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Figure 1: Left: This facial model has 348 MB of uncompressed blendshape data, and runs at 8 frames per second on 8 CPUs. Our
compression method reduces the storage to 25.4 MB and achieves 300 frames per second with a GPU implementation. No artifacts are
visible. Right: The user can interactively manipulate the blendshape puppet by dragging any vertex on the model. The deforming region is
colored red for visual feedback.

Abstract

We present a method to compress complex blendshape models and
thereby enable interactive, hardware-accelerated animation of these
models. Facial blendshape models in production are typically large
in terms of both the resolution of the model and the number of tar-
get shapes. They are represented by a single huge blendshape ma-
trix, whose size presents a storage burden and prevents real-time
processing. To address this problem, we present a new matrix com-
pression scheme based on a hierarchically semi-separable (HSS)
representation with matrix block reordering. The compressed data
are also suitable for parallel processing. An efficient GPU imple-
mentation provides very fast feedback of the resulting animation.
Compared with the original data, our technique leads to a huge im-
provement in both storage and processing efficiency without incur-
ring any visual artifacts. As an application, we introduce an ex-
tended version of the direct manipulation method to control a large
number of facial blendshapes efficiently and intuitively.
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1 Introduction

Blendshapes are a predominant technique for the creation of real-
istic and semi-realistic facial animation. The strength of the blend-
shape method lies in its simple and interpretable parameterization:
the artist defines an ‘expression space’ with shapes such as raise-
inner-brow-right, and then models each shape exactly as desired.
Blendshape deformers are available in most commercial graphics
packages such as Autodesk Maya and 3ds Max, and virtual charac-
ters created with this technique abound in recent popular films.

The blendshape formulation represents the face as a linear combi-
nation of a set of predefined shapes (i.e. morph targets),

o = B̂w

where o is a vector containing the resulting vertex positions and w
is a vector storing the blending weights. B̂, the blendshape matrix,
has the vertex positions of target shapes at its columns. In practice,
the delta blendshape formulation is often utilized. In this form the
targets B are offsets from a neutral shape vector n:

o = n+Bw (1)

Typically, each target shape deforms only some part of the face, so
this approach exposes sparsity in the matrix B. Our blendshape
model is based on this formula.

One downside of the blendshape method is that it requires a large
number of target shapes to produce high quality facial anima-
tion. For example, the Gollum character in the Lord of the Rings
movies had over 900 target shapes [Raitt 2004]. Contemporary
film-resolution models, such as the examples in this paper, gen-
erally require more than 1000 target shapes. With a high-resolution
facial mesh, the result is a large blendshape matrix B with at least
tens of thousands of rows and hundreds of columns, requiring hun-
dreds of megabytes of memory. Although the processing involves
only a matrix-vector multiplication, this size is too large to achieve
real-time performance on current hardware. For example, after in-
corporating a blendshape model similar to that in Figure 1 into a re-
alistic “rig” with additional deformers (e.g. for the neck), a coarse
body model, textures, another character, and an environment, the
resulting scene plays at less than 1 frame per second.
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Storing the matrix in a sparse format is a natural choice. However,
the matrices used in our examples have densities around 30%, so
sparse storage saves little space as additional indices must be stored
alongside the values. Principal component analysis (PCA) is an-
other alternative. Unfortunately, the spectrum of the matrix decays
too slowly to make PCA effective (Figure 2). For example, repre-
senting the matrix to relative error tolerance τ = 0.01 gives a com-
pression ratio of 34%. This is barely more than the initial sparse
matrix, but is not accurate enough for high quality results.

The proposed method compresses these matrices much more effi-
ciently than the above approaches. Our method is based on hier-
archically semi-separable (HSS) representations [Chandrasekaran
et al. 2004; Xia et al. 2010] that recursively decompose a block
matrix into its diagonal elements and compressible low-rank off-
diagonal blocks. While the original HSS is designed to work with
square matrices with a dense-in-diagonal property, our blendshape
matrices have rectangular shapes with irregular density patterns. To
address this, we decompose the matrix into blocks and reorder them
for compatibility with HSS, then apply our modified HSS compres-
sion (Figure 3). This leads to our new blendshape formula with two
additional permutation matrices P and Q:

o = n+ PHQw (2)
(PHQ ≈ B)

where H is the blendshape matrix compressed with HSS. P and Q
are stored as permutation vectors, so their size is negligible com-
pared to that of B or H . Applying the banded Householder trans-
form [Irving 2011] to the rotation matrices in H leads to additional
compression. With this combined scheme, we achieve a compres-
sion ratio of under 10% as shown in Section 5. Since a direct im-
plementation of the matrix-vector multiplication in (1) is memory
bound, this compression also improves performance. Moreover, the
tree structure of HSS exposes natural parallelism, which allows ef-
ficient matrix-vector multiplication on either multi-core CPUs or
GPUs. Note that the same method of matrix compression is appli-
cable to any technique based on a large number of linear combina-
tions. As an example, we apply our method to cage-based deforma-
tion [Ju et al. 2005; Joshi et al. 2007; Lipman et al. 2007] in Section
5.

The performance gain from matrix compression frees computation
for other tasks, and we utilize this to provide an interactive tool that
allows direct manipulation of the large number of blendshapes. As
described in Section 4, many blendshape systems used in anima-
tion practice, including ours, partition the blendshape targets into
a small set of primary targets and a larger set of secondary targets
that are nonlinearly activated. Our direct manipulation approach ac-
commodates such extensions and interoperates with the parameter
editing provided in practical blendshape systems.

Although our research is focused on film applications that require
the highest complexity blendshape models, games can also benefit
from our technique. Current state-of-the-art games rely on linear
blend skinning for facial animation [Ernst 2011], and models with
even hundreds of targets are considered impossible due to low per-
formance and high memory usage [Nguyen 2007]. Our method
allows multiple characters of this complexity to fit in the graphics
card memory and run in real-time, with computation to spare.

2 Related Work

Despite its long history of practical use [Bergeron and Lachapelle
1985], blendshapes were not generally recognized as a research
area until the work of Pighin et al [1998]. The blendshape tech-
nique has been successfully integrated into various areas of facial

Figure 2: The singular value spectrum of a blendshape matrix with
n ≈ 1000 target shapes. The singular value decays slowly until n
reaches around 800, requiring a very large value of n for accurate
PCA approximation.

animation, including modeling [Pighin et al. 1998], rigging [Li et al.
2010], facial motion capture [Joshi et al. 2003], and animation re-
targeting [Chuang 2004; Deng et al. 2006; Seol et al. 2011].

A variety of other techniques for facial deformation and animation
exist in the research literature. Some important techniques include
anatomically-based approaches [Sifakis et al. 2005] and sophisti-
cated nonlinear deformers [Sumner et al. 2005; Feng et al. 2008].
In particular we wish to contrast data-driven approaches based on
underlying PCA models [Blanz and Vetter 1999; Vlasic et al. 2005].
The PCA approach has clear advantages in terms of analysis and
computation, but it sacrifices the high-level interpretable parame-
teriztion that is unique to blendshapes.

There is a broad range of research on mesh compression, for both
static meshes [Karni and Gotsman 2000; Sorkine et al. 2005] and
animation sequences [Stefanoski and Ostermann 2008]. A good
discussion of this area can be found in [Peng et al. 2005]. As our
solution is specialized for blendshapes, the proposed method dif-
fers from the existing work in two ways: (1) We are less concerned
about compressing mesh connectivity, as the blendshape matrix
contains vertex positions only. (2) Our method is also optimized for
arbitrary interactive editing, while some existing methods focus on
compressing predefined animation. Lastly, our application assumes
“asymmetric” compression, in which significant computation can
occur in the compression phase provided that the decompression is
as fast (and memory local) as possible.

Direct manipulation has been considered as an effective interface
for mesh deformation, as it provides simple and intuitive controls
over complex meshes. Feng et al. [2008] proposed a deformation
model based on a kernel canonical correlation analysis (kCCA) pre-
dictor. From a set of sparse example poses, users can generate plau-
sible deformations by dragging the landmark vertices that are cho-
sen in a training stage. Lau et al. [2009] designed a system to intu-
itively pose facial models. Along with the typical point constraints,
they also introduced distance constraints and stroke constraints for
more precise user control.

The problem of manipulating facial blendshapes is related to
marker-driven facial capture [Zhang et al. 2004], in that manipulat-
ing a vertex corresponds to a marker constraint in motion capture.
The difference is that the former is an under-constrained problem
as only one vertex is manipulated at a time, whereas the latter deals
with multiple markers per frame. Zhang et al. [2004] and Lewis
and Anjyo [2010] addressed this issue, but neither approach applies
to our system directly because of the nonlinearly activated targets
mentioned above. Our solution subsumes the method of Lewis and
Anjyo [2010] while handling the nonlinearity effectively.



Figure 3: Steps in the blendshape matrix compression. Dense matrix blocks are colored in red. The initial matrix B (left) is reordered for
HSS compression, creating two permutation matrices, P and Q (center). The results are the HSS matrix H and the permutation vectors p
and q (right). Each node of H has either three (leaf nodes) or four (non-leaf nodes) element matrices.

Figure 4: Visualization of the blend shape matrix before (left) and
after (right) reordering. Each entry in the plot is the average abso-
lute value of a small matrix block.

3 Compression

The blendshape models we consider are both extremely large and
resistant to compression using standard techniques such as PCA
(Figure 2). However, there is still a great deal of smoothness and
other structure in the set of blendshapes, as shown in Figure 4
(left). To take advantage of this structure, we apply the hierarchi-
cally semi-separable (HSS) representation of [Chandrasekaran et al.
2004], which compresses a matrix by hierarchically replacing off-
diagonal blocks with low rank approximations. This technique is
very attractive in that the low-rank criterion places few restrictions
on the model and does not require a particular form of smoothness
such as vanishing moments.

As the original HSS only deals with square matrices, we first re-
order the rows and columns of the matrix to concentrate weights
near the suitably defined “diagonal” for a rectangular matrix. The
reordering and compression stages are described in details below.

3.1 Reordering

An example input matrix is shown in Figure 4 (left). Although
there is a large amount of structure, it is not in the diagonal vs.
off-diagonal form that is expected by the HSS algorithm. Indeed,
the term diagonal requires definition as the matrix is not square.
Leaving this definition loose for the moment, we want to reorder
the rows and columns of the matrix to move low rank blocks away
from the diagonal.

Unfortunately, any formulation in terms of the ranks of subblocks
is likely to be NP hard and inapproximable [Çivril and Magdon-
Ismail 2009]. Alternatively, if the matrix A is m × n, we could
define a weight function such as wij = |ni −mj | that grows away

Figure 5: Hierarchically semiseparable (HSS) representation cor-
responding to a 4× 4 partition of a matrix

from the diagonal and seek permutations pi and qj such that

E =
∑
ij

wij |apiqj |

is minimized. However, this formulation is exactly the quadratic
assignment problem (QAP), which is also NP hard and practically
extremely difficult to solve [Loiola et al. 2007].

To find a more practical (but still NP hard) version of the reordering
problem, we consider the matrix A as a 2× 2 block matrix

A =

(
A11 A12

A21 A22

)
As will be discussed in Section 3.2, each of the off-diagonal blocks
A12, A21 will be compressed into a single dense block by the HSS
algorithm, so it is important that their ranks be small. We can
make this practical by replacing rank by weight and seeking bi-
sections R = R1 t R2, C = C1 t C2 of the rows and columns of
A such that the crossing weight

E =
∑
ij

|(AR1,C2)ij |+ |(AR2,C1)ij |

is minimized. If the sizes of Rk and Ck are allowed to vary, this
problem is equivalent to minimum cut, and admits efficient polyno-
mial time solutions. With the partitions restricted to have equal
size (|R1| = |R2| and |C1| = |C2|), the problem is NP hard
but admits a simple and efficient heuristic due to [Kernighan and



(a) (b) (c)

Figure 6: (a) Matrix-vector multiplication (y = Ax) with a single thread block. The threads read x into shared memory (left), ‘march’ the
matrix together row-wise (center), and write the result to y (right). The process can be divided by rows only (b) or by both rows and columns
(c). Threads of the same color belong to the same thread block. In the row-column case, the second step (right) gathers scattered results from
the first kernel (left) into the final result. The storage overhead of y is negligible as we divide the matrix into at most 4 blocks of columns.

Lin 1970]. This heuristic iteratively improves the current bisec-
tion by first greedily computing a sequence of pairs to swap, and
then choosing the optimal prefix of the greedy sequence to swap
as a whole. Although the original paper discussed bisecting only a
single set, the algorithm is easily generalizable to simultaneous bi-
section of rows and columns by lumping both into a single set and
restricting the heuristic to only swap row-row or column-column
pairs. We found that only a small constant number of iterations of
this heuristic was required to produce a high quality bisection in
all cases. Kernighan and Lin [1970] reported O(n2 logn) time per
iteration; we improve this to O(n2) time by replacing the sorting
step in their algorithm with a lazy sort, for a total practical cost of
O(n2) time per matrix bisection.

Once the initial row-column bisection is computed, we recurse into
the two diagonal blocksA11 andA22, applying the bisection heuris-
tic to both. Each lower level involves twice as many bisections as
the level above and each bisection is one quarter as expensive, so
the time for the entire recursion is a geometric series summing to
O(n2). This is expensive but not excessively so, as matrix reorder-
ing and compression are applied as a preprocess (Table 1).

Figure 4 (right) shows the result of applying the resulting permuta-
tions to our example input matrix. We restrict the permutations of
the rows of the matrix to treat each vertex as a block, by applying
the reordering step to them/3×nmatrix given by taking the norm
of each 3× 1 block.

3.2 Hierarchically semiseparable matrices

Once the matrix has been reordered, we compress it using the HSS
representation of [Chandrasekaran et al. 2004]. HSS is closely re-
lated to H-matrices [Börm et al. 2003], H2-matrices [Börm 2010],
hierarchical tensor approximations [Wu et al. 2008], and (more dis-
tantly) to fast multipole methods. It makes few assumptions on the
underlying problem and provides several fast operations including
matrix multiplication. We present a brief description here, and re-
fer to [Chandrasekaran et al. 2004; Xia et al. 2010] for details on
constructing and applying HSS representations.

To define an HSS representation, we first partition the rows and
columns of the matrix into an equal number of blocks, and form
a binary tree with the partitions as leaves and the entire matrix as
the root. Although our matrices are nonsquare, partitioning into a
square array of blocks allows us to apply the algorithms of [Chan-
drasekaran et al. 2004] as if they were square. Each leaf node k

stores the diagonal blockDk from the original matrix together with
rotations Uk on the left (resp. Vk on the right) that compress ev-
erything in that row (resp. column) except for the diagonal block.
Further up the tree, each non-leaf k stores two matrices Bk,1 and
Bk,2 that store everything that was not stored in its children after
compression by the children’s U ’s and V ’s, followed by its own Uk

and Vk. Figure 5 shows an example HSS representation. Our no-
tation differs slightly from [Chandrasekaran et al. 2004]: we stack
each pair of their R (resp. W ) matrices into a single U (resp. V )
matrix, which reduces the number of function calls when comput-
ing matrix-vector products. When compressing each matrix block,
we perform a singular value decomposition and drop all singular
values satisfying σi ≤ τσ1, where τ is a relative error tolerance
and σ1 is the largest singular value of the block.

For additional compression, we optionally represent rotations using
the banded Householder factorization of [Irving 2011]. Given an
orthogonal m× n matrix U with m ≤ n, the banded Householder
factorization finds an orthogonal matrixU ′ with the same range that
can be stored in n(m− n) floats. By representing all U and V ma-
trices in this form, the total cost of storing an HSS representation
decreased by almost half (Table 1). On the other hand, this repre-
sentation presents a memory-versus-speed tradeoff (see Section 5),
so it is not used when speed is paramount.

3.3 Parallel Processing

HSS offers a fast multiplication algorithm exploiting its binary tree
structure. It consists of two stages—an up sweep and a down
sweep—that repeatedly update two auxiliary vectors f and g with a
series of matrix-vector multiplications performed by the tree nodes
at each level. The size of the matrix varies depending on the nodes
with a tendency to get bigger as the level goes up: it can be as small
as 1× 1 at leaf nodes and as big as thousands× hundreds at the
root. Consequently, there are different computation patterns at each
level, with many small sized multiplications at lower levels and a
few large sized multiplications at upper levels.

As updates in the same level are independent of each other, per-
node parallelization can be easily achievable by assigning a thread
to each equally-divided node group. For CPU-based implementa-
tion, this coarse parallelization scheme leads to near linear speedup.
However, parallelization on GPUs requires a more elaborate ap-
proach for better utilization of the massively parallel processing ar-
chitecture.



We use CUDA [NVIDIA 2010] for the GPU implementation. It
offers two levels of hierarchy for parallel execution: threads and
thread blocks. Individual threads form a thread block, a group
of which, in turn, form a thread block grid. Threads in a same
block can cooperate together through thread synchronization and
data sharing with local memory. Although cooperation is not possi-
ble across the thread blocks, it is advantageous to have more blocks
as this may allow the GPU to schedule the thread execution order
more optimally. Keeping this in mind, we have designed various
kernels, based on the type (dense or banded Householder) and size
of the matrix. An appropriate kernel is chosen to achieve the opti-
mal performance depending on the situation as described below.

Figure 6 illustrates the multiplication process between a dense
block matrix and a vector. As this is a memory-bound operation,
it is important to reduce the number of global memory operations
and to hide memory latency by using many thread blocks. To do
this, we keep the thread block size as small as possible and share
the operand vector between threads in the same block. For matri-
ces with more rows than the number of threads per block, multiple
thread blocks are assigned so that each block processes a subset of
the rows of the matrix. As the matrices typically have rectangu-
lar shapes with m > n, this approach is efficient for most cases.
When the number of columns becomes large (bigger than the num-
ber of threads per block), we divide column-wise as well. Here
additional treatment is necessary as the destination vector becomes
a critical section. We use two different approaches, depending on
whether the operand vector and the destination vector are the same.
If they are different, the atomic add operation updates the destina-
tion vector. If they are the same, the former may cause read-after-
write hazard, so we employ a two-step approach where the over-
lapping blocks write to different locations in the first kernel and a
second kernel sums them into the final result. When the number of
columns is large enough, the overhead of these extra operations is
negligible [Bainville 2010].

For the matrices with banded Householder representation, it is dif-
ficult to divide a single matrix-vector multiplication into multiple
blocks because each step depends on the previous one and results
must be shared among the threads. It also requires more instructions
and thread synchronizations than is required by dense matrix mul-
tiplication, making the operation computation bound. We reduced
the instruction count and avoided dynamic branching as much as
possible by unrolling loops and using compile-time optimizations.

4 Direct Manipulation

4.1 Nonlinear Blendshape Activation

Modern high-quality blendshape systems, including ours, partition
the blendshape model into a smaller set of ≈ 100 primary targets
that are controlled by the artist, and a remaining set of ≥ 1000 sec-
ondary targets that are automatically triggered as simple nonlinear
functions of the movement of the primary shapes. This is done for
several reasons: (1) to hide the complexity of the blendshape system
from the animators, allowing them to focus only on manipulation
of clearly defined primary parameters; (2) to add simple nonlinear
behavior while presenting the artist with an interface in terms of
traditional linear parameters. Although there is no strict guideline
to define such functions, several de facto approaches exist [Osipa
2010; Autodesk 2011]. Types of these secondary shapes include:

• Intermediate shapes are useful when the primary shapes go
through nonlinear deformation during the morphing. For in-
stance, closing an eyelid exhibits arc-shaped movement on
top of the underlying eyeball. In this case, an intermediate

Figure 7: The control of the influence region with different values
of t. The regions are colored in red (top), leading to different ma-
nipulation results (bottom).

shape close eyelid left 50 is blended together with the pri-
mary shape close eyelid left when its weight is near 0.5, re-
sulting in better in-between animation. Multiple intermediate
shapes can be employed for a primary shape if desired.

• Correction shapes comprise the majority of the blend-
shapes. They are required to correct the blendshape interfer-
ence problem [Lewis et al. 2005]. Each correction shape fixes
an artifact caused by a certain combination of the shapes. The
weight of the correction shape is determined by the participat-
ing shapes, e.g. the product of all the weights in our case.

Another important area to consider is the jaw. The jaw is deformed
by both the blendshapes and the jaw bones with linear blend skin-
ning (LBS). Like the secondary shapes, the same expression param-
eters that control the corresponding jaw blendshapes also drive the
LBS joint transformations. In direct manipulation, we divide our to-
tal of 104 expression parameters into two groups, those that move
the jaw bones (3) and those that do not (101). The two groups are
solved independently. This is consistent with the practice adopted
by the animators, as they usually work with the jaw bone first, fol-
lowed by adjusting the other expression parameters.

4.2 Formulation

We start with an objective function similar to Lewis and Anjyo
[2010]:

E =
1

2
min
x
‖B̄f(x)−m‖2 + α‖x− x0‖2 + µ‖x‖2

Here x0 and x are the expression parameters before and after the
current manipulation, m is a vector of goal positions of the con-
strained vertices, B̄ are the corresponding rows from the B matrix,
and w = f(x) is our nonlinear weight function. The first term
measures the position differences between constrained vertices and
their goals, while the second and third terms are for regularization.
The last term with small µ avoids extreme solutions in the result.

Users often drag the manipulation vertex (referred to as a handle
below) back and forth until the facial expression converges to a de-
sired state. In terms of the mouse events, this can be described as
a sequence like ‘click-drag-drag-...-drag-release’. When the handle



is near the clicked position, the expression should be close to the
initial state even after several drags. However, each drag should
result in a continuous change relative to the previous state to en-
sure smooth changes in expressions. Setting x0 on either the click
or drag event will not simultaneously satisfy both conditions: if x0
is set on click, the first condition is satisfied but the expression may
change erratically during dragging. On the other hand, setting x0 on
drag will show smooth pose updates, but the facial state may drift
away from the original pose after several drags. For this reason, we
add a new regularization term xd to our objective function:

1

2
min
x
‖B̄f(x)−m‖2 + α‖x− x0‖2 + β‖x− xd‖2 + µ‖x‖2

x0 is set on the click event while xd is set on every drag event.

After taking derivatives, this can be efficiently solved with any
constrained nonlinear optimization solver. In our experience, the
Bound Optimization BY Quadratic Approximation (BOBYQA) al-
gorithm [Powell 2009] converged well with the fewest iterations.
We used α = 0.3, β = 0.6, and µ = 0.001 in our examples.

We map the group of three jaw-related parameters to the position
of a vertex in the jaw region using biharmonic radial basis function
(RBF) interpolation [Carr et al. 2001]. This precomputes the RBF
weights w with the positions of a handle vertex as input and the
jaw parameters as output. At runtime, the handle is fixed on the
trained vertex and the new jaw weights are predicted through this
RBF network.

4.3 Region of Influence Control

Since the artist manipulates only a single handle at a time, direct
manipulation of the face is highly underconstrained. For instance,
when a user places the handle in outer brow region and moves the
handle up, the user may or may not want to move the nearby in-
ner brow as well. One solution would be to regularize this inverse
problem by incorporating a prior based on the expected statistics of
face movement [Lau et al. 2009]. (We note that the regularization
terms in our formulation are in fact an approximate prior of this
form, since the blendshape model is carefully constructed so that
important expressions can be obtained with economical parameter
changes.) In this work we adopt a solution that is suited for profes-
sional animators, allowing them to directly select a desired subset
of blendshapes. The blendshapes that affect the handle are sorted by
importance, and the user interactively selects a proportion t ∈ [0, 1]
of these shapes to manipulate. This is done in the interface by drag-
ging the mouse with holding the ‘control’ key.

We define the importance of a blendshape relative to a vertex as
the Euclidean norm of the vertex displacement vector from each
shape. When a new manipulation vertex is set, the importance vec-
tor c can be efficiently computed from the corresponding rows of
B. Let cmax denotes the maximum value of c. The subset S of
blendshapes for a given t is defined as

si ∈ S ⇐⇒ ci ≥ cmax(1− t)

where si is the primary shape corresponding to ci. Only expres-
sion parameters affecting the shapes in S take part in the optimiza-
tion. Our definition of t provides users with an intuitive feeling
when switching between local and global manipulation: a small t
decreases the number of active shapes with a reduced deformation
area; a large t widens it. For better user interaction, we visualize
the influence region with a custom color shader (Figure 7).

(a) Dumb (42391 verts) (b) Dumber (51729 verts)

Figure 8: Example facial models in the rest pose

Figure 9: An example model (Armadillo) for cage-based deforma-
tion in the rest pose (284 cage verts and 106289 embedded verts)

5 Results

We implemented our method as a plugin for Maya 2011 with C++,
Python, and Maya Embedded Language (MEL). A standalone fa-
cial animation player was also built to better demonstrate the per-
formance improvement, as the Maya environment adds significant
computational overhead. OpenMP and CUDA were used for paral-
lelization of the matrix-vector multiplication and direct manipula-
tion. The Intel Math Kernel Library (MKL) was used for all CPU-
side BLAS and LAPACK operations. The BOBYQA implementa-
tion in the NLopt library [Johnson 2010] was used for nonlinear op-
timization of the direct manipulation. All the tests were performed
on 8-core Intel Xeon 2.8Ghz machine with 8 GB of RAM and an
nVidia GTX 580 GPU. With the exception of the direct manipula-
tion solver, which uses double precision, all computation was done
using single precision floats. Figure 8 and 9 shows the test mod-
els. For facial examples, we only utilized the main facial part of the
mesh; the eyes and the teeth are not included.

Compression Table 3 shows compression results for different
tolerances. A tolerance of τ = 10−3 resulted in no visible artifacts
(Figure 1, 10 and 11), and was used for all examples. We performed
a blind test with 9 professional artists who found no major differ-
ences between compressed and uncompressed models; four thought
the compressed model was the ground truth. Table 2 shows storage
and time requirements for the matrix compression stage. All the ex-
amples show a compression ratio of under 10% relative to the origi-
nal matrix. Reordering took the most of the time in the compression
stage, followed by HSS and banded Householder compression.



Matrix Size Storage (MB)
Example # Rows # Cols Dense Sparse PCA local-PCA HSS HSS+banded

Dumb 127173 730 354 (100%) 348 (98.3%) 138.7 (39.2%) 87.4 (24.7%) 46.8 (13.2%) 25.4 (7.2%)
Dumber 155187 625 370.0 (100%) 317 (85.7%) 164.6 (44.5%) 104.7 (28.3%) 46.0 (12.4%) 28.1 (7.6%)

Armadillo 106289 284 115.2 (100%) 173.2 (150.3%) 114.8 (99.6%) – 10.4 (9.0%) 8.6 (7.4%)

Table 1: Storage information of the examples. τ = 10−2 is used for PCA and τ = 10−3 is used for our technique. Localized PCA with four
pre-partitioned regions—eyes, nose, mouth and remainder—is also tested with the facial examples.

Figure 10: The comparison of visual artifacts with varying tolerance τ . All expression parameters are set to 1 to test extreme deformation.

Example Reorder HSS banded

Dumb 670.2 133.2 3.4
Dumber 1031.3 142.4 3.5

Armadillo 6318.1 170.1 2.0

Table 2: Detailed timing of our compression method (in seconds)

Tables 1, 4 and Figure 11 show the fidelity and performance ob-
tained with the compressed models. Unlike PCA, our method does
not depend on the rank of the matrix. As a result, we show better
compression ratios with lower relative error than PCA and localized
PCA for all examples. To show the versatility of our technique, we
also applied the proposed compression to cage-based deformation,
which relies on a large number of linear combinations. Although,
the matrix for Armadillo model is nearly incompressible with PCA,
our results were comparable to the blendshape examples in terms of
compression ratio, visual quality, and performance. Unlike the case
of blendshapes, the cage deformation matrix has the same number
of rows as vertices, so reordering is performed on the individual
matrix elements and takes somewhat longer.

During matrix-vector multiplication, the number of flops is slightly
less than twice the number of matrix entries. Consequently, the
compression ratio approximates the amount of speedup (Table 3
and 4). GPU timing in Table 4 show that the banded House-
holder form caused a performance penalty (about 50%) due to the
increased number of instructions and thread synchronizations, as

described in Section 3. However, our standalone facial animation
demo shows that it is already efficient enough for real-time appli-
cations: when fully processed on the GPU, our facial animation
example runs at over 300 fps, including linear blend skinning and
per-vertex normal updates (see Figure 1). Further speedup can be
achieved by trading off between storage and performance if desired,
by converting only a subset of the HSS tree to banded Householder
format.

Direct Manipulation Figure 13 and the video show the advan-
tage of using the dual regularizers in the objective function. The x0
regularizer prevents the solution from drifting away from the initial
state set on mouse click, while the xd regularizer keeps the inter-
mediate solutions smooth and continuous during mouse dragging.

Our direct manipulation method can reduce both the number of
mouse actions and ‘trial-and-error’ iterations relative to traditional
blendshape parameter editing. This is particularly true for novice
users given the daunting number (> 100) of parameters. The ac-
companying video and Figure 12 show an example. On the other
hand, it should be noted that in professional animation, direct ma-
nipulation cannot fully replace parameter editing. It can be mathe-
matically argued that direct manipulation and parameter editing are
each more efficient for some edits and inefficient for others [Lewis
and Anjyo 2010]. An advantage of our approach is that it interoper-
ates with conventional parameter editing, unlike approaches based
on an underlying PCA model that lacks semantic interpretation.



(a) Uncompressed (b) Compressed (τ = 10−3)

Figure 11: Quality comparison: cage-based deformation

Storage Timing (ms)
τ (Compression Ratio) Rel. Error 8 CPUs GPU

10−2 9.83 MB (2.8%) 4.10% 5.58 1.12
10−3 25.4 MB (7.2%) 0.54% 11.22 2.18
10−4 54.3 MB (15.3%) 0.06% 19.3 3.39

Table 3: Compression ratios, relative errors, and matrix-vector
multiplication timing for various compression levels τ on the Dumb
character

Sparse HSS HSS+banded
Character 8 CPUs 8 CPUs GPU 8 CPUs GPU

Dumb 124.21 11.22 1.47 10.73 2.18
Dumber 113.65 11.01 1.41 10.76 2.12

Armadillo 28.78 3.62 0.82 4.22 1.18

Table 4: Timing for matrix-vector multiplication (in milliseconds)

Feedback from professional animators was positive. They mostly
liked the intuitive aspect of the method, which resembles that of in-
verse kinematics. Some commented on the control of the influence
region; they could quickly grasp the level of control provided and
were impressed by how our method “automatically” chooses the
blendshapes that correspond to a desired direct manipulation edit.
They mentioned that the order coincided with their expectation in
most cases. Negative comments were mostly about the user inter-
face. For example, many artists wanted to see a textual list of the
shapes currently being manipulated, for verification. Some artists
wanted a symmetry option, allowing manipulation of both the left
and the right side of the face at the same time. Fortunately, adding
such features will not adversely affect our core implementation.

Limitation Our method works well with complex models. How-
ever, the effectiveness of the compression depends on the size of
the matrix. The HSS technique expects a certain level of smooth-
ness in the input, which is often not observed in matrices with few
rows and columns. We observed this by compressing a subset of the
original blendshapes for the Dumb character, giving a compression
ratio of 14.8% with 300 shapes and 47% with 50 shapes.

6 Conclusions and Future Work

We presented a method to compress complex blendshapes, using
matrix block reordering followed by HSS and optional banded
Householder representation. Animation with the compressed ma-

trix is accelerated using fast matrix-vector multiplication and par-
allel processing. The resulting performance gain enables animation
at interactive rates. We exploit this, introducing an interactive di-
rect manipulation approach that handles our nonlinear blendshape
scheme. Our direct manipulation method satisfies both novice and
professional users due to its intuitive, efficient, and precise control
and interoperability with traditional blendshape parameter editing.
Applications include both professional off-line facial animation and
real-time games with cinematic quality facial animation.

Our future direction targets improvement of both quality and per-
formance. We would like to design a preconditioner that effectively
reduces the block boundary artifacts from HSS compression. This
might allow a higher error tolerance (e.g. τ ≥ 10−2) to be used
without visible artifacts. Another goal is to find a more GPU-
friendly multiplication procedure for banded Householder matri-
ces. Although the current method is already fast enough for our
purpose, further improvement will allow computation of the facial
movement of small crowds of characters in real time.
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Figure 12: An example of creating a facial expression by a novice user using our direct manipulation method. It took less than 3 minutes to
create this from the neutral pose.

Figure 13: Comparison between different regularizations used for direct manipulation. The handle positions are indicated with green spheres.
The mouse is clicked on the first frame (first column), dragged up and down, and returned to the initial position (last column). Using only the
x0 regularizer fails to produce a continuous solution during the drags, causing wiggling movements and a sudden jump in the solution (top
row, column 2-3 and 6-7). Using only the xd regularizer shows smooth transitions, but the pose drifts away from the initial state (middle row,
column 7). Using both x0 and xd results in smoother and more stable movement (bottom row).


