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Brook
General purpose Streaming language

DARPA Polymorphous Computing Architectures

— Stanford - Smart Memories
— UT Austin - TRIPS Processor
— MIT - RAW Processor

Stanford Streaming Supercomputer

Brook: general purpose streaming language
— Language developed at Stanford
— Compiler in development by Reservoir Labs

Study of GPUs as Streaming processor
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Why graphics hardware

Raw Performance:
Pentium 4 SSE Theoretical*
3GHz * 4 wide * .5 inst / cycle = 6 GFLOPS
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GeForce FX 5900 (NV35) Fragment Shader Obtained: ==& =
MULR RO, RO, RO: 20 GFLOPS GeForce FX
Equivalent to a 10 GHz P4

And getting faster: 3x improvement over NV30 (6 months)
2002 R&D Costs:

Intel: $4 Billion
NVIDIA: $150 Million
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GPU: Data Parallel

— Each fragment shaded independently

* No dependencies between fragments
— Temporary registers are zeroed

— No static variables
— No Read-Modify-Write textures (((‘
* Multiple “pixel pipes”
— Data Parallelism

« Support ALU heavy architectures

* Hide Memory Latency
[Torborg and Kajiya 96, Anderson et al. 97, Igehy et al. 98]
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Arithmetic Intensity

Lots of ops per word transferred
Graphics pipeline
— Vertex
 BW: 1 triangle = 32 bytes;
« OP: 100-500 f32-ops / triangle

— Rasterization
» Create 16-32 fragments per triangle

— Fragment
« BW: 1 fragment = 10 bytes
* OP: 300-1000 i8-ops/fragment

July 27th, 2003 Courtesy of Pat Hanrahan



Arithmetic Intensity

« Compute-to-Bandwidth ratio

* High Arithmetic Intensity desirable
— App limited by ALU performance, not off-chip bandwidth
— More chip real estate for ALUs, not caches

64-bit FPU
(to scale)

Courtesy of Bill Dally
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Brook
General purpose Streaming language

Stream Programming Model
— Enforce Data Parallel computing
— Encourage Arithmetic Intensity

— Provide fundamental ops for stream
computing

July 27th, 2003



Brook
General purpose Streaming language

* Demonstrate GPU streaming coprocessor

— Make programming GPUs easier
 Hide texture/pbuffer data management
 Hide graphics based constructs in CG/HLSL
* Hide rendering passes

— Highlight GPU areas for improvement

* Features required general purpose stream
computing

July 27th, 2003



Streams & Kernels

e Streams

— Collection of records requiring similar computation
* Vertex positions, voxels, FEM cell, ...

— Provide data parallelism

« Kernels

— Functions applied to each element in stream
 transforms, PDE, ...

— No dependencies between stream elements
* Encourage high Arithmetic Intensity
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Brook

* C with Streams
— API for managing streams
— Language additions for kernels

e Stream Create/Store

stream s = CreateStream (float, n, ptr);
StoreStream (s, ptr);

July 27th, 2003
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Brook

« Kernel Functions ®
— Pos update in velocity field
— Map a function to a set —{ @

kernel void updatepos (stream fl oat3 pos,
float3 vel [ 100][ 100] [ 100],
float tinestep,
out stream fl oat newpos) {

newpos = pos + vel[pos. x][pos. y][pos. z] *ti nest ep;

}

S_pos = CreateStream(float3, n, pos);
s vel = CreateStreanm(float3, n, vel);
updat epos (s _pos, s vel, tinmestep, s pos);

July 27th, 2003
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Fundamental Ops

 Associative Reductions

KernelReduce (func, s, &val)
— Produce a single value from a stream
— Examples: Compute Max or Sum

"5 6 | 3|7 2 9]0 5
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Fundamental Ops

 Associative Reductions

KernelReduce (func, s, &val)
— Produce a single value from a stream
— Examples: Compute Max or Sum
 Gather: p = ari]
— Indirect Read
— Permitted inside kernels
o Scatter: ari] = p

— Indirect Write
ScatterOp(s_index, s_data, s _dst, SCATTEROP_ ASSIGN)

— Last write wins rule

July 27th, 2003
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GatherOp & ScatterOp

Indirect read/write with atomic operation
o GatherOp: p = a[i]++

GatherOp (s _index, s data, s src, GATHEROP INC)

o ScatterOp: a[i] += p

ScatterOp(s_index, s data, s _dst, SCATTEROP_ ADD)

« Important for building and updating data
structures for data parallel computing

July 27th, 2003
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Brook

 C with streams
— kernel functions

— CreateStream, StoreStream
— KernelReduce

— GatherOp, ScatterOp

July 27th, 2003
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Implementation

¢ Streams
— Stored in 2D fp textures / pbuffers
— Managed by runtime

* Kernels
— Compiled to fragment programs
— Executed by rendering quad

July 27th, 2003
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Implementation

« Compiler: brcc

« Source to Source compiler

— Generate CG code

« Convert array lookups to texture
fetches

» Perform stream/texture lookups
 Texture address calculation

— Generate C Stub file

 Fragment Program Loader
* Render code

July 27th, 2003
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Gromacs

Molecular Dynamics Simulator
Eric Lindhal, Erik Darve, Yanan Zhao

Force Function (~90% compute time):

July 27th, 2003
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Camera

Grid of
Triangle List
Offsets

Triangle List
Triangles

Normals

Materials
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Ray Tracing

Tim Purcell, Bill Mark, Pat Hanrahan

Generate
Eye Rays

Traverse
Acceleration
Structure

Intersect
Triangles

Shade Hit
and Generate
Shading Rays

19



Finite Volume Methods

Joseph Teran, Victor Ng-Thow-Hing, Ronald Fedkiw

o =pl+ 2 +1 s JB-WoB? LWia®a
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Applications

Sparse Matrix Multiply
Batcher Bitonic Sort

July 27th, 2003

g h, g b

i sotted

elem:
1pos:

start:
len:

V!

21



Summary

 GPUs are faster than CPUs
— and getting faster

 Why?
— Data Parallelism
— Arithmetic Intensity

* What is the right programming model?

— Stream Computing
— Brook for GPUs

July 27th, 2003
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50
Time

NVIDIA NV3x:

July 27th, 2003
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Registers Used

Register usage vs. GFLOPS
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GPU Gotchas

« ATl Radeon 9800 Pro

* Limited dependent
texture lookup

* 90 instructions
« 24-bit floating point

Texture Lookup

Texture Lookup

Texture Lookup

Texture Lookup

July 27th, 2003
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Summary

“All processors aspire to be general-purpose”
— Tim van Hook, Keynote, Graphics Hardware 2001

July 27th, 2003
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GPU lIssues

* Missing Integer & Bit Ops
* Texture Memory Addressing

— Address conversion burns 3 instr. per array
lookup

— Need large flat texture addressing
* Readback still slow

 CGC Performance
— Hand code performance critical code

* No native reduction support

July 27th, 2003 26



GPU lIssues

* No native Scatter Support
— Cannot do p[i] = a (indirect write)
— Requires CPU readback.

— Needs:
* Dependent Texture Write
» Set x,y inside fragment program

* No programmable blend
— GatherOp / ScatterOp

July 27th, 2003
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GPU lIssues

* Limited Output

— Fragment program can only output single 4-
component float or 4x4 component float (ATI)

— Prevents multiple kernel outputs and large
data types.

July 27th, 2003 28



Implementation

* Reduction
— O(lg(n)) Passes
« Gather
— Dependent texture read

« Scatter
— Vertex shader (slow)

» GatherOp / ScatterOp

— Vertex shader with CPU sort (slow)

July 27th, 2003
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Status

« Compiler/Runtime work complete
* Applications in progress
* Release open source In fall

* Other streaming architectures

— Stanford Streaming Supercomputer
— PCA Architectures (DARPA)

July 27th, 2003
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