Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2007)

D. Metaxas and J. Popovic (Editors)

Arbitrary Cutting of Deformable Tetrahedralized Objects

Ronald Fedkiw '
Stanford University
Industrial Light+Magic

Kevin G. Der f
Stanford University

Eftychios Sifakis'
Stanford University
Intel Corporation

Abstract

We propose a flexible geometric algorithm for placing arbitrary cracks and incisions on tetrahedralized de-
formable objects. Although techniques based on remeshing can also accommodate arbitrary fracture patterns,
this flexibility comes at the risk of creating sliver elements leading to models that are inappropriate for subsequent
simulation. Furthermore, interactive applications such as virtual surgery simulation require both a relatively low
resolution mesh for efficient simulation of elastic deformation and highly detailed surface geometry to facilitate ac-
curate manipulation and cut placement. Thus, we embed a high resolution material boundary mesh into a coarser
tetrahedral mesh using our cutting algorithm as a meshing tool, obtaining meshes that can be efficiently simulated
while preserving surface detail. Our algorithm is similar to the virtual node algorithm in that we avoid sliver
elements and their associated stringent timestep restrictions, but it is significantly more general allowing for the
arbitrary cutting of existing cuts, sub-tetrahedron resolution (e.g. we cut a single tetrahedron into over a thousand
pieces), progressive introduction of cuts while the object is deforming, and moreover the ability to accurately cut
the high resolution embedded mesh.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Physically based modeling

1.3.7 [Computer Graphics]: Animation

1. Introduction

Methods for modeling and animating cracks and incisions
on rigid or deformable solids have received significant at-
tention in computer graphics, some dating back to the early
days of deformable models [TF88a, TF88b]. One class of
applications dealt with modeling the phenomena of material
failure and fracture (see e.g. [OH99, OBHO02]) while other
methods focused on incisions that are explicitly placed on a
deformable model, for example in the context of a surgical
manipulation in a virtual simulation environment.

Virtual surgery in particular has spawned a very active
thread of research due to the high visibility and impact
of such applications as well as the unique algorithmic re-
quirements it entails. Interactivity in a virtual surgery ap-
plication mandates the use of a relatively coarse simula-
tion mesh to obtain high frame rates. At the same time,
a substantially higher resolution is required on the sur-
face geometry to prevent distorting features that are essen-
tial in planning incisions and manipulating the flesh. These
requirements place severe limitations on the design of a
cutting algorithm. For example, methods that decompose
tetrahedra into subelements in order to cut the mesh (e.g.

T email: {sifakis|kder|fedkiw } @cs.stanford.edu

Copyright (© 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for com-
mercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee. Request per-
missions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permis-
sions@acm.org.

SCA 2007, San Diego, California, August 04 - 05, 2007

© 2007 ACM 978-1-59593-624-4/07/0008 $ 5.00

[BMGY9, BGTGO3]) create many more tetrahedra (essen-
tially making a fine resolution mesh near the cuts) and cre-
ate ill-conditioned tetrahedra that impose severe time step
restrictions (see e.g. [MK00, BG0O0]) making the simulation
impractical even on the low resolution base mesh. Thus,
some authors have avoided element decomposition resort-
ing instead to other techniques such as deleting any element
touched by the blade [FDAO02], or restricting cutting to mesh
element boundaries [NvdS00]. Whereas the second option
can produce a jagged surface, subsequent snapping of nodes
can smooth the cut surface [NvdS01,SHSO01]. Of course, this
also tends to produce sliver elements, and some authors have
proposed the use of meshing algorithms such as edge col-
lapse to remove degenerate tetrahedra [GOO01, SHGS06].

Although first proposed in the context of fracture, the vir-
tual node algorithm [MBFO04] alleviates many of the afore-
mentioned difficulties. By duplicating elements to obtain
new degrees of freedom necessary for modeling the topolog-
ical change, it preserves the conditioning of the initial mesh
while creating a minimal number of new elements. Thus one
obtains the goal of a low number of well-conditioned ele-
ments. A limitation of the virtual node algorithm is that if
the mesh were completely fractured, the smallest possible
units would be individual nodes surrounded by their inci-
dent material. A tetrahedron can be cut at most once along

mailto:permissions@acm.org
mailto:permissions@acm.org

Sifakis et al. / Arbitrary Cutting of Deformable Tetrahedralized Objects

Figure 1: A spiral cut applied to a piece of cloth leads to the
unwinding of a long ribbon. The uncut triangulated surface
consists of 128 triangles, while the final embedding mesh
contains 587 triangles.

each edge and can only be fractured into four pieces. Thus,
the resolution of the simulation mesh effectively limits the
resolution of the cutting surface. For a virtual surgery appli-
cation, where a coarser mesh and precise cuts are required,
such restrictions could be detrimental. For example, even
a simple V-shaped cut would typically have to be heavily
distorted so that the cutting surface only “turns” along ele-
ment boundaries. More elaborate cuts, such as T-shaped in-
cisions, would incur even more serious distortion or could
even lead to spurious material connections. For fracture on
the other hand, where finer meshes are typically used and
jagged cracks are acceptable, these restrictions are not as
severe. An improved version of the virtual node algorithm
was proposed in [TSSB*05] for embedding a high resolu-
tion tetrahedral muscle geometry into a coarser resolution
tetrahedral simulation mesh. They diagrammatically showed
that the virtual node concept could be extended to split a
tetrahedron into as many pieces as required to embed ar-
bitrary geometry, and used the high resolution tetrahedral
muscle geometry mesh to prescribe the connectivity of the
coarse embedding mesh. An important limitation of their
method, however, is the requirement for a full tetrahedral-
ization of the embedded geometry (rather than a description
of its boundary surface), rendering it inapplicable to virtual
surgery applications which define a cutting surface without
any predetermined notion of volumetric connectivity.

[SOGO06] proposed a meshless method for simulating a fi-
nite element constitutive model similar to the fracture work
in [PKA*05] (see also [WSG05]). However, they stress that
the crack itself is better modeled with explicit triangulated
geometry rather than with the meshless method. This decou-
pling of the cutting surface from the simulation geometry
(i.e. an explicit triangulated cutting surface combined with a
meshless discretization of the simulation geometry) is sim-
ilar in spirit to the fracture work of [MTG04, MBF04] both
of which embedded a triangulated surface into a background
simulation mesh. Stressing that this explicit triangulation of
the cutting surface permits geometric operations such as sub-
division and self-intersection resolution, we devise a novel
algorithm that allows for a direct implementation of the con-
ceptual diagram from [TSSB*05] without requiring any pre-
determined notion of volumetric connectivity (as they do).
Thus, our algorithm can also be used as an embedded mesh-

Figure 2: Our algorithm is used to slice a single tetrahe-
dron into over a thousand pieces placing no restriction on
the placement or number of cuts. These pieces are not con-
strained to lie on nodes or faces, and most of them are com-
pletely within the tetrahedron. Many are even too small to
visualize. However since they are embedded in a tetrahedron
equivalent to the original one, they are efficient to simulate.

ing tool which, using only the boundary surface of an in-
put object, will embed it in an arbitrary simulation mesh du-
plicating the degrees of freedom of the embedding mesh as
needed to resolve the topology and connectivity of the orig-
inal embedded object. This feature is demonstrated in figure
10 where a high-resolution triangulated surface of a face is
used to carve an embedded flesh volume out of a coarser em-
bedding mesh. In this example, embedding tetrahedra touch-
ing both the upper and the lower lip are automatically dupli-
cated to allow opening of the mouth. Finally, such embedded
models may be further cut if desired, as shown in figure 10.

Our main contribution is a cutting algorithm that yields
efficient simulation models while imposing no restriction on
the geometry of the cuts. In this aspect it combines the fa-
vorable traits of other methods in the literature while allevi-
ating most of their limitations. For example, it provides the
versatility of remeshing-based or point-based methods in ac-
commodating arbitrary cuts, while maintaining the simplic-
ity and efficiency of an underlying tetrahedral representa-
tion (unlike point-based methods) and preventing stringent
timestep restrictions due to ill-conditioned sliver elements
(unlike methods based on remeshing). Similar to the virtual
node algorithm it creates new degrees of freedom to reflect
the topological changes incurred by the cuts while preserv-
ing the good conditioning of the initial mesh, but avoids the
restrictions on the geometry of the cutting surface imposed
by the formulation of [MBF04]. When used as an embedded
meshing tool, it provides the freedom to embed an arbitrary
high resolution geometry in a coarser simulation mesh in the
fashion of [TSSB*05] but only requires a surface representa-
tion of the embedded geometry as contrasted to the full volu-
metric representation required by their approach. Finally, our
method supports incremental introduction of cuts as well as
cutting an object while it deforms.

2. Previous Work

[NTB*91,HTK98, MMA99,SWBO01] broke connections be-
tween elements under high stress, [NF99] addressed blast
waves, [MG04, MTGO04] considered fracture along element

(© Association for Computing Machinery, Inc. 2007.

Sifakis et al. / Arbitrary Cutting of Deformable Tetrahedralized Objects

Figure 3: A single tetrahedron is progressively cut (includ-

ing through previous cuts) as the fragments are simulated.
Each cut consists of a single triangle depicted in gold.

boundaries in an FFD framework, [OH99, YOH00, OBHO02]
handled fracture events using continuous remeshing, and
[MMDJO01] treated fragments as rigid bodies in between col-
lisions. The virtual node algorithm has also been used for
melting and burning solids [LIGF06]. [GSH*05, GLB*06]
treated the fracture of thin shells, and [BHTF06] addressed
the fracture of rigid materials. Modeling of cuts has also
been addressed in the context of virtual surgery, especially
on facial models [KGC*96,PRZ92, KGPG96] where the cut
surface is the result of an explicit surgical manipulation,
rather than a physical Rankine condition for fracture.

3. Cutting Algorithm

In our approach there are two simulation primitives, a back-
ground tetrahedral simulation mesh and a triangulated cut-
ting surface. When embedding a high resolution material
surface mesh into the background tetrahedral mesh, the high
resolution surface is considered part of the cutting surface
and in fact our cutting algorithm is used to generate this em-
bedded geometry (see Figure 10). Virtual surgery applica-
tions progressively add triangles to the cutting surface along
the blade’s swept front, while fracture applications add tri-
angles based on stress criteria.

3.1. The Cutting Surface

Triangles in the cutting surface may be initially intersect-
ing, e.g. T-cuts are common to many surgical procedures.
Leveraging our explicit description of the cutting surface, we
resolve self-intersections through subdivision of the cutting
triangles. One approach is to compute intersections among
all triangles in the cutting surface and then to retriangulate
into an intersection-free surface, but we have found that us-
ing a polygonal subdivision is more robust and efficient. In
particular, one could triangulate our polygonal elements, but
subsequent cuts that yield intersections would force further

(© Association for Computing Machinery, Inc. 2007.

Figure 4: 32 intersecting planes slice a 320 element tetra-
hedral mesh into 289 sticks. 8K embedding tetrahedra are
created after the cutting operation.

subdivision of these triangles unnecessarily creating more
triangles and possibly poorly conditioned triangles. Given a
soup of cutting triangles, the polygonal subdivision is unique
and can be updated incrementally preserving uniqueness
whereas the triangulation is not unique, based on heuristics,
and may be found suboptimal when further cutting triangles
are added. This means that one would be forced to undo pre-
vious triangulations in order to avoid degeneracies and poor
conditioning due to newly introduced cuts, hindering the in-
cremental nature of the algorithm.

Our approach is to resolve the cutting triangles into an
intersection-free, nonmanifold polygon mesh. Each cutting
triangle is subdivided into a number of polygons, whose
edges are line segments that result from the pairwise inter-
section of this cutting triangle with all other cutting triangles.
When adding new cuts incrementally, these new triangles
are resolved with the existing polygons obviating the need
to re-examine all past cuts. We will of course eventually tri-
angulate these polygons for collisions and visualization, but
the potentially resulting sliver elements are not used by our
cutting algorithm and thus do not impact its conditioning.

We compute the polygonization of any triangle in the tri-
angle soup as follows. A node of the polygon mesh is de-
fined in one of three possible ways: a vertex of a triangle in
the soup, an intersection between a triangle edge and a face
at a point interior to the face, or an intersection of three tri-
angles that occurs at a point interior to all three (see Figure
6). Each triangle is then subdivided into polygons by con-
necting incident nodes with segments. We place segments
between any two incident nodes that are also on a given sec-
ond triangle. That is, if node 1 and node 2 are both incident
on triangle 1 and triangle 2, then a segment is added between

Sifakis et al. / Arbitrary Cutting of Deformable Tetrahedralized Objects

Figure 5: A cookie cutter surface is used to cut away pieces
of a 625 element tetrahedral mesh. Alternating between ro-
tating and cutting allows the pattern to appear on all sides.

them. We also add segments between any two nodes that lie
on the same edge of a triangle from the soup. This defini-
tion results in overlapping segments when multiple nodes
are collinear, and thus we only construct the minimal set of
non-overlapping segments. Finally, the triangle is projected
into two spatial dimensions where a boundary tracking al-
gorithm is used to identify each closed polygon (see Figure
6).

3.2. Clipping to the Simulation Mesh

Besides resolving the cutting surface into non-intersecting
polygons rather than triangles, a second key to our approach
is to further subdivide the cutting surface in a manner that re-
moves intersections with the faces of the tetrahedral simula-
tion mesh. This allows for a tetrahedron-centric approach to
the algorithm facilitating subsequent topological processing.
This also preserves the incremental nature of the algorithm,
since adding a new cut only affects the intersected tetrahe-
dra. Thus, most importantly, we treat both cutting triangles
and tetrahedron faces as elements of a large triangle soup
and we resolve all of these triangles simultaneously into an
intersection-free polygon mesh. As mentioned in the previ-
ous subsection, incrementally added cutting triangles are re-
solved with the the existing polygon mesh where our notion
of a polygon mesh now includes polygons on tetrahedron
faces as well.

In practice, our tetrahedron-centric algorithm is carried
out as follows. First, a tetrahedron intersected by a cutting
triangle is assigned a copy of that triangle for independent
processing, where the triangle is projected into the tetrahe-
dron’s barycentric space. When polygonizing that triangle
copy, we do so using a pool of segments collected only from
the faces of this tetrahedron and any other cutting triangles
that intersect this tetrahedron. The resulting polygons can
be independently generated per tetrahedron. Since the faces

Figure 6: Left: A triangle (colored blue) in the triangle soup
intersects with other triangles. Nodes in the polygon mesh
can be vertices of a triangle (shown in purple), intersections
of triangle edges with triangle interiors (red), or intersec-
tions of three triangles (yellow). Right: We construct seg-
ments between nodes to tessellate the triangle into polygons
that are intersection-free with all other cutting triangles.

of the tetrahedron are also in the triangle soup, no polygon
segment crosses a tetrahedron boundary, allowing us to triv-
ially prune away polygons that are not on or within the tetra-
hedron. Note that neighboring tetrahedra that share a face
will find the exact same polygons on that common face.
See Figure 7, which illustrates a two-dimensional version
of our algorithm, where a cutting segment spans three tri-
angles from the background mesh. Since each triangle owns
a copy of this cutting segment stored in barycentric coor-
dinates, subsequent deformation of the mesh leads to three
non-coincident copies of this cutting segment that only agree
at element boundaries.

3.3. Per-Tetrahedron Subdivision

After each tetrahedron has generated its subset of the poly-
gon mesh, we determine the volumetric connected compo-
nents of material within each tetrahedron. Each connected
component is a polyhedron that we compute using boundary
tracking on the polygons in the tetrahedron. Then each con-
nected component is embedded in a duplicate copy of the
original tetrahedron. Unlike the virtual node algorithm, con-

—
VAN S~z X

Figure 7: Clipping the cutting elements in a two-
dimensional version of our algorithm. A cutting segment
spans three embedding triangles (left). Each triangle re-
ceives a copy of the segment. When the embedding deforms,
the copies only remain coincident at element boundaries and
are clipped to their respective embedding elements (middle).
A second cut applied after deformation may intersect the first
cut in multiple locations, which is easily resolved with our
element-centric approach (right).

(© Association for Computing Machinery, Inc. 2007.

Sifakis et al. / Arbitrary Cutting of Deformable Tetrahedralized Objects

—
—
m—
m——
-
[
_m—
o
e
—
S
e

Figure 8: Top: Using two cylindrical surfaces and a helical surface, we progressively carve a slinky out of a 320 element tetra-
hedral mesh, which expands and oscillates as it is cut. Bottom: A wireframe rendering reveals the automatic re-triangulation
of the material surface as the cutting surface is spiraling up the deforming cylinder. The embedding mesh of the fully cut slinky

contains 4713 tetrahedra.

nected components may be completely interior to a tetrahe-
dron and need not be incident on a node or a face (see Figure
2). When constructing the polygon mesh, tetrahedra that are
only partially filled with material require special consider-
ation. They are handled by constructing only the subset of
the polygon mesh that is on or within actual material. This
is straightforward since the material boundary is already a
subset of the previously generated polygon mesh.

3.4. Determining Material Connectivity

Once each tetrahedron has been partitioned into its con-
nected components, we identify pairs of connected compo-
nents across adjacent tetrahedra as materially contiguous.
We do so by examining each pair of tetrahedra that share
a common face. Each tetrahedron has been duplicated into
identical copies, each containing a single connected compo-
nent of material embedded within it. The goal is to deter-
mine if a copy of tetrahedron A contains material contigu-
ous to material in some copy of tetrahedron B, which we do
by individually examining each possible pair of tetrahedron
copies. We denote the copies as contiguous if their shared
face contains a common polygon (see Figure 9). Finally, we
collapse nodes on common faces of materially contiguous
tetrahedra to obtain the final simulation mesh.

4. Examples

After cutting, we triangulate the resulting material surface
for collisions, self-collisions, and rendering. We determine
the material surface simply by keeping only the polygons
incident on exactly one tetrahedron, removing those from
the material’s interior. The boundary polygons that remain

(© Association for Computing Machinery, Inc. 2007.

are subsequently triangulated. We employ the hybrid frame-
work of [SSIFO7] to simulate the embedded material geome-
try, allowing us to use an arbitrary finite element constitutive
model while resolving object collisions and self-collisions
on a soft constrained copy (see [SSIFO7]) of the material
surface.

Figure 1 shows a two-dimensional version of our algo-
rithm used to make a spiral-shaped cut into a suspended
piece of cloth. Figure 3 illustrates that we can progressively
cut a single tetrahedron into multiple pieces as it deforms.
Figure 2 shows a single tetrahedron cut into over a thousand
pieces by fifty cutting triangles, many of which only par-
tially intersect the tetrahedron rather than slicing completely
through it. Figure 4 shows 32 intersecting planes cutting a
cube into 289 sticks. In addition, our cutting algorithm can
be used to sculpt objects with high surface detail embedded

Figure 9: A polygon mesh resulting from two cuts (left).
Each connected component in a tetrahedron is embedded in
a duplicate tetrahedron identical to the original. Two pairs
of tetrahedra copies are found to be materially contiguous
(two middle figures), while one copy of the lower tetrahe-
dron remains materially disjoint (right).

Sifakis et al. / Arbitrary Cutting of Deformable Tetrahedralized Objects

Figure 10: Top: Using a triangulated skin surface as the
cutting geometry, we carve an embedded flesh volume out
of a BCC simulation mesh. Middle: An additional incision
across the lips is made on the embedded mesh (left). The
cut is simulated by pushing the flesh outwards from inside
the mouth (right). Bottom: Applying springs across the cut
closes the incision.

within coarse simulation geometry. In Figure 5, we apply
a cookie-cutter normal to each face of a cube. In Figure 8§,
we progressively sculpt a slinky out of a block. Figure 10
(top) shows our algorithm used as a meshing tool to embed
a 250k triangle scan of the human face into an 850k tetra-
hedral simulation mesh. The resulting face model itself can
then be further cut, as shown in Figure 10 (middle).

5. Discussion and Limitations

Despite the versatility of our cutting algorithm, a number
of notable limitations exist. Our formulation assumes that
cuts are introduced in the form of triangulated surfaces. Al-
though this accommodates processes such as material frac-
ture or explicit cutting (e.g. surgical incisions) by discretiz-
ing the cracks or incisions into a triangulated surface, there
may be certain cases (e.g. elaborate scalpel models, embed-
deding of geometries represented by spline or subdivision
surfaces) where this additional triangulation is inconvenient.

‘We note however that, with adequate refinement, a triangu-
lated surface can represent any cut and even an increased
triangle count on the cutting surface will not have a negative
impact on the complexity or conditioning of the embedding
simulation mesh.

Embedding the high resolution material surface in a
coarser simulation mesh prevents CFL restrictions associ-
ated with small or sliver elements. Nevertheless, our frame-
work may still create small or ill-conditioned triangles on
the material surface which can still have a negative effect
on collision handling. This is less of a problem for object
collisions and more important for self-collisions, highlight-
ing the need for robust collision handling schemes. Finally,
although our algorithm can process any arbitrary cutting sur-
face, a cut that partially intersects a tetrahedron without sep-
arating it into disconnected fragments will not allow the ma-
terial to separate within that embedding tetrahedron. How-
ever, subsequent cuts can extend this cut into one that fully
slices through the tetrahedron. Such partial cuts are geomet-
rically resolved by our algorithm even if the embedding con-
straint does not allow separation of the material surface on
either side of the cut. A subelement elasticity model (such
as the soft binding formulation of [SSIF07]) could enable
separation of these two surfaces, if desired.

6. Conclusion

We proposed a new cutting algorithm that allows for arbi-
trary cutting of tetrahedral meshes including those that pos-
sess a higher-resolution embedded material surface. We il-
lustrated the efficacy of our algorithm on a number of ex-
amples ranging from cutting a single tetrahedron into over
a thousand pieces to modeling and cutting a high-resolution
face model embedded in a BCC simulation mesh.

Appendix A: Implementation Notes

In section 3 we defined our geometrical algorithm without
descending into the implementation details of each geomet-
ric operation. This appendix provides specific details on the
data structures and code organization in our implementation.

Our principle data structures are:

Per-tetrahedron Triangle List. Each embedding tetrahe-
dron stores all triangles that border the material contained
inside it. Prior to any cuts, each tetrahedron’s triangle list
contains just its four faces. After subsequent cutting, the tri-
angles list will also contain triangles of the cutting surface.
Barycentric coordinates of the triangle vertices with respect
to the tetrahedron are also stored.

Per-tetrahedron Polygon Mesh. Each tetrahedron stores
the polygonized boundary of its embedded material.

Intersection Registry. As mentioned in section 3.1 the
points referenced by our algorithm are either vertices of the
polygon soup, intersections of an edge and a triangle, or in-
tersections of three triangles. In fact, we represent all such

(© Association for Computing Machinery, Inc. 2007.

Sifakis et al. / Arbitrary Cutting of Deformable Tetrahedralized Objects

points as the intersection of three triangles using the follow-
ing process. If a segment pg is common to triangles pgr and
Ppgs, then the intersection between pg and a different triangle
xyz is encoded as the intersection of the three triangles pgr,
pgs and xyz. If pqr is the only triangle incident on pg, we
introduce a virtual triangle pgg (where @ denotes an unspec-
ified auxiliary point) such that the same point is encoded as
the intersection of pgr, pq¢, and xyz. Similarly, a vertex p
of the triangle soup is represented as the common point of
three triangles pgr, pst, and puv. If no such three triangles
exist, e.g. if p only appears on pgr, the point may be de-
scribed as the intersection of pgr, pqg, and prg, where the
last two virtual triangles have been introduced accordingly.
The intersection registry stores which triangles intersect at
each polygon point (which may be more than three) and de-
termines whether the intersection of three given triangles has
already been registered (possibly as the intersection of three
different triangles). Additionally, we store the barycentric
coordinates of each intersection point with respect to each
of the triangles defining the intersection. Note that virtual
triangles pose no problem as the barycentric weight of the
virtual vertex will be identically zero.

An uncut tetrahedralized volume is initialized with the tri-
angle list containing the faces of each tetrahedron, the poly-
gon mesh containing the same faces as the polygonal (trian-
gular) boundaries of each uncut tetrahedron, and the inter-
section registry containing all the vertices of the uncut vol-
ume as the intersection of all embedding faces incident on
each of them.

Each new cutting triangle Thew added to the triangle soup
is processed according to the following steps.

Intersection with embedding volume. Thew is assigned a
unique index. We compute the set of embedding tetrahedra
that intersect Thew (in world space as the embedding vol-
ume may have deformed) and create a copy Tr]few for each
of them assigning each copy a unique index. Each Trllcew is
appended to the triangle list for its corresponding tetrahe-
dron, converted to barycentric coordinates with respect to it,
and keeps a record of the unique index of its parent Thew.

Computation of new intersections. Each new triangle
Trlfew is intersected against all possible pairs of old triangles
in the list of its respective tetrahedron. If the intersection al-
ready exists, the intersection registry is updated to include
Trlfew as a triangle incident on this intersection. Otherwise, a
new intersection is registered and a unique index is assigned.

Update of old polygons. Any old polygon edge in the poly-
gon mesh for a tetrahedron intersected by Thew that contains
a newly introduced intersection point is bisected into two
collinear edges, and the polygon mesh is updated accord-
ingly. Additionally, any newly created segments on the plane
of an existing polygon are tested for intersection against that
polygon. If they are found to be intersecting, the old poly-
gons are split to include the new segment.

(© Association for Computing Machinery, Inc. 2007.

Creation of new polygons. Each triangle Tr’few is clipped
to the material contained in the embedding tetrahedron to
yield a new polygon, which is added to the polygon mesh.

Computation of connected components. The polygon
mesh for each tetrahedron is used to compute the new con-
nected components of material, as in section 3.3. Each com-
ponent is defined as a polyhedral volume and the tetrahedron
is split into as many copies as distinct material fragments.

Topology update based on connectivity. The process of
section 3.4 is used to rebuild the topology of the embedding
volume. All of our data structures are updated to reflect the
topological changes.

This process may be iterated for each new triangle added
to the cutting surface. In practice, we have generalized the
previous steps to accommodate the introduction of any num-
ber of new cutting triangles at once.

Acknowledgments

Research supported in part by an ONR YIP award and
a PECASE award (ONR NO00014-01-1-0620), a Packard
Foundation Fellowship, ONR NO0014-06-1-0393, ONR
N00014-05-1-0479 for a computing cluster, ONR N00014-
02-1-0720, ONR N00014-06-1-0505, ARO DAAD19-03-
1-0331, NSF CCF-0541148, NSF ITR-0205671, NSF IIS-
0326388, NSF ACI-0323866 and NIH U54-GM072970.
Special thanks to Joseph Teran, Court Cutting and Aaron
Oliker for invaluable feedback on developing this algorithm
in the context of a surgical simulator.

References

[BGOO] BIELSER D., GROSS M.: Interactive simulation
of surgical cuts. In Pacific Graph. (2000), pp. 116-125.

[BGTGO03] BIELSER D., GLARDON P., TESCHNER M.,
GROSS M.: A state machine for real-time cutting of tetra-
hedral meshes. In Pacific Graph. (2003), pp. 377-386.

[BHTF06] BAO Z., HONG J., TERAN J., FEDKIW R.:
Fracturing rigid materials. IEEE Trans. Viz. Comput.
Graph. (2006). (in press).

[BMG99] BIELSER D., MAIWALD V. A., GROSS M. H.:
Interactive cuts through 3-dimensional soft tissue. In Eu-
rographics (1999).

[FDAO2] FOREST C., DELINGETTE H., AYACHE N.: Re-
moving tetrahedra from a manifold mesh. In Comput.
Anim. (2002), pp. 225-229.

[GLB*06] Guo X., L1 X., BA0o Y., GU X., QIN H.:
Meshless thin-shell simulation based on global confor-
mal parameterization. IEEE Trans. on Vis. and Comput.
Graph. 12, 3 (2006), 375-385.

[GOO1] GANOVELLI F., O’SULLIVAN C.: Animating
cuts with on-the-fly re-meshing. In Eurographics 2001,
Short Presentations Programme (2001).

Sifakis et al. / Arbitrary Cutting of Deformable Tetrahedralized Objects

[GSH*05] GINGOLD Y., SECORD A., HAN J., GRIN-
SPUN E., ZORIN D.: A discrete model for inelastic de-
formations of thin shells. In Poster, Eurographics/ACM
SIGGRAPH Symp. on Comput. Anima. (2005).

[HTK98] HIROTA K., TANOUE Y., KANEKO T.: Gener-
ation of crack patterns with a physical model. The Vis.
Comput. 14 (1998), 126-187.

[KGC*96] KocH R. M., GROsS M. H., CarLS F. R.,
VON BUREN D. F., FANKHAUSER G., PARISH Y. I. H.:
Simulating facial surgery using finite element models.
Comput. Graph. 30, Annual Conf. Series (1996), 421
428.

[KGPGY96] KEEVEE., GIROD S., PFEIFLE P., GIROD B.:
Anatomy-based facial tissue modeling using the finite ele-
ment method. In Proc. of Visualization (1996), pp. 21-28.

[LIGF06] LosASso F., IRVING G., GUENDELMAN E.,
FEDKIW R.: Melting and burning solids into liquids and
gases. [EEE Trans. on Vis. and Comput. Graph. 12, 3
(2006), 343-352.

[MBF04] MOLINO N., BAO Z., FEDKIW R.: A virtual
node algorithm for changing mesh topology during simu-
lation. ACM Trans. Graph. (SIGGRAPH Proc.) 23 (2004),
385-392.

[MGO04] MULLER M., GROSS M.: Interactive virtual ma-
terials. In Graph. Interface (May 2004), pp. 239-246.

[MKOO] MoOR A., KANADE T.: Modifying soft tissue
models: progressive cutting with minimal new element
creation. In MICCAI (2000), pp. 598-607.

[MMA99] MAZARAK O., MARTINS C., AMANATIDES
J.: Animating exploding objects. In Proc. of Graph. In-
terface 1999 (1999), pp. 211-218.

[MMDJ01] MULLER M., MCMILLAN L., DORSEY J.,
JAGNOW R.: Real-time simulation of deformation and
fracture of stiff materials. In Comput. Anim. and Sim. *01
(2001), Proc. Eurographics Wrkshp., Eurographics As-
soc., pp. 99-111.

[MTGO04] MULLER M., TESCHNER M., GROSS M.:
Physically-based simulation of objects represented by sur-
face meshes. In Proc. Comput. Graph. Int. (June 2004),
pp- 156-165.

[NF99] NEFF M., FIUME E.: A visual model for blast
waves and fracture. In Proc. of Graph. Interface 1999
(1999), pp. 193-202.

[NTB*91] NORTON A., TURK G., BACON B., GERTHJ.,
SWEENEY P.: Animation of fracture by physical model-
ing. Vis. Comput. 7,4 (1991), 210-219.

[NvdS00] NIENHUYS H.-W., VAN DER STAPPEN A. F.:
Combining finite element deformation with cutting for
surgery simulations. In Eurographics 2000, Short Pre-
sentations Programme (2000).

[NvdS01] NIENHUYS H.-W., VAN DER STAPPEN A. F.:

Supporting cuts and finite element deformation in inter-
active surgery simulation. Tech. rep., Utrecht University,
Institute for Information and Computing Sciences, 2001.

[OBHO02] O’BRIEN J., BARGTEIL A., HODGINS J.:
Graphical modeling of ductile fracture. ACM Trans.
Graph. (SIGGRAPH Proc.) 21 (2002), 291-294.

[OH99] O’BRIEN J., HODGINS J.: Graphical modeling
and animation of brittle fracture. In Proc. of SIGGRAPH
1999 (1999), pp. 137-146.

[PKA*05] PAULY M., KEISER R., ADAMS B., DUTRE
P., GROSS M., GUIBAS L.: Meshless animation of frac-
turing solids. ACM Trans. Graph. (SIGGRAPH Proc.) 24,
3 (2005), 957-964.

[PRZ92] PIEPER S., ROSEN J., ZELTZER D.: Interactive
graphics for plastic surgery: A task-level analysis and im-
plementation. In Proc. of Symp. on Int. 3D Graph. (1992),
ACM Press, pp. 127-134.

[SHGS06] STEINEMANN D., HARDERS M., GROSS M.,
SZEKELY G.: Hybrid cutting of deformable solids. In
Proc. of the IEEE Virtual Reality Conference (2006),
pp- 35-42.

[SHSO1] SERBY D., HARDERS M., SZEKELY G.: A new
approach to cutting into finite element models. In MIC-
CAI (2001), pp. 425-433.

[SOG0O6] STEINEMANN D., OTADUY M. A., GROSS M..:
Fast arbitrary splitting of deforming objects. In Proc.
of the ACM SIGGRAPH/Eurographics Symp. on Comput.
Anim. (2006), pp. 63-72.

[SSIFO7] SIFAKIS E., SHINAR T., IRVING G., FEDKIW
R.: Hybrid simulation of deformable solids. In Proc. of
ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.
(in press) (2007).

[SWBO0O1] SMITH J., WITKIN A., BARAFF D.: Fast and
controllable simulation of the shattering of brittle objects.
In Comput. Graph. Forum, Duke D., Scopigno R., (Eds.),
vol. 20(2). Blackwell Publishing, 2001, pp. 81-91.

[TF88a] TERzOPOULOS D., FLEISCHER K.: Deformable
models. The Vis. Comput. 4, 6 (1988), 306-331.

[TF88b] TERzOPOULOS D., FLEISCHER K.: Modeling
inelastic deformation: viscoelasticity, plasticity, fracture.
Comput. Graph. (SIGGRAPH Proc.) (1988), 269-278.

[TSSB*05] TERAN J., SIFAKIS E., SALINAS-BLEMKER
S., NG-THOW-HING V., LAU C., FEDKIW R.: Creat-
ing and simulating skeletal muscle from the visible human
data set. IEEE Trans. on Vis. and Comput. Graph. 11, 3
(2005), 317-328.

[WSGO05] WICKE M., STEINEMANN D., GROSS M.: Ef-
ficient animation of point-sampled thin shells. In Proc. of
Eurographics (2005), vol. 24.

[YOHO0] YNGVEG.D., O’BRIEN]J. F., HODGINS J. K.:
Animating explosions. In Proc. of ACM SIGGRAPH 2000
(2000), pp. 29-36.

(© Association for Computing Machinery, Inc. 2007.

