]). Strong coupling is the term used for simulators

which evolve both solid and fluid together as a system that incorporates the effect

of each on the other. Alternatively, with weak coupling the solid is updated by

fixing the fluid’s current state and advancing the solid without accounting for its

immediate effect on the fluid. Subsequently, the fluid is updated given the solid’s new

conditions, but ignoring its influence on the solid. [10] did something similar in their

“partitioned” approach to coupling rigid and deformable solids, which interleaved

existing simulators. Note that the partitioned approach, while typically used for

weak coupling, can also be used to implement strong coupling by sub-iterating until

solid and fluid states satisfy common boundary conditions to an acceptable tolerance.

This represents an iterative solution to the global system.

The main tradeoffs between the two approaches to coupling are efficiency and

simplicity. Strong coupling is typically more stable because it ensures the updated

solid and fluid states are mutually compatible. However, it is less efficient than weak

coupling, because it either requires solving a monolithic system, or requires running

sub-iterations in a partitioned scheme.
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The coupling approach described in the following chapters achieves weak coupling

using a partitioned approach. Key to our algorithm is that the solids simulator will be

treated as a black box, allowing it to be easily replaced by any preferred alternative.

A novel aspect of our method is the computation of a smoother pressure for coupling,

which helps us recover some of the stability lost by choosing to use weak coupling.

5.5 Thin Shells and Volumetric Solids

The description of our coupled simulator will be split into a chapter dealing with thin

shells (Chapter 6) and a chapter for volumetric solids (Chapter 7). This distinction

is made because coupling a fluid to an infinitesimally thin solid presents a number

of unique challenges that do not exist when coupling to volumetric solids. Our focus

will be on thin shells which are open surfaces, rather than closed membranes. This

exacerbates the problem because while closed membranes can, for example, leverage

a ghost fluid approach [36], open shells with no distinct inside or outside require more

careful treatment. Of note is the recent work [133] which actually applied a ghost

fluid approach to an immersed open boundary by defining two distinct sides locally

to the interface.

One challenge in coupling to thin shells is preventing fluid from leaking across the

solid. The key to stopping all leaks will involve modifying our computational stencils

to avoid mixing fluid quantities from opposite sides of the solid.

Another big challenges in coupling to thin shells is how to actually accomplish the

coupling, given that the solid is infinitesimally thin while the fluid’s grid resolution

limits its ability to resolve spatial detail. A distinction is often made between “diffuse”

and “sharp” methods (see [140] for a nice overview). Diffuse methods give the solid

a numerical thickness on the order of a few grid cells and blend its properties onto

the fluid grid using a smoothed delta function. For example, the solid’s density

or internal force might be exerted on the fluid within this thickened region. The

immersed boundary method is one example of a diffuse method, and will be discussed

further in the following chapter. In contrast, sharp methods incorporate the effect

of the solid by modifying the computational stencils near the solid/fluid interface.



54 CHAPTER 5. SOLID-FLUID COUPLING OVERVIEW

Modifications to the stencil may be nontrivial and computationally more expensive,

making sharp methods generally more complex than diffuse methods. However, the

advantage of sharp interface methods is increased accuracy. In fact, the accuracy of

the immersed boundary method is limited to first order for problems with nonsmooth

solutions [75]. Our approach treats the solid in a sharp manner as much as possible,

performing ray intersections against the solid’s Lagrangian mesh to compute one-

sided computational stencils. However, in order to enforce the solid’s velocity on the

fluid we will rasterize it onto the faces of the fluid grid. This is the one part of our

algorithm which could arguably be called diffuse, as it distorts the shape of the solid

(making first order errors). However, by rasterizing only onto faces we still maintain

a compact representation that can support pressure jumps, whereas diffuse methods

only obtain smeared pressure profiles.



Chapter 6

Solid-Fluid Coupling for Thin

Shells

6.1 Introduction

Very little research has been carried out on algorithms that couple infinitesimally thin

Lagrangian-based solids to Eulerian-based fluids, and few computational strategies

exist. Moreover, they are mostly focused on single phase fluids, whereas our main

interest is fluids with interfaces such as between water and air. Probably the most

common strategy for single phase fluids is based on the immersed boundary method

of [109, 110], and [154] used this method to calculate the motion of a thin flexible

filament (a curve) in two spatial dimensions. A good survey of immersed boundary

methods is [95]. A thin solid object feels and reacts to fluid forces as molecules

collide against it, and the net force on the thin solid comes directly from the pressure

differential across it. The immersed boundary method cannot handle this pressure

jump and instead forces the pressure to be continuous across the thin solid, and thus

(nonexistent) pressure jumps cannot be used to apply forces to the solid. Instead,

they simply set the solid velocity to be equal to the velocity of the surrounding fluid,

and use ad hoc methods to provide resistance to the fluid motion. For example,

[154] smeared out the filament over a number of grid cells converting it into a higher

density fluid, and added artificial forces to the right hand side of the Navier-Stokes

55
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Figure 6.1: Water and cloth interacting with full two-way coupling (256 ×
256 × 192 effective resolution octree, 30K triangles in the cloth).

equations. Similar to penalty methods for rigid body contact constraints, these forces

can only coerce a desired fluid reaction and often require small time steps for stability

and accuracy. [33] also simulated a flapping filament, and coupled using an approach

more similar to ours (using the solid’s velocity and jumps in the fluid’s pressure), but

still only handled single phase fluids.

[68] pointed out that smeared out pressures profiles, such as those used in the

immersed boundary method, can cause parasitic currents when used to make the

velocity divergence free (see also [46]). A key to our method is the replacement

of penalty forces with analytic constraints on the fluid velocity forcing it to flow as

dictated by the velocity of the solid. Heuristically similar to the analytic methods of [7]

for solving contact phenomena in rigid bodies, we replace the stiff inaccurate penalty

forces of the immersed boundary method with a robust constraint that requires the

solution of a linear system of equations greatly reducing the errors. Conveniently,

we are already solving a linear system for the pressure, and it is readily modified to

include the no flow constraint exactly as opposed to the only approximate enforcement

via penalty forces. This is essentially a sharp interface approach similar in spirit to
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Figure 6.2: Two-way coupled cloth and smoke (210× 140× 140 uniform grid,
30K triangles in the cloth).

the immersed interface method (see e.g. [78]). However, we note that neither the

immersed interface method nor the immersed boundary method has been used to

solve solid/fluid coupling problems in the presence of liquid interfaces or thin films

as we do here.

Most of the content in this chapter is extracted from our paper on coupling water

and smoke to thin deformable and rigid shells [52]. Our main contributions include the

use of robust visibility and ray intersections to prevent leaking, enforcing the solid’s

velocity on the fluid in a manner that reduces fluid mass loss, and the computation

of a smoother pressure for coupling to help improve stability.

6.2 Preventing Leaks

Our goal is to completely prevent fluid from leaking across the thin shell which is

represented by a moving triangulated surface. Two key elements necessary to achieve

this goal are modifying our computational stencils to be one-sided and dealing with

crossed-over nodes. These are described next.

6.2.1 One-Sided Stencils

In our fluid simulation, we typically need to interpolate data from the fluid grid. Tri-

linear interpolation accomplishes this by taking a weighted combination of the values

at the 8 corner nodes of the surrounding grid cell. However, for use in our coupled
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reference point

visible point

occluded point

inside point

ε /2ε

Figure 6.3: (Left) We intersect with a triangle wedge that is formed by
extending the edges and face in normal directions by ε/2. (Right) Given a
reference point, another point can be classified as visible, inside a triangle
wedge, or occluded by the result of a ray cast.

simulator, we must be careful to exclude from our interpolation stencil nodes which

lie on the opposite side of a solid’s surface, as they represent data which is decoupled

from the local fluid. Our approach is to use visibility and occlusion to determine

which point combinations lie on the same side of the surface and may be used for

interpolation (as well as for finite differences and other computations). This is accom-

plished via robust ray casting against thickened triangle wedges as in [17] (see also

Figure 6.3 (left)). From the perspective of any reference point in space, the world is

broken up into three regions: visible points, occluded points, and points inside a trian-

gle wedge of the object. This partitioning is accomplished by casting a ray from the

reference point to a point in question as shown in Figure 6.3 (right). Intersection tests

are prone to roundoff errors, leading to a fuzzy notion of where exactly the object’s

surface lies. We pick the thickness ε so that the thickened wedge encloses this fuzzy

region, ensuring that points outside of the thickened wedge can be determined to be

visible or occluded in a robust manner depending on the result of the ray intersection

test. The visibility of points labeled inside cannot be robustly determined, and in

order to prevent any leaks we rule out these points, in addition to all occluded points,

when constructing stencils for interpolation, differentiation, etc. Note that reference

points which are themselves inside the thickened wedge are considered invalid (see

the next section), and will not be incorporated into computational stencils of their

neighbors since they are not visible to any other point.
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Figure 6.4: In 2D, one-sided interpolation involves casting rays to the 4
surrounding nodes. In this case, the bottom-left node is occluded by
the thin solid, and a replacement value will be used in its place in the
interpolation formula.

Our procedure for one-sided trilinear interpolation first tests the visibility of the 8

surrounding nodes as described above. Values at nodes which are not visible cannot

be used, so instead we determine replacement values which will be used in their place

during interpolation (see Figure 6.4). These replacement values are not stored on

the grid, they are simply temporary ghost values computed on the fly. In particular,

we use an ambient temperature value as a replacement value for temperature, and

zero for smoke density. For velocity we use the local object velocity at the location

where the visibility ray (first) intersects the object. Our technique for computing

a replacement ghost value for φ will be described in Section 6.4.1. Note that our

approach is flexible in how these are computed, so improved replacement values may

be easily incorporated into our simulator.1

The main point here is that without a global notion of inside and outside for the

solid, we are forced to determine whether points are on the same side on the fly,

and compute replacement values as necessary. This is in contrast to the more typical

ghost fluid approach of filling ghost values in advance. It is worth noting that recently

[84] computed ghost values for multiphase flow on the fly in order to simplify their

treatment of jump conditions.

1For example, a more careful consideration of normal and tangential velocity at the solid-fluid
interface, similar to our approach for volumetric solids in Section 7.3.1, would allow us to model
full-slip boundary conditions.



60 CHAPTER 6. SOLID-FLUID COUPLING FOR THIN SHELLS

(a) (b)

(c) (d)

Figure 6.5: Nodes crossed over by the solid between (a) and (b) are marked
as invalid, and are revalidated by iteratively averaging from valid neighbors
in (c) and (d).

6.2.2 Invalid Nodes and Revalidation

When a thin solid moves, a point originally on one side of the object surface may

be swept over by the surface and end up on the other side of it (see Figure 6.5 (a)-

(b)). In this case, the values located at that point are invalidated for all subsequent

interpolation, since they represent information from the other side of the object.

Detecting such points is crucial to preventing leaks and is accomplished on a per-

triangle basis. Each time step, we move the triangle nodes with linear trajectories,

and consider a point invalid if it intersects the triangle itself (unthickened) during

the time step. Checking this amounts to solving a cubic equation as in [17]. For

robustness, we additionally consider a point invalid if it is either inside the triangle
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wedge at the beginning or at the end of a time step. Any point that does not start or

stop inside a triangle wedge will robustly register a collision with an interior triangle

if it crosses from one side of the object to the other. In the case of octrees, refinement

leads to new point values that are also marked as invalid. Coarsening only involves

the removal of nodes, and thus nothing special need be done.

We provide valid values for invalid nodes using a Gauss-Jacobi iterative scheme

to propagate information. Each iteration, every invalid node is assigned the average

of its valid visible one ring neighbor values and marked valid (see Figure 6.5 (c)-(d)).

This technique of averaging uncovered points is similar to the blending methods used

by others, see e.g. [15]. Complicated object geometry or folding may produce nodes

that are still invalid after all iterations are complete. These nodes have no valid visible

neighbors, and thus we again iterate in a Gauss-Jacobi fashion except this time using

specially chosen values when visibility rays intersect an object. For example, we use

the object velocity, a zero density, an ambient or object temperature, the positive

distance to the object, etc.

6.2.3 Acceleration Structures

Since ray intersections are a key part of our leak prevention strategy, we employ a

number of acceleration structures for efficiency. A standard axis-aligned box hierarchy

(see e.g. [17]) is used for the triangulated surface accelerating intersection tests, etc.

Moreover, for each triangle, a slightly enlarged bounding box is used to label all the

voxels from the fluid simulation that are in close proximity to the surface, thus we

can subsequently determine in constant time whether a grid location is sufficiently

far from the surface so that we can avoid having to use the more expensive one-sided

stencil.

6.3 Modified Fluid Simulation

We now describe the modifications necessary in order to incorporate the effect of the

solid into our fluid solver described in Chapter 4.
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Figure 6.6: The semi-Lagrangian ray from x to xo is clipped against the
thickened solid, and the intersection point x̂o is used in place of xo as the
base interpolation point.

6.3.1 Node-Based Fluid Solver

A few modifications are required in our mixed node/face based scheme described in

Section 4.4.1. First, when averaging from the faces to the nodes, rays are traced to

the appropriate four faces (for a specific velocity component) and all visible faces are

used to compute an average velocity on the node. If no faces are visible, we average

the local object velocity from the locations where the visibility rays intersected the

object. Then when averaging the scaled forces back to the faces, the appropriate rays

are traced and all visible nodes are used to compute the average scaled force on a

face. If no nodes are visible, we replace the face velocity with the average obtained

using the object velocities determined by the visibility rays, i.e. scaled forces are not

used in this case.

6.3.2 Semi-Lagrangian Advection

Our semi-Lagrangian advection procedure (Section 4.4.2) needs to be modified to be

one-sided in order to prevent leaks. For each node, we trace a “semi-Lagrangian ray”

from x to xo = x−∆tu, intersecting it with a triangle wedge that is double the usual

size (i.e. using ε′ = 2ε in Figure 6.3 (left)). If an intersection is found, the point

of intersection, x̂o, will be subsequently used in place of xo as the base interpolation

point (see Figure 6.6). Doubling the thickness ensures that this clipped point remains
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visible to the point we are updating, x, and that the subsequent 8 interpolation rays

we send out from x̂o can accurately predict visibility2 for the interpolation stencil. If

any of these 8 secondary rays intersect the object, we use replacement values for that

term in the trilinear interpolation formula (as in Section 6.2.1).

Since each time step we advect all of the nodal quantities along the same charac-

teristics, we can avoid performing redundant computation by caching the results of

the ray intersections performed during semi-Lagrangian advection, and reusing these

for all advected quantities. For example, for a given node we can cache whether or not

the semi-Lagrangian ray intersects the solid, and can also cache visibility information

for one-sided interpolation at xo (or x̂o if the semi-Lagrangian ray was clipped). Since

replacement values are handled differently for the different quantities, these will be

computed during the individual advections. Note that having all quantities share the

same semi-Lagrangian rays is another benefit of having everything on the nodes in

our fluids solver.

6.3.3 Computing the Intermediate Velocity

After advecting the velocity field using one-sided semi-Lagrangian, the object is moved

to its new location and we label all nodes crossed over by the moving object as invalid.

Finally, these nodes are given valid values as described in Section 6.2.2.

For vorticity confinement, when computing the curl of the velocity field we use

the solid velocity in place of the fluid velocity for any of the six adjacent nodes which

are not visible. The gradients of the vorticity magnitude are computed using central

differencing of the six neighboring vorticity values, with each replaced by the vorticity

of the center node if it is not visible.

6.3.4 Solving for the Pressure

The key mechanism by which the solid will “push on” the fluid is by enforcing the

solid’s velocity as Neumann boundary conditions at the solid-fluid interface. We found

that thin films of water can quickly compress and lose mass against thin solid objects

2Through the two-ray path: from x to x̂o to the fluid node.
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Figure 6.7: Neumann boundary conditions (denoted by thickened faces) are
enforced at a cell face if the ray between two adjacent cell centers (where
pressures are defined) intersects an object.

if one is not careful in how these boundary conditions are handled. In fact, correctly

handling the boundary conditions is of utmost importance for mass conservation in

general, as discrepancies between the fluid and object velocity cause fluid to flow into

or out of an object losing or gaining mass respectively. Our method for handling this

is one of the key observations and contributions of our work. First, we note that un+1,

the velocity we compute for the fluid during the divergence free projection, will be

used in the next time step (i.e. going from time n + 1 to n + 2), and thus we need to

make this commensurate with what the solid will do in the next time step. In order

to do this, we calculate the size of the next fluid time step, evolve the solid object

to its time n + 2 state allowing the solid to take as many substeps as it needs to

remain accurate and stable, calculate an effective velocity for each node in the solid

by dividing its positional change by the size of the next fluid time step, and finally

rewind the solid back to its time n + 1 state (saving its n + 2 state for later). Now

the effective velocity represents exactly what the solid will do between time n + 1

and n + 2, and we use Neumann boundary conditions to force the fluid to move in

exactly this manner allowing for excellent resolution of thin films of water colliding

against cloth and thin shells. We cast rays from a cell center to the six neighboring

cell centers to see if an object cuts through the line segment connecting the pressures

as shown in Figure 6.7. And if so, we set a Neumann boundary condition at the cell

face and set the constrained velocity there equal to the appropriate component of

the effective velocity of the object. Then the divergence is computed in the standard
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Figure 6.8: A thin rigid kinematically controlled cup is filled with water,
and then poured out (160 × 192 × 160 effective resolution octree).

fashion, Equation (4.6) is solved, and the results are used in Equation (4.5).

A rather common difficulty with simulating highly deformable thin objects such

as cloth in a fluid flow is that the cloth folds over on itself and pockets of fluid

get separated from the flow. These are simple to identify by performing a flood

fill algorithm over the fluid cell centers using the Neumann and Dirichlet conditions

as the fill boundaries. If any region is surrounded entirely by Neumann boundary

conditions, then the coefficient matrix assembled using Equation (4.6) has a null

space corresponding to the vector of all 1’s and is not invertible. However, there

is a version of the conjugate gradient algorithm that can be applied to this matrix,

if we first enforce the compatibility condition [111]. This is enforced independently

in each region that has a null space using the area and velocity of the faces on the

boundary to calculate the net flow per unit area into or out of the region. Then for

each boundary face, we use this and the face area to obtain new temporary velocities

that enforce no net flow across the region boundary. Finally, we solve for the pressure

and make this region divergence free.

For water simulation, [32] describes a second order accurate discretization for en-

forcing the pressure boundary conditions at the water-air interface, which can signif-

icantly improve the smoothness of the water surface and reduce non-physical surface

bumps. This technique was easily adapted to our coupled simulator. It requires
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Figure 6.9: (Left) First order errors in boundary pressure result in a bumpy
surface. (Right) Using a second order accurate discretization results in a
significantly smoother surface.

cell-centered φ values, and these were computed using one-sided averaging from the

neighboring nodal φ values. Using these cell-centered φ, a more accurate estimate

for the location of the interface can be computed, and the second order accurate dis-

cretization is achieved by effectively enforcing the Dirichlet pressure boundary con-

dition p = 1 at that interface location rather than at the center of the air cell. The

dramatic difference in water surface as a result of using this technique is highlighted

in Figure 6.9.

6.4 Water

For extrapolation of nodal velocities across the water-air interface, we use the basic

technique described in Section 4.5, but in order to prevent velocities from leaking

across objects, during the extrapolation procedure we rule out neighbor values that

are not visible. It is possible that some points have no visible neighbors, and we

temporarily label these points invalid. After extrapolation is complete, all invalid

points are given valid values as explained in Section 6.2.2.
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Figure 6.10: A rigid kinematically controlled “Buddha cup” dipped, filled
and poured out (1923 effective resolution octree, 60K triangles in the rigid
cup).

6.4.1 Level Set Method

The level set is defined at the grid nodes, and thus we trace the same semi-Lagrangian

rays as for velocity advection. When gathering the 8 values for trilinear interpolation,

we replace nodes that are not visible with values averaged from a subset of the other

7 grid nodes of the cell whenever possible. In particular, we try to find a replacement

value using the nearest neighbors on the same side of the solid as the interpolation

point, which achieves something similar to constant extrapolation of the level set

across the solid. Each point that needs a replacement value first looks to see if any of

its three 1-ring neighbors (its edge-connected neighbors within the cell in question)

are visible to the base interpolation point. If so, they are averaged to obtain a new

value for the node in question. Otherwise, we check and average the three 2-ring

neighbors (connected by a two edge path), or if that fails we consider the single 3-

ring neighbor (diagonally opposite the node). If the process fails, there are no visible

nodes in the cell and the point in question cannot be updated. We mark this node’s

φ value invalid and fix it in a postprocess (see Section 6.2.2).

For redistancing using the fast marching method, typically a list of interface nodes

is found by looking for adjacent nodes with opposite signs in φ. We modify this list

for the presence of thin solids by adding to this list any water node (φ ≤ 0) that has
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a neighbor that is not visible, and subtracting from this list any air node (φ > 0)

that does not contain a visible water node. These last two adjustments ensure that

an interface exists up against the solid object, and that water does not have influence

across the thin triangulated surface. Typically, each node in this list is given an initial

φ value by considering how far it is from the interface in each of the directions that

have a sign change. However, for air nodes we ignore directions where the neighbor

is not visible, and for water nodes we use the minimum between the distance to the

solid and |φ| in directions that are not visible. This last adjustment prevents water

from incorrectly sticking to object. After initialization, we employ the fast marching

method to march out from the interface in the usual fashion, ruling out neighbors

that are not visible when updating a given point (similar to extrapolation of velocity

values).

6.4.2 Particle Level Set Method

Negative particles (including removed ones) need to collide with solid objects to pre-

vent water from leaking through those objects, and we collide them using a collision

distance that is preassigned to each particle by drawing a random number between

.1∆x to ∆x. This is done in order to promote a uniform distribution among particles

close to the surface. To collide a particle with an object, we find the closest point

on the object and compute the object normal at that location. We would like the

particle to be at least its collision distance away from the object, and if it is not we

move it in the normal direction by the required amount. If the particle intersects any

object during this move we either delete it or just do not move it. We found that

properly colliding negative particles against objects significantly improves the ability

to properly resolve thin films of fluid against an object.

The particle velocity is determined by one-sided interpolation from the fluid grid.

For negative particles that are closer than their collision distance to the object, we

clamp the normal component of their velocity to be at least that of the object so

that they do not get any closer to it. [30] showed that second order accurate particle

evolution was quite important, especially when using the semi-Lagrangian method
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Figure 6.11: A full dynamic simulation of a rigid body shell two-way coupled
with water. The boat is heavier than the water, but retains buoyancy due
to Archimedes’ principle (effectively replacing displaced water with the air
in its hull). Filling its hull with water causes it to sink, until it dynamically
collides with the ground (148×148×111 uniform grid, 2.5K triangles in the
dynamically simulated rigid boat).

for level set advection. To achieve this, we first evolve the particles forward in time

robustly colliding against the (stationary) object. Then we interpolate a new velocity

at this location and average it with the original velocity to get a second order accu-

rate velocity (as per Equation (4.7)), before moving the particle back to its original

location. For negative particles, we clamp the normal component of this averaged

velocity if they are either within their collision distance to the object or they collided

with the object when they were originally evolved.

Before moving each particle with its second order accurate velocity, we check for

intersections between the particle center and the moving object. We delete positive

particles that intersect the object, but attempt to adjust negative particles using the

triangle they intersect. With the particle and triangle in their initial position, we

record which side of the triangle the particle is on using the triangle normal. Then

with the particle and triangle in their final position, we move the particle normal to

the triangle so that it is on the same side as before and offset by its collision distance

in the normal direction. Finally, we check this new particle path against the moving

object and delete the particle if it still intersects the object. After advection, all
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negative particles are adjusted to be at least their collision distance away from the

object as discussed above.

After updating both the level set and the particles, we modify the level set values

using the particles. This is done in a one-sided fashion, only modifying a node using

particles visible to it. The final step in the particle level set method is to adjust the

radius of the particles based on the values of φ, and possibly delete particles that

have escaped too far from the interface. This is accomplished by evaluating φ at the

center of the particle in the same fashion as is done at the base of a semi-Lagrangian

ray during level set advection. Particle reseeding (every 10-20 frames) is performed

by initially disregarding the object altogether (for efficiency). Then, as a postprocess,

we evaluate φ at the center of the particle and delete particles with the wrong sign.

6.5 Cloth and Thin Shell Simulation

A significant feature of our approach is that one can use their favorite simulation

technology for the solid object independent of the fluid solver and the solid/fluid two-

way coupling algorithm. All that is required is the ability to apply external forces

to the solid, and to get back the positions of the nodes of the triangulated surface

from which we can calculate velocities assuming linear motion between fluid time

steps. When velocities within a triangle are required, we interpolate using barycentric

coordinates. For rigid body simulation, we use the method described in Chapter 2,

although our examples require no technology beyond that in [54, 97]. For cloth, we

use the basic cloth model from [17, 18] as outlined in Chapter 3.

6.5.1 Coupling to the Fluid

The traditional method for coupling fluids and solids is to use the solid to prescribe

velocity boundary conditions on the fluid, and the fluid to provide force boundary

conditions on the solid [15]. And as mentioned in Section 6.3.4, it is important to

coerce the fluid to move with the velocity of the solid so that thin films and sheets can

be supported with little to no mass loss. For compressible fluids, one typically uses
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Figure 6.12: Two-way coupled water flows over cloth (suspended at four
corners), demonstrating that thin objects can support a sheet of water
without leaks (2003 effective resolution octree grid, 30K triangles in the
cloth).

the pressure to provide a force on the surface of the solid, but for incompressible flow

the pressure can be both stiff and noisy as compared to the velocity field, as discussed

in [35]. This is because the pressure computed in the projection step essentially acts

as a Lagrange multiplier enforcing incompressibility as a hard constraint. At the

same time, the projection step is used to enforce the solid velocities on the fluid,

required for better mass conservation. Trying to enforce these two hard constraints

simultaneously leads to a stiff pressure.

Our approach is to compute a separate, smoother pressure pc more suitable for

coupling by relaxing one of these two hard constraints – namely, by not enforcing the

solid velocity on the fluid. To do this, we temporarily treat the solid as a fluid of dif-

ferent density. We emphasize that the following steps are done as a side computation,

only used to compute pc, and not affecting the actual fluid velocity or incompressible

pressure p.

As in Figure 6.7, we “rasterize” the solid onto the grid faces by casting rays from

each cell center to the 6 neighboring cell centers to see if an object cuts through the

line segment connecting the pressures. If so, we copy the local solid object velocity to

the corresponding cell face in the usual fashion. We have some choice as to which solid
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velocity to use: we could use its instantaneous time n velocity, or its effective velocity

between time n and n + 1 (as is done for the projection step). For the examples in

this chapter we chose the former approach, using the current instantaneous velocity

of the solid. However, in Section 7.6.1 a better choice for the solid’s velocity will be

described, producing more accurate buoyancy effects.

In addition to setting the solid’s velocity on the grid, we also need to rasterize

its density in order to make the coupling pressure reflect the correct relative density

between the fluid and the solid. In our discretization, density lives on the cell faces,

just like velocity. In order to compute the effective density that should be set on the

face, we multiply the area of the face by the surface density of the solid to calculate a

mass, m, for the cell face. Then we divide this mass by the local control volume which

amounts to half of each neighboring cell (divided up appropriately among the faces

for octrees). For a uniform grid V = △x△y△z. Finally, the density of the cell face is

set to m/V . All other cell faces have their density set to the fluid density. Since this

is now a variable density flow, we need to solve a variable coefficient Poisson equation

as in [101] where the analogue to Equation (4.6) is

∇ ·

(

∇pc

ρmix

)

=
∇ · u∗

mix

∆t
. (6.1)

Note that u∗

mix is set to the fluid velocity u∗ on the fluid faces and the solid velocity

(as computed above) on the solid faces. Similarly, ρmix is set to the mixed fluid and

solid densities.

Note that we do not use pc to modify the fluid velocity, nor do we attempt to move

the solid with the fluid velocity as for example in [20] and [154]. We only compute

pc in order to determine an external force to apply to the solid. The key advantage

is that we do not have to figure out how to model solid response due to buoyancy,

collisions, elasticity, etc. on the fluid dynamics grid and can instead simulate the

solid with any black box method including finite elements, masses and springs, one’s

favorite collision algorithms, implicit or semi-implicit time integration, etc. As an

added bonus, we are not hindered by the resolution of the fluid dynamics grid when

evolving the solid, and a coarse grid merely provides a smeared out fluid force while
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still allowing all other solid dynamics and motion to be modeled with independently

high resolution.

The force on the solid will be based on pressure jumps across the solid, so we

first calculate the pressure difference across each cell face that was considered to be

part of the solid. Since interpolation is more straightforward on nodes, the next step

is to transfer these pressure jump components from faces to nodes. We do this by

assigning the nodal value to be the average of the up to four face values (for a given

coordinate axis) that may be adjacent to it. We then spread these nodal differences

to a band of grid points near the solid using the same Gauss-Jacobi averaging used

to validate invalid nodes. This entire process is carried out independently for the

pressure differences in each of the three coordinate directions, and results in vector

pressure jumps stored on the nodes.

The force on a triangle is computed by first interpolating the nodal pressure jumps

to the barycenter of the triangle, multiplying by the triangle’s area (to get force

from pressure), and finally projecting onto the negative normal direction for that

triangle (negative because the fluid pushes towards lower pressure regions). That

is, F = −A ([pc] · n)n, where [pc] is the vector pressure jump and A is the triangle

area. In the case of a rigid body, the force and torque are accumulated by accounting

for all the triangles. In the case of cloth, one third of the net force on a triangle is

distributed to each node. For objects with coarse triangles, multiple sample points on

each triangle may be used for more accurate computation and application of pressure

jumps.

Since Neumann boundary conditions are enforced across the thin triangulated

surface when solving Equation (4.6), the computed pressure may have large jumps

and contain noise. In contrast, Neumann conditions are not enforced when solving

Equation (6.1), providing for a much more stable coupling mechanism and smoother

pressure values. However, the key is that our algorithm consists of both of these

important pressure solves: Equation (6.1) is used to compute a smoother pressure

for coupling in order to make the fluid affect the solid, and Equation (4.6) is used to

compute an incompressible pressure which enforces the solid’s velocity on the fluid.

[20] only performed a single pressure solve, treating the solid as a fluid similar to
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our solve for pc, but without additionally enforcing the solid’s velocity on the fluid

in a separate projection step. It then takes the continuous velocity field computed

for the combined solid/fluid domain and constrains the grid cells within the solid

to have a velocity consistent with rigid body motion. This makes the velocity field

discontinuous at the surface of the solid, allowing fluid to flow directly into the solid

and disappear.

6.6 Algorithm Summary

The overall coupling algorithm to advance from time n to n + 1 proceeds as shown

below (c.f. Section 4.6). Note that at the beginning of this time step we already

know the solid’s n + 1 state as it was already computed during the previous time

step. Knowing the solid’s state one step ahead of the fluid is necessary because in

order to compute un+1 at the end of the time step we need to know the solid’s effective

velocity between n+1 and n+2. However, by saving the solid’s state before advancing

it, we maintain at our disposal both its start and end states for this time step, and can

make sure that computations are done with the solid in the appropriate configuration.

For example, when checking for crossed-over nodes, we intersect grid nodes against

the solid’s swept motion between its n and n + 1 states.

• Update fluid scalars:

Smoke: Update smoke density and fluid temperature in a one-sided manner

(Section 6.3.2)

Water: Update level set and particles in a one-sided manner (Section 6.4)

• Compute intermediate fluid velocity u∗ using knowledge of the solid’s position

at both time n and n + 1 (Section 6.3.3)

• Move solid to its time n + 1 state

• Compute coupling pressure pc (Section 6.5.1)

• Advance solid to time n + 2 state, applying forces based on pc (Section 6.5.1)
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• Move solid back to its time n + 1 state (saving its time n + 2 state for later)

• Project u∗ to get a divergence-free un+1 while enforcing the solid’s effective

velocity (n + 1 to n + 2) at the solid-fluid interface (Section 6.3.4)

For our coupled simulator we pick a time step ∆t such that information travels at

most a fraction α of a grid cell. We commonly use values such as α = 0.9 or α = 0.5

in our simulations. We also make sure ∆t is small enough so that moving solids do

not cross more than that fraction of a grid cell in a time step, though this is typically

already satisfied by our first restriction since the fluid moves at the same speed as the

solid at their common interface.

6.7 Rendering

Rendering smoke and water against thin objects such as cloth poses complications

as standard techniques interpolate density and level set values with stencils that

intersect with thin bodies. Thus, we augmented our basic ray tracer with robust

intersections and interpolations. That is, we used the same visibility based schemes

used for simulation as described in Section 6.2.1. This effectively removes visual

artifacts caused by smoke and water showing through to the other side of objects,

and air pockets showing through to the smoke and water side.

Additionally, we experimented with rendering the removed negative particles gen-

erated by the particle level set method in order to add visually interesting splash and

spray to our simulation of water flowing over suspended cloth. Spray particles were

also rendered in [40]. Recall that the removed negative particles are negative (water)

particles which have escaped into the air domain. By evolving them using simple

ballistic motion we can consider them to represent water droplets. To make them

“appear” like water droplets in motion, we assigned each removed negative particle

an ellipsoidal shape by stretching a sphere along the direction parallel to the particle’s

velocity. In particular, we assume the base sphere has radius r̂ = srparticle, s a scale

factor multiplying the radius, rparticle, assigned to the particle in the particle level set

method. Then the stretched ellipsoid is set to have major axis radius of r1 = r̂+ 1

2
∆t v
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Figure 6.13: Illustration of the removed negative particles rendered as an
opaque Lambertian surface (after proper blending). These particles have
crossed over to the wrong side of the level set surface, but are too finely
detailed to be properly represented by the fluid simulation grid.

and the other two axes are set to r2 = r3 =
√

r̂3/r1 which preserves the volume of

the sphere. For our example we used s = 12.

One approach to rendering these ellipsoidal droplets could be to directly ray trace

them using analytic intersection routines. Instead we implicitly represent the droplets

using a level set, leveraging our existing code for ray tracing a level set volume. Since

the removed particles are too small to be represented on the grid (otherwise the

particles would be surrounded by water nodes and they would not be “removed”),

the grid around each particle must be further refined. This is most suitably done

using octrees, since they allow adaptive refinement.3 Note that all of this is a post-

process, and since we are not simulating on these grids we can typically get away with

rendering on highly refined grids.

3Of course, a simulation originally performed on a uniform grid can transfer its data to an octree
grid for rendering if particle rendering is desired.
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Figure 6.14: Our removed particle rendering technique was recently used to
add detail to a boat wake in [63].

The water droplets are rasterized on the refined octree, treating them as ellipsoidal

“blobbies” in order to create smoother blending between particles. The main level

set (representing the simulated water) is also resampled onto the same octree. The

two level sets are then merged by taking the min of their signed distance values and

redistancing, resulting in a single level set volume for rendering. By keeping track of

which portions of the level set came from the bulk water and which from the droplets

it is possible to shade the two differently. For example, the particles were rendered

opaque white in Figure 6.13 and slightly lighter than the bulk water in Figure 6.12.

As can be seen in these figures, the blending between the droplet shapes and the bulk

water is still not as smooth as we would like, so particle rendering is one area for

future work. More recently we used this technique in [63] to render splash and spray

in the wake of a boat (Figure 6.14).

6.8 Examples

We were able to simulate computational grids with effective resolutions as large as

256×256×192 for the fluid and as many as 90k triangles for the rigid and deforming

bodies using a 3 GHz Pentium 4. The computational cost ranged from 5 to 20 minutes

per frame, and thus the longest examples took a couple of days. The most expensive

computations in our algorithm were the many ray intersection tests associated with

the particles, since there tended to be many particles and they needed intersection

tests for one-sided interpolation (φ and u) as well as for handling collisions against
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the moving solids.

Figure 6.2 depicts a smoke stream flowing toward a suspended cloth curtain, and

the two-way coupling generates interesting wrinkles and folds as well as smoke mo-

tion. Figure 6.8 depicts a kinematically controlled cup dipped, raised, and poured,

demonstrating that our technique can model liquid behavior on both sides of a trian-

gulated surface independently. Figure 6.10 shows similar behavior for more complex

geometry. Full two-way coupling can be used with rigid shells as well, and Figure 6.11

shows a fully dynamic simulation of a boat floating until a stream of water sinks it.

Figure 6.12 shows a stream of water flowing over a piece of cloth demonstrating full

two-way coupling of cloth and water. Note specifically that the cloth supports the

water (without leaks) and produces highly detailed thin water sheets flowing off the

sides. For this example we augmented our ray tracer to additionally render the re-

moved negative particles as described in Section 6.7. Lastly, Figure 6.1 depicts a

stream of water flowing onto a cloth curtain causing it to deform.

6.9 Conclusions

We have presented a new computational algorithm for the coupling of incompressible

flows to thin objects represented by moving triangulated surfaces. Examples were

presented to demonstrate that this algorithm works well for one phase fluids such

as smoke and for fluids with interfaces such as water. Moreover, it works with both

rigid and deformable triangulated surfaces. Most importantly, our method prevents

the leaking of material across the triangulated surface, while accurately enforcing the

incompressibility condition in a one-sided fashion allowing for the interaction of thin

films of water with highly deformable thin objects such as cloth.



Chapter 7

Solid-Fluid Coupling for

Volumetric Solids

7.1 Introduction

Our strategy for coupling to volumetric bodies is partly based on that presented in

the preceding chapter for coupling to thin shells. In particular, it employs two dif-

ferent pressure solves to achieve two-way coupling, as for thin shells, but does not

require one-sided computational stencils. It is general enough to handle both rigid

and deformable volumetric solids, although the example presented in Section 7.7 will

demonstrate coupling to rigid solids only. Recall that our approach allows one to use

one’s favorite (and previously implemented) methods for simulating the solid indepen-

dent of the coupling. This is in contrast to [20] which, in addition to being restricted

to rigid bodies, requires special treatment of the solid. The main philosophical differ-

ence between the two approaches is that we compute the effect of the fluid on the solid

via a force per vertex that can be added to any solid simulation technique, while [20]

allows the fluid to completely determine the solid’s velocity overwriting all internal

dynamics (such as elastic deformation). In recent work, [152] applied the distributed

Lagrange multiplier approach, which forms the basis of the rigid fluid method of [20],

to coupling with deformable volumetric solids.
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A number of components of the algorithm we describe below are previously pub-

lished techniques. One novel aspect of our algorithm is adapting our thin shells

coupling strategy to volumetric solids, allowing us to compute a smoother pressure

for coupling while still enforcing the solid’s velocity on the fluid (Section 7.6). The

other main contribution is a more accurate computation for buoyancy (Section 7.6.1).

The content of this chapter is based on part of our work on melting and burning solids

[83], which incorporated two-way coupling for one of its examples.

7.2 Rasterizing Solids onto the Fluid Grid

For thin solids, we had to resort to one-sided computational stencils which involved

performing ray intersections with the solid. Since volumetric solids have a distinct

inside and outside, we can instead rasterize them onto the fluid grid in order to

facilitate interaction with the fluid. This is a diffuse rather than sharp approach,

but the benefit is in the reduced computational expense as compared to performing

many intersection tests. In Section 8.4, we consider a possible sharp approach for

volumetric solids.

As was done in [61, 116], we create a level set representation of the solids to be

stored on the fluid grid. Creating this representation can be accomplished by resam-

pling a solid’s existing signed distance function onto the fluid grid, or by following

the rasterization procedure outlined in Section 2.3.1 for solids with no existing level

set representation. Having a level set for the solids defined on the fluid grid allows

us to quickly determine whether a given fluid node is inside or outside any solid.

In fact, multiple solids can all be rasterized onto a single signed distance function,

essentially performing a union operation on their individual level sets. This will make

inside/outside queries constant time regardless of the number of bodies present. A

body identification number can additionally be stored on the fluid grid for those cases

where knowledge of the specific body present at that location is needed. The level

set for the solids, φsolid, is negative inside and positive outside, so its gradient gives

us an outward-pointing normal, nsolid.
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7.3 Ghost Values for Boundary Conditions

Since one-sided computational stencils will not be used for volumetric solids, values

at grid nodes which lie inside a solid may be used during fluid computation, and

therefore need to be filled with ghost fluid values. For thin shells, ghost values were

computed on the fly, for example replacing values of non-visible nodes during one-

sided interpolation and advection. For volumetric solids, we can fill nodes inside

the solid (φsolid ≤ 0) with ghost values in advance. Given a time step restriction

limiting how many grid cells the semi-Lagrangian characteristic ray may span (see

Section 6.6), only nodes within a fixed band inside the solid will ever participate in

fluid computation, reducing the number of nodes that must be filled.

Similar to thin shells, there are a number of different quantities we may need to

compute ghost values for, and we may compute them in different ways in order to

enforce desired boundary conditions. For smoke simulation, ghost values for smoke

density and temperature need to be filled inside the solid. As for thin shells, we can

simply use zero density, and ambient or object temperature. Ghost values for velocity

and the level set in the case of water are more complex and will be discussed next.

7.3.1 Velocity Ghost Values

We use the constrained velocity extrapolation approach of [61] (see also [116]) to fill

velocity ghost values for nodes inside the solid. The computation of velocity values

inside the solid is motivated by the boundary condition we are trying to model at

the solid-fluid interface. At the interface, a physical kinematic boundary conditions

dictates that the velocities of the fluid and the solid match in the normal direction.

On the other hand, enforcing this condition may hinder a liquid from separating

from the solid, and an approach to help improve separation is to instead enforce

(ufluid−usolid) ·nsolid ≥ 0. That is, the fluid velocity at the interface is only prevented

from penetrating the moving solid in the normal direction. In the tangential direction,

we can model a no-slip condition in which the tangential velocity components are

equal (as would occur with a viscous fluid), or a full-slip condition in which the

tangential components are decoupled. As in [61], a friction coefficient 0 ≤ µ ≤ 1
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may be used to create a partial slip condition (interpolating between the no-slip and

full-slip boundary conditions).

In practice, we implement these boundary conditions in the interior of the solid,

using ghost values, rather than at the solid-fluid interface. In order to construct these

ghost values we need both solid and fluid velocities at an interior solid node. The

solid velocity can be determined by querying the solid occupying that space for its

local velocity. To compute a “fluid” velocity inside the solid, we would like to copy

the velocity from the nearest fluid node, and one way to approximately achieve this is

by extrapolating surrounding fluid velocities into the solid. We can extrapolate using

the same technique used in Section 4.5.1 to extrapolate velocity across the water-air

interface, but using the signed distance function −φsolid (negated because we want to

extrapolate into the solid). Then the ghost value at a node is computed by combining

the solid velocity usolid and the extrapolated fluid velocity ũfluid using

ughost = max(ũfluid,n, usolid,n)nsolid + ((1 − µ)ũfluid,t + µusolid,t) , (7.1)

where the additional subscripts n and t denote normal and tangential components,

respectively.

7.3.2 Level Set Ghost Values

For water, ghost values for its level set φ need to be computed for nodes interior to

the solid. We follow the technique described in [116], whereby φ is extrapolated from

surrounding fluid nodes into the solid. Additionally, we need to take care to reduce

mass gain due to pulling water out of the solid. Following [116], nodes at which the

extrapolated level set value satisfies φ̃ < 0 and at which the extrapolated fluid velocity

additionally satisfies a separation criteria (ũfluid,n − usolid,n > .1|ũfluid − usolid|) are

instead set to a positive value |φsolid|.

This solution is still not completely satisfactory because while it helps water sep-

arate by preventing φ̃ < 0 from getting pulled out of the solid, it still allows φ̃ > 0 to

be pulled out which may create air pockets underwater. One possible improvement
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is to disallow a separating fluid velocity unless there are neighboring air nodes. Con-

ceptually, this allows water to separate from an object only if the formed cavity can

be filled by nearby air. We have had some success with this neighboring air condi-

tion, but it seems as though it might be easier to control separation conditions at the

solid-fluid interface rather than by filling ghost values inside the solid. For this reason

it may be worth clipping semi-Lagrangian rays against the solid, and incorporating

a one-sided approach for volumetric solids similar to that used for thin shells. This

will be discussed as possible future work in Section 8.4.

7.3.3 Freshly Cleared Nodes

Similar to crossed-over nodes in thin shells coupling, when volumetric solids move,

some nodes previously inside the solid end up outside. We need to ensure these

“freshly cleared nodes” have reasonable values for the subsequent fluid simulation. For

thin shells, these nodes obtained valid values through averaging from valid neighbors

(see Section 6.2.2). In the case of volumetric solids, our approach is to simply allow

freshly cleared nodes to retain the ghost values they were filled with. We have found

that these values give reasonable results in our simulations.

7.4 Particle Level Set Method

Handling the interaction between the solids and the particles of the particle level set

method is easier for volumetric solids than for thin solids. For thin shells, particles

require ray intersections for one-sided interpolation as well as to prevent them from

crossing over the solids during particle advection. With volumetric bodies we are

lucky because the ghost values defined in the solid can be used in place of performing

one-sided interpolation, and colliding the particles against the solid is made easy by

using φsolid. Using this signed distance function allows us to easily determine when

particles are within collision distance of the solid, and allow us to push particles out

of the solid along the normal direction nsolid. In particular, we can push them out to

their precomputed target collision distance to help uniformly stagger them in a band
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around the solid’s interface. This is similar to the approach in [116].

7.5 Solving for the Pressure

One of the key contributions of our thin shells coupling approach was reducing mass

loss at the solid-fluid interface by enforcing the effective velocity of the solid on the

fluid. We do the same for volumetric solids, enforcing this velocity during the pressure

projection step (as in Section 6.3.4).

For volumetric solids, we need to set Neumann boundary conditions on grid faces

along the boundary of the solid. There are various ways this can be accomplished.

For example, one approach is setting Neumann conditions on all faces inside the solid,

since setting interior solid faces to Neumann in addition to boundary faces does not

affect the pressure solution in the fluid region. Determining which faces are inside

could be done by performing an inside/outside test at the location of the face center,

or by checking the sign of φsolid averaged from the four corner nodes of a face. An

alternative approach, which only sets boundary faces to Neumann, is computing cell-

centered φsolid and marking faces whose two adjacent cell centers have opposite signs.

In any case, these various approaches all give boundaries that are to within O (∆x)

of each other. The effective solid velocities to be enforced on the fluid are also set on

these Neumann faces. The rest of the pressure projection step proceeds just as for

thin shells.

7.6 Coupling to the Fluid

As for thin shells, we determine fluid forces on the solid by computing a smoother

coupling pressure pc, temporarily treating the solid as a fluid. We set the solid’s

density and velocity on all faces inside the solid domain, and solve the variable density

Poisson equation (Equation (6.1)) without enforcing Neumann boundary conditions.

Since the solid’s density is already a volumetric density, we can simply set that density

on the grid face without having to compute masses and control volumes as was done

for thin shells.
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For thin shells, it was the pressure jump across the solid that was producing a

net force on the solid. In the case of volumetric solids, we instead apply the pressure

itself around the boundary of the solid. In order to do this, a pressure value needs

to be computed at the barycenter of each surface triangle. Solving Equation (6.1)

determines pc everywhere in the combined fluid and solid domain,1 and we have

found the simulation gave reasonable results if we simply interpolated the pressure

values directly from the grid without differentiating between solid and fluid cells.

Alternatively, one could extrapolate pressure from fluid cells into the solid in order

to ensure only pressure values associated with fluid are used in the interpolation.

Additionally, it should be noted that pressure values would need to be transferred

from cell centers to the nodes in order to enable interpolation on octrees.

Force is computed from the interpolated pressure using F = −Apcn. For rigid

bodies, these forces and associated torques are accumulated around the boundary to

produce a net force and torque on the center of mass. For deformable solids, the force

is equally distributed to the nodes of the surface triangle. As for thin shells, coarse

surface triangles can be supersampled to compute a more accurate force distribution.

7.6.1 Improved Coupling Force

As mentioned in Section 6.5.1, when solving Equation (6.1) for pc, we set u∗

mix to u∗

in the fluid region and to the solid’s velocity in the solid region. Options for which

solid velocity to use included its instantaneous velocity and its effective velocity, but

in [83] we proposed a better choice which improves the overall accuracy of the fluid to

solid coupling forces. Consider a stationary, neutrally buoyant object submerged in

a still fluid, where it should remain at rest. Since the advection term is 0, the fluid’s

intermediate velocity is simply u∗ = ∆tg. In order for Equation (6.1) to give the

correct (hydrostatic) coupling pressure, u∗

mix inside the solid should be identical to

1However, pressure values are not computed in cells just outside the simulation domain, where
either Dirichlet or Neumann boundary conditions are enforced. In particular, while Dirichlet cells
have a fixed pressure set, exterior cells adjacent to Neumann boundary faces will not have a pressure
explicitly computed. One option is to set an exterior Neumann cell to have the same pressure as its
interior neighbor, consistent with the Neumann condition, ∂p/∂n = 0, at their joint face. A more
accurate alternative is mentioned in [83].
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Figure 7.1: Rigid ice cubes floating and melting in water with full two-way
force coupling (1003 grid, 600K total surface triangles).

the fluid’s u∗. If u∗

mix = 0 was used inside the solid region (which is both the solid’s

instantaneous and effective velocity), an incorrect coupling pressure would arise due to

the incompatibility between the solid and fluid velocity causing the solid to incorrectly

accelerate. This illustrates that the velocity used in the solid region should be more

in line with the intermediate u∗ velocity computed for the fluid, which accounts for all

forces except those due to the pressure. That is, we need to compute the velocity the

solid would have in the absence of fluid forces. Our approach computes an estimate

for this without having to tentatively advance the solid. Starting with the effective

velocity of the solid which represents the change in the solids position from time n to

time n + 1, we subtract out the fluid force applied to the solid in the last iteration.

Using this for u∗

mix in the solid region gives us an approximation to the solid velocity

which incorporates all forces except fluid pressure. In particular, it correctly handles

the neutrally buoyant example.

7.7 Example

In [83], we presented an algorithm for melting and burning solids. A particular

example of ice cubes melting in water made use of the two-way coupling technique

described in this chapter (Figure 7.1). Since the erosion of the ice cubes occurred in
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a discrete manner, with one erosion step per simulation step, between erosion steps

the ice cubes could be treated as simple rigid bodies and simulated in the manner

described in Chapter 2. During an erosion step the shape and mass properties of

each ice cube were recomputed, and the solids were re-rasterized onto the fluid grid.

This simulation was run on a uniform grid, and more accurate buoyancy was observed

when computing u∗

mix in the solid region using the technique proposed in the previous

section as opposed to using either the solid’s instantaneous or effective velocity.

7.8 Conclusions

This chapter described a method for adapting the fluid simulator of Chapter 4 for two-

way coupling with volumetric solids, using the two pressure solve approach developed

for thin shells in Chapter 6. One-sided computational stencils and ray intersections,

used for coupling with thin shells, were replaced by solid rasterization and interior

ghost fluid values. Coupling the solid to the fluid was achieved by integrating pressure,

rather than pressure jumps, along the solid’s surface. Accuracy of the computed

coupling forces was further improved by a more careful treatment of solid velocities

used in the variable density Poisson equation. An example of floating, melting ice

cubes was presented which demonstrates this algorithm for volumetric rigid bodies.

Although applying this algorithm to deformable solids is left for future work, we

believe this approach is general enough to handle this case.
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Conclusions and Future Work

This dissertation presented novel algorithms for rigid body simulation as well as for

simulations coupling thin and volumetric solids to a fluid. The focus was on applica-

tions for computer graphics, and the techniques described were aimed at producing

high-resolution, visually detailed simulations, rather than trying to achieve real-time

results. Applications such as virtual surgery and video games demand real-time simu-

lations, and while our algorithms can run in real-time for sufficiently simple examples,

this was not our aim, and faster results could probably be achieved through additional

simplifications which emphasize speed over accuracy.

In addition to working on algorithms for real-time simulation, there are various

avenues for future work stemming from the research described in this dissertation.

We mention some examples next, including extensions which we have been recently

pursuing.

8.1 Articulated Rigid Bodies

One natural extension to our work on rigid bodies is to add joints and articulation

constraints to multi-body systems. This was pursued by colleagues in [144], where an

impulse-based, generalized coordinate approach to articulated bodies was described.

Joint constraints are enforced using a combination of pre- and post-stabilization steps.

Post-stabilization occurs after the velocity update, and ensures the new velocity is

88
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consistent with the allowable joint motions. Equations similar to those presented

for rolling and spinning friction (e.g. Equation (2.8)) are used to determine the joint

impulses necessary to enforce constraint-satisfying velocities. Pre-stabilization occurs

before the position update, and ensures the updated configuration of the rigid bodies

will exactly satisfy the joint constraints. More recently, in [143], I helped augment

these articulated rigid bodies with joint and muscle control, solving for the actuation

impulses needed to smoothly follow desired joint trajectories. Future work along these

lines would include improving the muscle model by including the underlying activation

dynamics (as in [137]), and modeling volumetric muscles (as in [135]) rather than line-

segment muscles. It would also be interesting to couple an actuated, articulated body,

to a fluid, with the aim of eventually simulating a human swimming through water

(see [150] for a simplified model).

8.2 Parallel Computation

Fluid simulation often takes hours, and sometimes days, to run. This slow turnaround

is undesirable in a visual effects pipeline where simulations often need to be tweaked

and re-run many times until a certain look is achieved. One technique that allows

for more detailed simulations at lower runtimes is parallel computation. We recently

explored this in [63], where we used the message passing interface (MPI) to parallelize

a hybrid 2D/3D approach to water simulation. The adaptive grid structure used in

that work helped reduce the communication load between processors, but MPI helps

speed up even uniform grid simulations, as shown by colleagues in [84]. Of course,

other than just speeding up simulations, parallelizing the fluid code opens the door

to grid resolutions that would not normally fit in a single machine’s memory. Future

work could include improving the grid partitioning for better load balancing, and also

parallelizing our solids code to enjoy similar speedups for large scale solids simulation.
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8.3 The MAC Discretization, Revisited

The fluid simulator presented in this dissertation made use of a novel mixed node/face

technique which performed advection and interpolation on nodes (Section 4.4.1). This

was needed primarily to facilitate interpolation on octrees, and was done in a way

that avoids highly dissipative back-and-forth averaging. However, this technique still

exhibits slightly more dissipation than the regular staggered (MAC) scheme, and

in addition requires extra care when determining face and cell-centered values from

values stored on the nodes. For example, a cell-centered φ value is required in order

to determine whether a cell contains air or water, and maintaining φ on the nodes

makes it harder to consistently determine the corresponding cell value, especially in

the presence of immersed solids. Storing φ in the cell center is preferred for this reason.

Recently, we have explored going back to using a MAC discretization, leveraging the

fact that the octree grids are fully refined near the water-air and solid-fluid interfaces.

In these maximally refined regions, interpolation on the octree behaves precisely as

for uniform grids, so there is no problem performing MAC interpolation. It is only

away from these regions that more complex, and potentially less accurate, octree

interpolation strategies need to be used to handle non-nodal data. Adapting the

coupling algorithms described in this dissertation to a MAC discretization requires

changing some details, such as the location of visibility rays for one-sided interpolation

and advection, but does not otherwise change our main framework or contributions.

8.4 Sharp Treatment for Volumetric Solids

As discussed in Chapter 7, boundary conditions at the interface between a fluid and a

volumetric solid can be implemented by filling nodes inside the solid with ghost fluid

values. This is in contrast to thin solids which use one-sided stencils computed by

intersecting rays against the solid, and using replacement ghost values for occluded

nodes. Although computationally more expensive, the one-sided approach does have

some advantages over filling ghost values. First, it is sharp interface approach that

resolves surface details of the solid independent of grid resolution. Second, clipping
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semi-Lagrangian rays against the solid is more consistent with the fact that the ad-

vecting fluid does not originate inside the solid. This obviates the need for special

“separation conditions” to prevent inappropriately pulling air or water out of the

solid (Section 7.3). Finally, using the same treatment for both thin and volumetric

solids is attractive from a software engineering perspective. Since using the sharp

approach exclusively might be undesirably slow, it could be beneficial to allow both

approaches to be used interchangeably for different parts of the algorithm. This would

essentially give explicit control over the tradeoff between the slower, geometrically ac-

curate approach, and the faster, diffuse approach. It should be noted that computing

replacement ghost values on the fly rather than in advance also makes it easier to

incorporate jump conditions in multiphase simulations, and this was the approach

taken in [84].

8.5 Improving Accuracy of Rasterized Density

Another item for future work is investigating more accurate techniques for computing

the rasterized thin shell density used in the variable density Poisson equation (Sec-

tion 6.5.1). Currently, the density is set to m/V on any face whose dual edge crosses

the solid. However, m is calculated by multiplying the area of the face by the solid’s

density rather than by exactly computing the solid mass inside the control volume

corresponding to that face. That is, we assume the amount of solid surface area en-

closed by the control volume equals the surface area of the face. This is not the case

in general, and we would like to investigate methods for improving the accuracy of

this computation.

8.6 Validation Studies

In addition to computer graphics, the techniques described in this dissertation could

be used for a variety of scientific applications as well. Here we suggest a number of

validation studies that could be explored to get a better sense of the physical accuracy

of our algorithms. This would help the scientific community evaluate our simulation
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results.

The rigid body simulation technique described in Chapter 2 was validated against

an analytic solution of a block sliding down an inclined plane with friction (Figure 2.8).

One possible experiment that can at least qualitatively test a larger scale simulation

would be to try to reproduce the behavior of granular material. As in [14], each

rigid body can be composed of a few rigidly connected spheres, and a cylindrical

“silo” can be filled with these “grains”. The pressure exerted on the silo should reach

some maximum value independent of height. If this physical phenomenon is faithfully

reproduced then it would give us additional confidence in our simulation results.

There are many interesting experiments that could be used to test our solid-fluid

coupling algorithms. [154, 33] simulated and performed experiments with a flapping

flexible filament in soap film, and observed interesting results relating the mass and

length of the filament to its tendency for sustained flapping. It would be interesting

to try to reproduce these results using our thin shells coupling approach.

[102] simulated a soft object by filling a closed membrane with a fluid. They

actually used a compressible fluid for the simulation in order to improve the stability

of their coupling. It would be interesting to try this with an incompressible fluid, and

see whether our weak coupling approach can handle such a tightly coupled example.

One experiment to qualitatively test our volumetric coupling approach would be

to drop two heavier spheres into a fluid and see whether they exhibit the common

phenomenon of “drafting, kissing, and tumbling” (as in [20]).

Finally, an analytic solution due to Womersley exists for pulsatile viscous flow

through a rigid or elastic cylinder [148], and this is commonly used as a simple 1D

model for cardiovascular simulation [134]. If viscosity is added to our simulator, it

would be instructive to try such a simulation and compare against these analytic

results.

8.7 Additional Future Work

By rendering removed water particles we were able to add some interesting splash

and spray effects to our water (Section 6.7). However, there is definitely room for
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improvement in shaping, blending, and rendering of these particles. In addition,

removed particles currently only undergo simple ballistic motion. In cases where

there are many particles, we could use a particle-based fluid approach (such as SPH)

to give these ejected particles more realistic dynamics.

For our examples coupling cloth and water, it would be interesting to model

the absorption of water by the cloth, changing both its appearance and simulation

properties. Also interesting, but not currently modeled, is the adhesion of water to

the cloth.

Finally, we would like to apply our volumetric coupling approach to more exam-

ples, in particular ones coupling to deformable volumetric solids.
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