Data Parallel Computing on
Graphics Hardware

lan Buck
Stanford University

Brook
General purpose Streaming language

DARPA Polymorphous Computing Architectures

— Stanford - Smart Memories
— UT Austin - TRIPS Processor
— MIT - RAW Processor

Stanford Streaming Supercomputer

Brook: general purpose streaming language
— Language developed at Stanford
— Compiler in development by Reservoir Labs

Study of GPUs as Streaming processor

July 27th, 2003

Why graphics hardware

Raw Performance:
Pentium 4 SSE Theoretical*
3GHz * 4 wide * .5 inst / cycle = 6 GFLOPS

R Az a1
r'i"?‘.__ﬂ'_l r '_"ih;ﬁ‘ il
L | (il |

GeForce FX 5900 (NV35) Fragment Shader Obtained: ==& =
MULR RO, RO, RO: 20 GFLOPS GeForce FX
Equivalent to a 10 GHz P4

And getting faster: 3x improvement over NV30 (6 months)
2002 R&D Costs:

Intel: $4 Billion
NVIDIA: $150 Million

July 27th, 2003 *from Intel P4 Optimization Manual 3

GPU: Data Parallel

— Each fragment shaded independently

* No dependencies between fragments
— Temporary registers are zeroed

— No static variables
— No Read-Modify-Write textures (((‘
* Multiple “pixel pipes”
— Data Parallelism

« Support ALU heavy architectures

* Hide Memory Latency
[Torborg and Kajiya 96, Anderson et al. 97, Igehy et al. 98]

July 27th, 2003 4

Arithmetic Intensity

Lots of ops per word transferred
Graphics pipeline
— Vertex
 BW: 1 triangle = 32 bytes;
« OP: 100-500 f32-ops / triangle

— Rasterization
» Create 16-32 fragments per triangle

— Fragment
« BW: 1 fragment = 10 bytes
* OP: 300-1000 i8-ops/fragment

July 27th, 2003 Courtesy of Pat Hanrahan

Arithmetic Intensity

« Compute-to-Bandwidth ratio

* High Arithmetic Intensity desirable
— App limited by ALU performance, not off-chip bandwidth
— More chip real estate for ALUs, not caches

64-bit FPU
(to scale)

Courtesy of Bill Dally

July 27th, 2003 §)

Brook
General purpose Streaming language

Stream Programming Model
— Enforce Data Parallel computing
— Encourage Arithmetic Intensity

— Provide fundamental ops for stream
computing

July 27th, 2003

Brook
General purpose Streaming language

* Demonstrate GPU streaming coprocessor

— Make programming GPUs easier
 Hide texture/pbuffer data management
 Hide graphics based constructs in CG/HLSL
* Hide rendering passes

— Highlight GPU areas for improvement

* Features required general purpose stream
computing

July 27th, 2003

Streams & Kernels

e Streams

— Collection of records requiring similar computation
* Vertex positions, voxels, FEM cell, ...

— Provide data parallelism

« Kernels

— Functions applied to each element in stream
 transforms, PDE, ...

— No dependencies between stream elements
* Encourage high Arithmetic Intensity

July 27th, 2003

Brook

* C with Streams
— API for managing streams
— Language additions for kernels

e Stream Create/Store

stream s = CreateStream (float, n, ptr);
StoreStream (s, ptr);

July 27th, 2003

10

Brook

« Kernel Functions ®
— Pos update in velocity field
— Map a function to a set —{ @

kernel void updatepos (stream fl oat3 pos,
float3 vel [100][100] [100],
float tinestep,
out stream fl oat newpos) {

newpos = pos + vel[pos. x][pos. y][pos. z] *ti nest ep;

}

S_pos = CreateStream(float3, n, pos);
s vel = CreateStreanm(float3, n, vel);
updat epos (s _pos, s vel, tinmestep, s pos);

July 27th, 2003

11

Fundamental Ops

 Associative Reductions

KernelReduce (func, s, &val)
— Produce a single value from a stream
— Examples: Compute Max or Sum

"5 6 | 3|7 2 9]0 5

July 27th, 2003 12

Fundamental Ops

 Associative Reductions

KernelReduce (func, s, &val)
— Produce a single value from a stream
— Examples: Compute Max or Sum
 Gather: p = ari]
— Indirect Read
— Permitted inside kernels
o Scatter: ari] = p

— Indirect Write
ScatterOp(s_index, s_data, s _dst, SCATTEROP_ ASSIGN)

— Last write wins rule

July 27th, 2003

13

GatherOp & ScatterOp

Indirect read/write with atomic operation
o GatherOp: p = a[i]++

GatherOp (s _index, s data, s src, GATHEROP INC)

o ScatterOp: a[i] += p

ScatterOp(s_index, s data, s _dst, SCATTEROP_ ADD)

« Important for building and updating data
structures for data parallel computing

July 27th, 2003

14

Brook

 C with streams
— kernel functions

— CreateStream, StoreStream
— KernelReduce

— GatherOp, ScatterOp

July 27th, 2003

15

Implementation

¢ Streams
— Stored in 2D fp textures / pbuffers
— Managed by runtime

* Kernels
— Compiled to fragment programs
— Executed by rendering quad

July 27th, 2003

16

Implementation

« Compiler: brcc

« Source to Source compiler

— Generate CG code

« Convert array lookups to texture
fetches

» Perform stream/texture lookups
 Texture address calculation

— Generate C Stub file

 Fragment Program Loader
* Render code

July 27th, 2003

17

Gromacs

Molecular Dynamics Simulator
Eric Lindhal, Erik Darve, Yanan Zhao

Force Function (~90% compute time):

July 27th, 2003

18

Camera

Grid of
Triangle List
Offsets

Triangle List
Triangles

Normals

Materials

July 27th, 2003

Ray Tracing

Tim Purcell, Bill Mark, Pat Hanrahan

Generate
Eye Rays

Traverse
Acceleration
Structure

Intersect
Triangles

Shade Hit
and Generate
Shading Rays

19

Finite Volume Methods

Joseph Teran, Victor Ng-Thow-Hing, Ronald Fedkiw

o =pl+ 2 +1 s JB-WoB? LWia®a

July 27th, 2003 W, = aW/al. 20

Applications

Sparse Matrix Multiply
Batcher Bitonic Sort

July 27th, 2003

g h, g b

i sotted

elem:
1pos:

start:
len:

V!

21

Summary

 GPUs are faster than CPUs
— and getting faster

 Why?
— Data Parallelism
— Arithmetic Intensity

* What is the right programming model?

— Stream Computing
— Brook for GPUs

July 27th, 2003

22

50
Time

NVIDIA NV3x:

July 27th, 2003

G

8 8 10 32 14 W oW & W B B 8§

Registers Used

Register usage vs. GFLOPS

23

GPU Gotchas

« ATl Radeon 9800 Pro

* Limited dependent
texture lookup

* 90 instructions
« 24-bit floating point

Texture Lookup

Texture Lookup

Texture Lookup

Texture Lookup

July 27th, 2003

N
D

Summary

“All processors aspire to be general-purpose”
— Tim van Hook, Keynote, Graphics Hardware 2001

July 27th, 2003

25

GPU lIssues

* Missing Integer & Bit Ops
* Texture Memory Addressing

— Address conversion burns 3 instr. per array
lookup

— Need large flat texture addressing
* Readback still slow

 CGC Performance
— Hand code performance critical code

* No native reduction support

July 27th, 2003 26

GPU lIssues

* No native Scatter Support
— Cannot do p[i] = a (indirect write)
— Requires CPU readback.

— Needs:
* Dependent Texture Write
» Set x,y inside fragment program

* No programmable blend
— GatherOp / ScatterOp

July 27th, 2003

27

GPU lIssues

* Limited Output

— Fragment program can only output single 4-
component float or 4x4 component float (ATI)

— Prevents multiple kernel outputs and large
data types.

July 27th, 2003 28

Implementation

* Reduction
— O(lg(n)) Passes
« Gather
— Dependent texture read

« Scatter
— Vertex shader (slow)

» GatherOp / ScatterOp

— Vertex shader with CPU sort (slow)

July 27th, 2003

AL

Acknowledgments

* NVIDIA Fellowship program
« DARPA PCA

« Pat Hanrahan, Bill Dally, Mattan Erez, Tim
Purcell, Bill Mark, Eric Lindahl, Erik Darve,
Yanan Zhao

July 27th, 2003 30

Status

« Compiler/Runtime work complete
* Applications in progress
* Release open source In fall

* Other streaming architectures

— Stanford Streaming Supercomputer
— PCA Architectures (DARPA)

July 27th, 2003

31

