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Abstract— We present an algorithm for creating globally 
consistent three-dimensional maps from depth fields 
produced by camera-based range measurement systems.  
Our approach is specifically suited to dealing with the high 
noise levels and the large number of outliers often produced 
by such systems.  Range data is filtered to reject outliers 
within each scan.  The point-to-plane variant of ICP is used 
for local alignment, including weightings that favor nearby 
points and a novel outlier rejection strategy that increases the 
robustness for this class of data while eliminating the burden 
of user-specified thresholds.  Global consistency is imposed 
on cycles by optimally distributing the cyclic discrepancy 
according to the local fit correlation matrices.  The algorithm 
is demonstrated on a dataset collected by an active 
unstructured-light space-time stereo vision system. 
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I.  INTRODUCTION 
Developing robust algorithms for generating accurate 

maps from range measurements is widely seen as one of 
the most important challenges impeding the development 
of truly autonomous robots.  Such maps are critical for 
localization and path planning and could be used as an 
important information source in broader frameworks of 
artificial intelligence, providing concrete sets of 
measurements to associate with the notions of objects or 
locales.  The two problems of mapping and localization are 
generally seen as two facets of the same fundamental 
problem and a great deal of work has been done in this 
field over the course of the past two decades. 

Past work has predominately focused on using time-of-
flight laser scanners to map interior environments.  Laser 
scanners have the advantage of producing reliable data 
with well understood noise characteristics, and robotic 
mapping schemes based on this technology have been 
successfully applied by several researchers [1-4].  

These systems are, however, fundamentally limited.  
The primary problem with time-of-flight systems is spatial 
accuracy.  The uncertainty in measurements from such 
systems is multiple centimeters, regardless of the distance 
to the target.  This large absolute error makes the mapping 
of small-scale structure impossible and strains algorithms 
for finding planes and other global structure in the data.  A 
second major problem is speed.  Laser scanners operate by 
scanning a single line with every pass so scanning over a 

large surface area requires a great deal of time, thereby 
placing limitations on how fast a robot equipped with such 
a scanner can move through its environment.  A third 
problem is that laser scanners cost much more than some 
recently developed alternatives. 

Stereo vision systems are a natural choice for such an 
application but conventional stereo systems provide very 
noisy data with large gaps in low-texture regions.  Recent 
independent research in the computer graphics and 
computer vision communities has led to the development 
of camera-based range measurement systems that are 
capable of producing dense depth fields at up to 60 frames 
per second.  There are presently several variants of active 
stereo and active triangulation systems under development 
but they all work on the same principle of achieving or 
improving correspondence by projecting non-uniform light 
into the scene.  These systems are particularly accurate in 
the near-field and have been used to produce impressive 
models of hand-held objects [5-8].  This sort of scanner is 
precisely what is needed to overcome the limitations of the 
laser-scanner mapping systems currently in use, but little 
work has been done to apply this technology to the 
mapping and localization problem  [9]. 

The present work combines active stereo vision with 
simultaneous mapping and localization.  When operated 
over long ranges and in challenging environments, data 
from camera-based systems has fundamentally different 
noise and outlier characteristics than both laser scanner and 
near-field stereo systems, and the direct application of 
existing methods fails to yield a robust algorithm.  False 
measurements in the data are common and a large number 
of seemingly meaningful but incongruous measurements 
can be made when viewing reflective or partially 
transparent surfaces like windows.  Furthermore, camera-
based range finding systems depend on deriving accurate 
spatial information from camera images and therefore 
come with all the attendant problems of camera calibration, 
made even more difficult when considering a large 
working volume.  Overcoming all of these challenges is 
necessary for the application of camera-based range finding 
techniques to the mapping and localization problem. 

In this paper we extend the iterative closest point (ICP) 
family of local registration algorithms to deal with the 
challenges associated with aligning long-range camera-
based scans of difficult environments.  In particular, we 
propose three changes to the standard algorithm: (1) 
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individual scans are processed to eliminate outliers by 
dynamically thresholding local similarity metrics, (2) point 
pairings are aggressively filtered using a related dynamic 
threshold, and (3) a weighting function is applied that 
favors near-field measurements.  The new thresholding 
technique, which is based on a statistical model of the error 
metrics, has the notable advantages of improving 
robustness while reducing the number of user-specified 
input parameters required to process the data. 

We integrate this approach into a global SLAM 
algorithm capable of creating globally consistent maps of 
cyclic environments.  This problem has received a lot of 
attention in two dimensional mapping [10-12], and in this 
paper we apply the same techniques to three dimensions.  
In particular we applied a constrained optimization 
technique to optimally redistribute cyclic discrepancies 
over the entire cycle.  Here we use the fit-confidence 
information encoded in the covariance matrix produced by 
each point-to-plane ICP alignment.  This framework 
provides an effective method for correcting the error 
accumulated by chaining together uncertain local motion 
estimates. 

Finally, we illustrate the capabilities of our algorithm 
with an example based on an active space-time stereo 
vision system [8].  The outer perimeter of a room was 
surveyed by a mobile robot following a rectangular path 
with rounded corners.  Two hundred and thirty depth fields 
were recorded, each containing about 25,000 points.  Local 
alignment was performed only between consecutive frames 
and global registration was performed once, upon 
completion of the cycle.  The resulting combined dataset 
was down-sampled with a point-clustering technique, 
yielding the rendered image shown in the Experimental 
Results section. 

II. ITERATIVE CLOSEST POINT ALGORITHM 
Our work is based on the extensive literature on the 

iterative closest point algorithm.  This algorithm is used to 
find the full six-degree-of-freedom transformation between 
overlapping but unaligned scans.  There are several 
variants of this algorithm and we focus on the point-to-
plane formulation [13], which tends to have better 
convergence characteristics and yields more accurate 
results than the various point-to-point alternatives [14].  
Broadly speaking the algorithm works by finding 
corresponding points in the two meshes and applying a 
transformation to minimize an error metric, a function of 
the point pairs, that quantifies the relative misalignment.  
After the transformation, new correspondences are found 
and the process is repeated, either for a fixed number of 
iterations or until the cumulative transformation stops 
changing with each iteration.  Modified to include a prior 
estimate based on independent odometry, the error metric 
reads 

( ) ( )2 2ˆi i i i odo
i

E w Rp T q n w y y= + − ⋅ + ⋅ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ . 

Here, pi and qi are points in the two meshes under 
consideration; ni is the normal corresponding to pi; R is a 
linearized rotation matrix, parameterized by a set of three 
Euler angles; T is a translation vector; wi is the weight 
associated with a given pair; y is the six-dimensional state 
vector, of which the first three elements are the Euler 
angles and the second three elements are the translation 
parameters; ŷ is the estimated state vector implied by the 
odometry; and wodo is the vector of odometry weights.  
Differentiating this expression with respect to each of the 
state variables leads to a system of six linear equations in 
six unknowns.  Solving this linear system leads to an 
optimal set of transformation parameters for a given set of 
point pairs. 

The weights wi are selected as some function of the 
quality of the match, either penalizing large point-to-point 
distances or large disparities between paired normals [14].  
The index i in the error metric summation is the sum over 
all sampled point pairs that have not been rejected as 
unacceptable.  There are several common adaptive 
rejection criteria: (1) reject the worst n% of pairs, usually 
about 10%; (2) reject pairs with point-to-point distances 
that exceed some multiple of the standard deviation of the 
distances, typically 2.5 times [15]; (3) reject pairs with 
incompatible normals, and (4) reject pairs that lie on the 
mesh boundaries.  The last of these is considered critical to 
good alignment and is used in the vast majority of ICP 
implementations, including ours.  The rejection based on 
incompatible normals was also included in all the ICP 
variations we considered. 

In the present work, a challenging dataset was collected  
that includes incidental views of glass surfaces and range 
measurements of up to seventy times the baseline of the 
stereo system.  Full details of the experimental 
configuration are given in the Experimental Results 
section, including sample scans.  Here, it suffices to say 
that the data pushes the limits of scan alignment.  In 
particular, the glass surfaces yielded large numbers of 
outliers that are not distinguishable from the good data 
based on traditional filtration techniques.  The ICP 
algorithm, modified to include prior estimates based on 
odometry, was run on this dataset with the standard outlier-
rejection techniques and it was found to be very brittle. 

For example, experiments were run using the common 
filtration technique of rejecting the worst n% of point pairs.  
Here, we considered rejection rates of 10%, 20%, 25%, and 
30%.  Even with a relatively strong prior estimate of the 
robot’s motion, the algorithm failed consistently on the 
most difficult pairings.  The results of these trials are 
summarize in Table 1 and three illustrative failures are 
shown in Fig. 1.  A point-cloud rendering of a sample 
misalignment is shown in Fig. 5. 

In order to understand why these failures occur we look 
at the distribution of paired-point distances in our dataset.  
Fig. 4 shows the initial distribution of paired-point 
distances for a sampling of consecutive-frame pairings.  
Here we can see the root cause of the problem.  Taking too 
small a rejection rate leads to not filtering enough point 
pairs in cases for which there are a large number of 
outliers, and taking too large a rejection rate throws away 



too many points in fairly clean cases.  Thus, for this 
rejection scheme to work, we must tune the rejection rate 
parameter for a given dataset to find if there is some 
suitable rejection rate that exhibits neither mode of failure.  
Even when this is possible it is clearly less than ideal. 

Another common rejection strategy was also 
considered.  Rejecting point pairs with distances that 
exceed some multiple of the standard deviation of the 
distances was found to be even less effective.  This is due 
to the fact that the standard deviation is strongly effected 
by outliers and our distributions are highly non-Gaussian 
with heavy tails.  The distribution resulting from a cut of 
2.5σ is shown in Fig. 4.  The threshold for cases with large 
numbers of outliers is far too high, leading to systematic 
biasing of the final alignment estimate. 

In summary, traditional ICP is failing on this sequence 
because the noise characteristics are more challenging than 
the algorithm was designed to accommodate.  The most 
notable characteristic is that the level of noise varies 
significantly between frames, so it is unlikely that a single 
rejection rate will successfully filter all the data.  It is 
certainly possible to find sets of traditional ICP parameters 
that will successfully match any given pair and it is even 
conceivable that a particular set will succeed on the entire 
sequence.  But any change in one of the parameters will 
lead to a failure, making any such solution brittle. 

Rejection rate n = 0% Rejection rate n = 10%

Rejection rate n = 20% Our Algorithm

 

Figure 1.  Robot paths predicted by standard ICP algorithm with typical 
n% rejection strategy, compared to result from our algorithm.  Notice that 

all of the existing ICP variations fail on at least one frame. 

TABLE I.  FAILURE OF TRADITIONAL ICP WITH N% REJECTION  

Rejection 
rate Failures 

10% 4 pairs due to rejecting too few matches 

20% 1 pair due to rejecting too few matches 

25% 1 pair due to rejecting too few matches and 
1 pair due to rejecting too many matches 

30% 1 pair due to rejecting too many matches 

III. APPROACH 
The application of camera-based range measurement 

systems to the mapping and localization problem promises 
to overcome many of the limitations of the laser range 
scanners used in existing mapping systems.  It is clear, 
however, that the noise characteristics of these new 
systems, when operated at long ranges and in difficult 
environments, are fundamentally different from both 
camera-based systems at near range and laser-scanner 
systems in general.  In order to overcome these problems 
we propose three changes to the standard ICP algorithm.  
In this section we discuss each of these changes, as well as 
the global registration technique used to impose cyclic 
consistency. 

A. Outlier Rejection 
Stereo algorithms are particularly prone to noise, so 

strong outlier rejection is critical to local registration.  
Considering only a single mesh, our approach is to 
characterize each vertex by two measures.  The first is the 
maximum edge length attached to it and the second is the 
maximum angle between the normal of the vertex in 
question and the normals of its neighbors.  A vertex is 
rejected as an outlier if it is part of the intersection of the 
outliers within each category.   

In order to define an outlier we consider what kind of 
distributions we expect for each of these parameters.  The 
maximum edge length parameter will be highly non-
Gaussian with a positive skew and a heavy tail.  Fig. 2 
shows a likely distribution for this parameter.  In such a 
distribution the median, as computed by random sampling, 
is a computationally inexpensive approximation of the 
mode and twice the mode is, in turn, an effective threshold 
for outlier rejection.  The maximum angular difference 
between neighboring normals has a similar distribution to 
that of the maximum edge length associated with each 
vertex and we apply the same model to calculate the 
threshold. 
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Figure 2.  Expected distribution of maximum edge lengths and other 
error metrics. 



We validated the accuracy of our model by plotting the 
actual distributions observed in the present dataset.  Fig. 3 
shows the edge length distributions for a sampling of the 
frames, before and after normalization with respect to the 
dynamic threshold.  Also shown is the distribution of 
maximum angle between neighboring normals before and 
after normalization.  In both cases, approximating the mode 
with the median was an effective way of making 
computationally efficient dynamic cuts. 

As discussed in the Iterative Closest Point Algorithm 
section, traditional ICP pair rejection strategies fail in 
datasets for which there is a great deal of variability in the 
noise characteristics between frames.  This is exactly what 
we expect in data collected by camera-based range systems 
in difficult environments (e.g., containing reflective 
surfaces).  We solve this problem in a manner similar to 
our solution to the single-scan filtration techniques 
discussed above.  We expect a similar heavy-tailed, 
positively-skewed distribution of initial paired-point 
distances, but we are more concerned with avoiding the 
possibility of initially rejecting too many pairs, so we 
threshold at a slightly larger cut of three times the median.  
We are willing to accept a higher cut here because as ICP 
converges, the threshold will shrink as the median shrinks 
and more outliers will be rejected.  The resulting 
normalized distribution is shown in Fig.4.  

The insight of this paper is that while the distribution of 
the various error metrics vary substantially between 
frames, they are all of sufficiently similar character that we 
can collapse them into a single curve by normalizing with 
respect to the proper threshold.  This can be seen clearly in 
Fig. 3, in which raw and normalized distributions are 
shown together.  In Fig. 4 we show the improved 
performance of our algorithm relative to the standard ICP 
outlier rejection algorithms.  Here we focus on the outlying 
curves.  With all three existing methods there are clearly 
cases where the existing thresholds fail to reject a large 
number of outliers; it is even possible to see second modes 
that have been allowed in under the threshold.  In the 
traditional ICP framework, the only way to get rid of these 
outliers is to turn up the rejection rate, which, as in the case 
of a rejection rate of 30%, leads to cutting out too much 
good data in fairly clean distributions. 

B. Weighting 
The noise of a single triangulation in camera-based range-
finding algorithms can be shown by geometric reasoning 
(under reasonable assumptions) to vary linearly with depth.  
We therefore reformulate the weights associated with each 
point pair to linearly favor nearby points over distant ones.  
Specifically we define a weighting function that varies 
linearly from one at zero depth to zero at some specified 
maximum depth of field.  A reasonable value for this 
would be some integer multiple of the baseline of the 
system in question.  In the present work a maximum depth 
of field of 10 meters was assumed. 
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Figure 3.  The distribution of the maximum edge length (top), the same 
data normalized with respect to the threshold selected as twice the 

approximate mode (middle top), the distribution of maximum angle 
between neighboring normals (middle bottom), and the same data 

normalized with respect to the threshold selected as twice the 
approximate mode (bottom). 
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Figure 4.  Distributions of paired-point distances normalized with 
respect to a threshold defined by rejecting the worst 10% of matched 
pairs (top), rejecting the worst 30% of matched pairs (middle top), 
rejecting pairs with distances greater than 2.5 times the standard 

deviation (middle bottom), and cutting at three times the median value 
(bottom). 

C. Modified ICP Results 
The combination of advanced outlier rejection and 

appropriate weighting solved the misalignment problems 
ICP was experiencing.  An interesting way to visualize the 
effect of the new filtering technique is to consider the 
distribution of the equivalent rejection rate.  That is, for 
each pairing we compute the n% rejection rate that would 
yield the same threshold as the new algorithm; the 
histogram of this equivalent threshold is shown in Fig. 5.  
Notice that for most scan pairs a threshold of 5-15% is 
computed, but that for a few particularly noisy scans the 
threshold is equivalent to rejecting 30% of the points.  Also 
shown is the final point-pair distance distribution in our 
algorithm.  Notice that the curves all collapse nicely. 
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Figure 5.  The distribution of equivalent rejection rates (left) and the 
final (converged) distribution of paired-point distances normalized with 

respect to the threshold of our algorithm (right). 

In order to illustrate the types of alignments that were 
effected by the changes to the algorithm, a before-and-after 
comparison is made with one of the critical local 
registrations.  Fig. 6 compares a match based on a 
traditional ICP scheme with a 25% rejection rate to the 
same match based on the new algorithm.  This particular 
combination is a relatively noise-free pair that is being 
over-cut by the large rejection rate.  To reiterate, turning 
down the rejection rate does solve this pair’s problems, but 
only at the cost of creating a misalignment between other 
pairs with higher outlier content. 

Note that in this example the source of the 
misalignment is noise due to a glass-wall that is out of view 
to the right.  The misaligned planes do not attract each 
other because they have been flagged as outliers due to the 
high rejection rate, so spurious correlations in the noise 
draw the alignment apart. 

D. Global Registration 
As the robot moves through a scene it will inevitably 

encounter regions that it has already crossed, such as when 
completing a loop of hallways or scanning the outer 
perimeter of a large room.  In this case the robot is faced 
with a contradiction.  The chaining together of local motion 
estimates based on local scan alignment produces an 
estimate of the current position that is not the same as the 
direct estimates provided by comparing the current scan 
directly with the previous scans of the same region.  
Resolving this discrepancy is the global registration 
problem, which is solved by optimally distributing the 
discrepancy over all the local motion estimates according 
to our measures of local alignment quality from each point-
to-plane alignment.   



 
Figure 6.  A sample misalignment due to treating too many accurate 
point pairs as outliers (top). Notice the poorly aligned features in the 
annotated circle, and also near the two arrows.  The same match as 
computed by the new algorithm has features which are much better 
aligned (bottom).  

The problem is illustrated schematically in Fig. 7.  Here 
the pose vectors are denoted Pi and the relative 
transformations between the ith  pose vector and the (i+1)th 
pose vector is denoted yi. 

We seek a solution that reconfigures the pose vectors to 
minimized the total error associated with the discrepancy 
between the chosen transformations and those predicted by 
ICP.  That is, the error due to a perturbation in any given 
relative transformation is given by 

( ) ( )T
i i i idy C dyε = , 

where Ci is the ICP correlation matrix associated with 
alignment bi.  We write the perturbation away from the ICP 
alignment as a non-linear function of the associated poses 

( )1,i i i i idy y P P y+= − , 

which can be linearized using a Taylor series expansion 
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Figure 7.  A schematic illustration of the global registration problem. 
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Here, evaluation at zero indicates values computed by local 
alignment alone.  Thus we have a linear equation for the 
perturbation away from the ICP alignment that is caused by 
a given change in the associated pose vectors.  This 
equation can be inserted into our expression for the related 
error contribution, yielding terms of the form 
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and the whole quadratic system can be optimized by 
solving the linear system 

( ) ( )T TJ C J P J C d= , 
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The resulting system is of size n·dof, where n is the 
number of poses in the cycle and dof is the number of 
degrees of freedom allowed to each transformation.  

IV. EXPERIMENTAL RESULTS 
We illustrate our algorithm on a set of data collected by 

a mobile robot equipped with an active space-time stereo 
system, as shown in Fig. 8. We used a 2 dof (rotation, 
translation) Nomad robot base with SRI stereo cameras in a 
room of size of 8 meters by 8 meters. The robot was moved 
in steps of one inch in a closed loop by using encoders to 



correct for motion error. The ranging sub-system has a 9 
cm baseline and a standard data projector to display 
patterns. The cameras are synchronized and calibrated 
using a standard technique [16,17]. At each waypoint along 
the robot path, the ranging system captures a depth map. 

Although the space-time stereo ranging method is 
described in greater detail elsewhere [7,8], we summarize 
our particular implementation here. The data projector is 
used to display a sequence of 25 patterns which are imaged 
on the SRI stereo camera. The patterns consist of random 
vertical black and white stripes. Although it is not 
necessary, the projector and cameras are synchronized. 
Depth is recovered using a 1x1x25 matching vector, i.e. the 
stereo epipolar search has a spatial extent of a single pixel, 
and a temporal extent of all 25 frames. Normalized cross 
correlation is used to compare matching vectors. Since the 
active illumination allows for good correspondence to be 
determined, no global regularization method such as graph 
cuts or dynamic programming is used.  Two sample range 
fields are shown in Fig. 9. 

 

Figure 8.  Experimental setup. 

  

Figure 9.  A clean range field (left) and one with a lot of noise behind an 
intervening glass window due to a reflections (right). 

The robot was commanded to follow a rectangular path 
with rounded corners about the outer perimeter of the 
room.  Two hundred and thirty frames were collected 
during the course of the robot’s motion and the data was 
processed according to our algorithm.  After the fact, each 
ICP alignment was examined by eye to confirm that the 
modified ICP algorithm did indeed functioned without 
mistakes for the entire run.   

The full circuit, before and after global registration is 
shown in Fig. 10.  For reference, the actual final position of 
the robot was also just to the right of the first segment of 
the robots path, so the path shown here is very accurate.  
The resulting three-dimensional model of the room was 
down-sampled with the point clustering techniques of 
Pauly [18] and is visualized in Fig. 11. 

After global registration 

 

Figure 10.  Robot paths predicted by our algorithm before and after 
global registration is performed. 

V. SUMMARY AND CONCLUSIONS 
In this paper, we proposed a new method for the 

problem of large-scale 3-D mapping with stereoscopic 
sensors.  We modify the ICP algorithm in two major ways: 
(1) by weighting nearby points more heavily and (2) by 
using a new dynamic threshold that better filters the data 
without requiring user-specified cuts.  Global consistency 
is imposed by optimally redistributing cyclic discrepancy 
according to the local fit covariance matrices.  We 
successfully acquired a large 3-D map of a cyclic 
environment, using a data set for which previous ICP 
algorithms fail. 

Alternative solutions to this problem certainly exist.  
For example, applying a carefully selected fixed paired-
point distance threshold of 0.15 meters on top of a 5% cut 
was found to be an effective strategy for yielding 
consistently accurate alignments.  Such a strategy depends, 
however, on a user-specified fixed threshold and is 
therefore less desirable than a strategy that selects the 
appropriate threshold automatically.  It is also conceivable 
to improve the fit we make to the statistical model.  
Applying a correction after initial thresholding to take into 
account the standard deviation of the distances between the 
good pairings could lead to an even more robust algorithm.  
One should note here that these thresholds are being 
applied many times per second on large volumes of data, so 
we must be careful to design a technique that does not 
damage the overall computational performance of the 
algorithm.  We believe that the algorithm presented here 



offers a suitable balance between computational efficiency 
and statistical rigor.   

Despite these positive results there are a number of 
questions that warrant future research.  An effective 
algorithm for detecting when a cycle has been completed is 
essential to the autonomous application of SLAM.  The 
same algorithm should be applied to detect all overlapping 
frames that can be compared to improve global alignment.  
In addition, we have found that good camera calibration is 
critical to successful scan alignment.  A robust algorithm 
for calibrating short-baseline stereo at long ranges would 
also improve alignment. 
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Figure 11.    Rendered view of three-dimensional scene. 
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