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Abstract

When being deployed, ad-hoc and sensor networks are un-
structured and lack an efficient and reliable communication
scheme. Hence, the organization of a MAC layer is the primary
goal during and immediately after the deployment of such net-
works. Computing a good initial clustering facilitates this task and
is therefore a vital part of the initialization process. A clustering
based on a maximal independent set provides several highly desir-
able properties. Besides yielding a dominating set of good qual-
ity, such a clustering avoids interference between clusterheads,
thus allowing efficient communication. We propose a novel al-
gorithm that works under a model capturing the characteristics of
the initialization phase of unstructured radio networks, i.e. asyn-
chronous wake-up, scarce knowledge about the topology of the
network graph, no collision detection, and the hidden terminal
problem. We show that even under these hard conditions, the al-
gorithm computes a maximal independent set in polylogarithmic
time.

1 Introduction

One of the main characteristics of ad-hoc and sensor net-
works is that the communication infrastructure is provided
by the nodes themselves. When being deployed, the nodes
of such networks initially form a chaoticunstructured radio
network, which means that no reliable and efficient com-
munication pattern has been established yet. Before any
reasonable communication can be carried out, nodes must
structurethe network, i.e. they must set up a medium access
scheme. The problem of initializing and structuring radio
networks is of great importance in practice. Even in an ad-
hoc network with a small number of devices such as Blue-
tooth, the initialization tends to be slow. In a multi-hop sce-
nario with large number of nodes the time consumption for
establishing a reasonable communication pattern increases
even further. In this paper, we are going to study this vital
transition from a unstructured to a structured network, the
initialization phase.

One prominent approach to solving the problem of
bringing structure into a multi-hop radio network isclus-
tering [3, 6, 8, 11, 21]. Clustering allows the formation of
virtual backbones enabling efficient routing and broadcast-
ing [27], it improves the usage of scarce resources such as
bandwidth and energy [13], and — most important to this
paper — clustering is crucial in realizing spatial multiplex-
ing in non-overlapping clusters (TDMA or FDMA). Hence,
computing a good initial clustering is a major step towards
establishing an efficient MAC layer on top of which higher-
level protocols and applications can subsequently be built.

What is a good clustering? Depending on the specific
network problem at hand, the answer to this question may
be varying. But in light of the wireless and multi-hop nature
of ad-hoc and sensor networks, a good clustering should sat-
isfy (at least) two properties. In order to allow efficient com-
munication between each pair of nodes, every node should
have at least one clusterhead in its neighborhood. From a
graph theory point of view, this first property demands a
dominating set(and preferably aminimum dominating set).
A dominating set in a graphG = (V, E) is a subsetS ∈ V
such that each node is either inS or has a neighbor inS.
The use of (connected) dominating sets for clustering net-
works has been motivated and investigated in literature, e.g.
in [1, 9, 14, 19, 29, 31].

This identification of clustering to the notion of adom-
inating set, however, does not cover the second need aris-
ing in ad-hoc and sensor networks. It has been motivated
in [6, 7] that it is undesirable to have neighboring cluster-
heads. In particular, if no two clusterheads are within each
other’s mutual transmission range, the task of establishing
an efficient MAC layer is greatly facilitated because clus-
terheads will not face interference. This second property
imposed on the clustering of ad-hoc and sensor networks
leads to the well-known concept of amaximal independent
set in a graphG = (V, E). An independent set (IS)S of
G is a subset ofV such that∀u, v ∈ S, (u, v) /∈ E. S is a
maximal independent set(MIS) if any node v not inS has a
neighbor inS.

The importance of a MIS in the context of clustering
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wireless networks has been widely acknowledged [2, 7].
Several algorithms for the construction of a virtual back-
bone (for example for allowing efficient routing) are based
on computing a MIS [1, 23, 29, 30]. Due to its additional
constraint, computing a MIS is a harder problem than com-
puting a dominating set. Additionally, it is worth noting
that any MIS is a4O + 1-approximation for the minimum
dominating set problem on the unit disk graph [29], where
O denotes the size of the optimal solution. In other words,
by computing a MIS, we obtain a clustering which has all
advantages of a high-quality dominating set and moreover
has the property that clusterheads do not interfere. Hence,
a MIS provides an excellentinitial clustering. Note that the
computation of a MIS is also a key building block for color-
ing algorithms as all nodes in a MIS can be safely assigned
the same color.

In view of our goal of setting up a MAC scheme in a
newly deployed network, it is obvious that a clustering al-
gorithm for the initialization phase must not rely on any pre-
viously established MAC layer. Instead, we are interested
in a simple and practical algorithm which quickly computes
a clustering completely fromscratch. Note that this pre-
cludes algorithms working under any sort ofmessage pass-
ing modelin which messages can be sent to neighbors with-
out fearing collision due to the hidden terminal problem.

In total absence of any MAC layer support, algorithms
for clustering in a newly deployed network must be capa-
ble of working under particularly harsh conditions. Specifi-
cally, these conditions are captured by the following model
assumptions [17]:

• The network is amulti-hopnetwork, that is, there ex-
ist nodes that are not within their mutual transmission
range, resulting in problems such as the well-known
hidden terminal problem. Some neighbors of a send-
ing node may receive a message, while others are ex-
periencing interference from other senders and do not
receive the message.

• Our model allows nodes to wake-upasynchronously.
In a multi-hop environment, it is realistic to assume
that some nodes wake up (e.g. become deployed, or
switched on) later than others. Consequently, nodes
do not have access to a global clock. It is important
to observe the manifold implications of asynchronous
wake-up. If all nodes started the algorithm simultane-
ously, we could easily assume an ALOHA style MAC-
layer where each node sends with probabilityΘ(1/n).
It is well known that this approach leads to a quick
and simple communication scheme on top of which
efficient clustering algorithms can be used. If nodes
wake-up asynchronously, however, the same approach
results in an expected linear runtime if only one single
node wakes-up for a long time. In order to achieve a

polylogarithmic runtime in the case of asynchronous
wake-up, more sophisticated protocols are required.

• Nodes do not feature a reliablecollision detection
mechanism. In many scenarios (particularly when con-
sidering the lack of an established MAC protocol dur-
ing the initialization phase!) not assuming any colli-
sion detection mechanism is realistic. Nodes may be
tiny sensors with equipment restricted to the minimum
due to limitations in energy consumption, weight, or
cost. It has further been argued that the no collision
detection assumption makes sense in the presence of
noisy channels [5]. The sending node itself does not
have a collision detection mechanism either, that is, a
sender does not know how many (if any at all!) neigh-
bors have received its transmission correctly. Given
these additional limitations, algorithms without colli-
sion detection tend to be less efficient than algorithms
with collision detection. Note that the absence of a re-
liable collision detection mechanism precludes using
standard protocols such as Busy Tone Multiple Access
(BTMA) [28].

• Nodes have only limited knowledge about the total
number of nodes in the network and no knowledge
about the nodes’ distribution or wake-up pattern. Par-
ticularly, they have no a-priori information about the
number of neighbors.

In this paper, we show that even under this harsh model,
a MIS clustering can be computed in polylogarithmic time
only. We present a randomized algorithm which has practi-
cal relevance in the initialization phase of ad-hoc and sen-
sor networks due to its being fast and simple and because it
works in total absence of any existing MAC layer.

A literature review is given in Section 2. Section 3 for-
mally introduces the model in detail and the algorithm is
presented in Section 4. The algorithm’s analysis is given in
Sections 5 and 6. Section 7 concludes the paper.

2 Related Work

Before being studied in the context of clustering ad-hoc
and sensor networks, the computation of a MIS has been
the focus of extensive research on parallel complexity. It
has been shown in [16] that the MIS problem is inNC,
meaning that a polylogarithmic running time is achievable
on a PRAM containing a polynomial number of processors.
A major breakthrough in the understanding of the computa-
tional complexity of MIS was the ingenious randomized al-
gorithm by Luby [22], achieving a runtime ofO(log n) on a
linear number of processors under the CRCW PRAM model
of computation. Unfortunately, Luby’s algorithm cannot be

2



easily transformed to work under our model since it as-
sumes synchronous wake-up, knowledge about the neigh-
borhood, and collision-free communication. Recently, time
lower bounds for the distributed construction of MIS have
been given in [18]. At leastΩ(

√
log n/ log log n) and

Ω(log ∆/ log log ∆) communication rounds are required to
obtain a MIS,∆ being the largest degree in the network.

A model related to the one used in this paper has been
studied in the context of analyzing the complexity of broad-
casting in multi-hop radio network yielding a vast and rich
literature, e.g. [4, 20]. The same model has also been the
focus of research on two important problems calledinitial-
ization problemand leader election problemin single-hop
radio networks, e.g. [12, 24, 25]. A striking difference
to our model is that these algorithms considersynchronous
wake-up, i.e. nodes have access to a global clock and it
is assumed that all nodes start the distributed algorithm at
the same time. In the case of ad hoc and sensor networks
distributed over a large geographical area, guaranteeing that
all nodes start the distributed algorithm simultaneously ap-
pears to be difficult in practice. Moreover, if (sensor) nodes
are deployed dispersed in time, it may even be impossible.
As mentioned in the introduction, the additional difficulties
imposed by asynchrony lead to new algorithmic designs.

A model featuring asynchronous wake-up has been stud-
ied in recent papers about thewake-up problemin single-
hop radio networks [10, 15]. In comparison to our model,
these papers define a much weaker notion of asynchrony.
Particularly, it is assumed that sleeping nodes arewoken up
by a successfully transmitted message. In a single-hop net-
work, the problem of waking up all nodes hence reduces
to successfully transmitting one single message. While this
definition of asynchrony leads to interesting problems and
algorithms, it does not closely reflect reality in many sce-
narios related to ad-hoc and sensor networks.

3 Model

Having already given some intuition in Section 1, we
now describe the model in more detail. We considermulti-
hop radio networkswithout collision detection. Nodes are
unable to distinguish between the situation in which two
or more neighbors are sending and the situation in which
no neighbor is sending. Further, in Sections 4 and 5, we
assume that nodes have access to three independent com-
munication channelsΓ1, Γ2, andΓ3. In practice, this may
be realized using an FDMA scheme. Having three commu-
nication channels simplifies the analysis, but in Section 6
we show it is not a fundamental necessity. Even a single
communication channel suffices to compute a MIS in poly-
logarithmic time.

Nodes may wake upasynchronouslyat any time. We call
a nodesleepingbefore its wake-up, andawakethereafter.

Only awake nodes can send or receive messages. Sleeping
nodes arenot woken upby incoming messages. Observe
that this asynchronous model is more general than the usu-
ally studied synchronous wake-up model in which all nodes
start their local algorithm at the same time. In fact, syn-
chronous wake-up is just one possible scenario captured by
the asynchronous model. In the other extreme case, only
one of then nodes may wake up while the others remain
sleeping for an arbitrarily long time.

We considerUnit Disk Graphs(UDG) to model the net-
work. In a UDGG = (V, E), there is an edge(u, v) ∈ E
iff the Euclidean distance betweenu andv is at most 1. It is
important to note however that due to asynchronous wake-
up, some nodes may still be asleep, while others are already
sending. Hence, at any time, there may be sleeping nodes
which do not receive a message in spite of their being within
the transmission range of the sender.

Nodes have only scarce knowledge about the network
graph. In particulary, they have no information on the num-
ber of nodes in their neighborhood or even the density of
nodes in the network. Nodes merely have an upper bound
n̂ for the total number of nodesn = |V | in the graph.
While n is unknown, all nodes have the same estimaten̂.
It has been shown in [15] that without any estimate ofn,
even in the single-hop case every algorithm requires at least
timeΩ(n/ log n) until one single message can be transmit-
ted without collision. Hence, assumingn being completely
unknown would ultimately preclude polylogarithmic clus-
tering algorithms. In practice, is it usually possible to give a
rough upper bound on the number of nodes in the network in
advance. Further, note that nodes can be placedcompletely
arbitrarily , i.e. our analysis does not rely on any kind of
probabilistic (e.g. uniform) node distribution.

For the sake of simplicity, we assume — for the analy-
sis of the algorithm — that time is divided into time-slots.
However, we attach great importance to the observation that
our algorithmdoes not rely on synchronized time-slotsin
any way. Since nodes do not have access to a global clock
and synchronizing time-slots may be an expensive task,
such an assumption would not always be realistic1. In this
paper, it is solely for the purpose of analyzing the algorithm
that we assume slotted channels. This simplification of the
analysis is justified by the standard trick introduced in the
analysis of slotted vs. unslotted ALOHA [26]. In [26], it
is shown that the realistic unslotted case and the idealized
slotted case differ only by a factor of2, because a single
packet can cause interference in no more than two succes-
sive time-slots. Similarly, by analyzing our algorithm in an
“ideal” setting with synchronized time-slots, we obtain a re-

1It has been argued however that by interfacing with a Global Position-
ing System (GPS), keeping local clocks synchronized has become techni-
cally possible. The accuracy provided by commercially available systems
is more than sufficient for stations of a radio network to synchronize [24].
Nonetheless, our algorithm does not rely on this assumption.
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sult which is only by a constant factor faster as compared to
the more realistic unslotted setting.

In each time-slot, a node can either send or not send. A
node receives a message in a time-slot only if exactly one
node in its neighborhood has sent a message in this time-
slot. The variablespv andqv denote the probabilities that
nodev sends a message in a given time-slot on channelΓ1

andΓ2, respectively. We conclude the section with a well-
known mathematical fact.

Fact 3.1. For all n, t, such thatn ≥ 1 and|t| ≤ n,

et

(
1− t2

n

)
≤

(
1 +

t

n

)n

≤ et.

4 Algorithm

We start with an intuitive outline of the algorithm. For
the sake of clarity, the algorithm is divided into three parts.
Each node first executes the main-loop. When sending the
first message, the main-loop is stopped and thestart candi-
dacy()procedure is called, which runs until termination. In
parallel, the algorithm’s reception triggers are invoked upon
receiving any messages. Note however, that in accordance
to our model, a message can only be received (i.e. the recep-
tion trigger invoked) if the nodedoes notsend in the same
time-slot.

The algorithm consists of two main phases. The purpose
of the main loop is the selection ofcandidateswhich will
subsequently compete for joining the MIS in acandidacy-
phase. More precisely, a node becomes candidate when
sending its first message on channelΓ1 (lines 10 and 11).
The main-loop is designed as to bound the number of candi-
dates simultaneously executing the candidacy-phase, there-
fore enabling a quick election of MIS nodes. This selec-
tion in the candidacy-phase takes place entirely on channel
Γ2. While Γ1 andΓ2 correspond to communication in the
main-loop and in the candidacy-phase, respectively,Γ3 is
reserved for nodes having already joined the MIS.

Note that due to asynchronous wake-up, the candidacy-
phases of different nodes are not aligned with each other.
On the contrary, just as they can start the main-loop at dif-
ferent times, nodes may join the candidacy-phase later than
others. Moreover, unless a node has received a message
from a neighbor, it has no knowledge whether other nodes
have previously joined the main-loop or candidacy-phase.
In fact, overcoming the absence of any such knowledge is
one of the key challenges when designing algorithms for
our model.

In more detail, the algorithm works as follows. A node
starts executing the main loop upon waking up. At first,
nodes wait for messages (on all channels) without sending
themselves (lines 1-3). The reason is that nodes (re)starting
the main-loop should not interfere with nodes currently

Algorithm 1 MIS-Algorithm (Main-Loop)

state := uncovered; excited := false;
upon wake-up do:

1: for j := 1 to 2δ · dlog3 n̂/ log log n̂e do
2: wait();
3: od
4: counter := 0;
5: for j := dlog n̂e to 0 by−1 do
6: p := 1/

(
2j+β

)
;

7: for i := 1 to γ · dlog n̂e do

8: b :=
{

1 with probabilityp
0 with probability1− p

9: if b = 1 then
10: send() onΓ1;
11: start candidacy();
12: stop executing main-loop;
13: fi
14: od
15: od

Candidacy Phase():
16: loop

17: b :=
{

1 with probabilityq
0 with probability1− q

18: if b = 1 then
19: excited := true;
20: send(counter) onΓ2;
21: fi
22: if excitedthen
23: counter := counter + 1;
24: fi
25: if counter =δ · dlog3 n̂/ log log n̂e then
26: state := MIS;
27: sendonΓ3 with probability1/6 forever;
28: fi
29: end loop

competing in a candidacy-phase. The main part of the al-
gorithm (starting in line 5) works in rounds, each of which
containsγ · dlog n̂e time-slots. A node becomes candidate
(and starts executing thestart candidacy()procedure) upon
its first sending on channelΓ1. Starting from a very small
value, a node doubles its sending probability in each round,
therefore increasing its chance to become candidate. As
soon as it receives a message onΓ1, however, it quits the
current execution of the main-loop and restarts at line 1. In
the analysis of the main-loop’s properties in Subsection 5.1,
we give a bound on the number of nodes simultaneously be-
ing candidates. We will then go on to show that each time
a restart occurs, some node in the 2-neighborhood will join
the MIS within the required time-bounds. We call nodes in
the waiting loopinactiveand nodes in the main part of the
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Receive Triggers:
(Only executed if the node does not send a
message in the same time-slot.)
upon receiving msg onΓ1 do:

if not candidatethen
restart main-loop at line 1;

fi

upon receiving msg(c′) on Γ2 do:
∆c := c′−counter;
if candidateand ∆c ≥ 0 and ∆c ≤ 8 log n̂ then

counter :=−d8 log n̂e;
fi

upon receiving msg onΓ3 do:
state := covered;
terminate();

algorithmactive.
Having bounded the number of candidates, the

candidacy-phase works as follows. In each time-slot, a can-
didate sends onΓ2 with probability q. After sending the
first time, a node becomesexcitedand starts increasing a
counter in every time-slot. This counter is attached to each
message. Upon receiving a message on channelΓ2 by an-
other candidate, the receiver compares the sender’s counter
c′ with its own. In case its own value is smallerandwithin
log n̂ of the sender’s counter, a node resets its own counter.
This prevents two neighboring nodes from joining the MIS
shortly in succession. It is interesting to notice that this
method of comparing counters is sufficiently powerful to
avoid long cascading chains of resettings. Once a node’s
counter reachesδ · dlog3 n̂/ log log n̂e, the node joins the
MIS and immediately starts sending on channelΓ3 with
constant probability. Since no two nodes’ counter reaches
the threshold withinlog n̂ time-slots, there is sufficient time
for the first MIS node to inform its neighbors, thus ensuring
that no two neighbors join the MIS.

The algorithm’s parametersq andβ are defined as

q := log log n̂/ log2n̂ β := 6.

Intuitively, the choice ofq is motivated by two contradict-
ing aims. On the one hand,q must be large enough such that
some node will join the MIS within the desired runtime. On
the other hand, a smallq ensures that no two neighboring
nodes join the MIS. In Subsection 5.2, we prove that the
choice ofq results inexactly onenode in each “neighbor-
hood” joining the MIS. The parameterβ is defined as to
maximize the probability of a successful computation [17].
The parametersδ andγ can be used to tune the trade-off
between running-time (smallδ and γ) and probability of
success (largeδ andγ).

5 Analysis

This section contains the main theoretical contribution
of this paper. We show that with high probability the algo-
rithm computes a MIS in timeO

(
log3n̂/ log log n

)
. Note

that for the analysis, it is sufficient to assumen̂ = n, be-
cause solving MIS forn′ < n cannot be more difficult than
for n. If it were, the imaginary adversary controlling the
wake-up schedule of all nodes could simply decide to let
n−n′ sleep infinitely long, which is indistinguishable from
havingn′ nodes. Subsections 5.1 and 5.2 analyze the events
on channelsΓ1 andΓ2, respectively. The algorithm’s run-
time is derived in Subsection 5.3. For the sake of clarity,
we will sometimes omit the ceiling signs as imposed by the
algorithm. Further, we assumen to be large enough, such
that log3n̂/ log log n ≥ 8 log n. A more rigorous analysis
leads to the same results.

5.1 Main-Loop

In this subsection, the termsum of sending probabilities
refers to channelΓ1. We cover the plane with circlesCi of
radiusr = 1/2 in a hexagonal lattice, as shown in Figure
1. Let Di be the circle centered at the center ofCi having
radiusR = 3/2. It can be seen in Figure 1. thatDi is (fully
or partially) covering 19 smaller circlesCj . Note that every
node in a circleCi can hear all other nodes inCi. Nodes
outsideDi are not able to cause a collision inCi.

Ci

R

r

Di

Figure 1. Circles Ci and Di

Our analysis of the main loop builds on two lemmas ob-
tained in [17]. In that paper, the authors propose an algo-
rithm which computes an asymptotically optimal dominat-
ing set. In the following, we introduce both lemmas up to
a level of detail necessary to understand our results. For
details and the proofs, we refer to [17]. We first need the
following definition:
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Definition 5.1. Consider a circleCi. Lett be a time-slot in
which a message is sent by a nodev ∈ Ci on channelΓ1

and received (without collision) by all other nodes inCi.
We say that circleCi clearsitself in time-slott.

The first key lemma given in [17] is a probabilistic bound
on the sum of sending probabilities in a circleCi. The idea
is that once the sum of sending probabilities inCi surpasses
the (constant) threshold1/2β , Ci will clear itself within the
nextγ · dlog n̂e rounds with high probability. In particular,
the probability is high enough as to ensure that the same
property holds for all circles throughout the algorithm. This
intuition is formalized in the following lemma, the proof
of which is based on induction over all time-slots in which
the sum of sending probabilities in an arbitraryCi surpasses
1/2β .

Lemma 5.1. The sum of sending probabilities of nodes in a
circle Ci is bounded by

∑
k∈Ci

pk ≤ 3/2β with probability
at least1 − o

(
1

n2

)
. The bound holds for allCi in G with

probability at least1−O
(

1
n

)
.

With Lemma 5.1, we can now bound the number of can-
didates in each circleCi before a clearance. This is done in
two steps. First, we compute the number ofcollisions in a
circle before a clearance occurs. Secondly, Lemma 5.3 es-
tablishes an upper bound on the number ofnew candidates
per collision. Consequently, combining both results leads
to a bound on the number of candidates before a clearance
and concludes our analysis of the main-loop.

We say that acollision in Ci occurs if more than one
node inDi is sending onΓ1 in a particular time-slot.

Lemma 5.2. Let F be the number of collisions in a circle
Ci between two subsequent clearances (or before the first
clearance). For some constantτ ≤ 8, it holdsF < τ log n
with probability at least1− o

(
1

n2

)
.

It remains to establish a bound on the number of new
candidates per collision.

Lemma 5.3. Let D be the number of nodes inCi send-
ing in a time-slot. Given the occurrence of a collision,
the expected number of sending nodes (i.e. new can-
didates) isE [D|D ≥ 2] ∈ O(1). Furthermore, D ∈
O(log n/ log log n) with probability1− o

(
1

n2

)
.

Proof. Since the nodes send independently of each other,
we can bound the conditional expectation as

E[D|D ≥ 2] ≤ 2 + E[D] = 2 +
∑

k∈Di

pk

≤
Lemma 5.1

2 + 19 · 3
2β

∈ O(1) .

The high probability result can be derived using the up-
per tail Chernoff bound. Letµ = E[D|D ≥ 2] and

δ = τ log n/ log log n for some constantτ . ForP+ defined
asP [X > (1 + δ)µ], it holds that

P+ <

(
e−δ

(1 + δ)1+δ

)µ

Taking the logarithm ofP+, this term simplifies to

log P+ < µ (−δ · log e− (1 + δ) log (1 + δ))

≤ − µτ log n

log log n
log (1 +

τ log n

log log n
)

≤ − µτ log n

log log n
(log (τ log n)− log log log n)

≤ −µτ log n ·
(

1− log log log n

log log n

)

≤ −2 log n

for large enoughτ > µ/2. The lemma now follows from
P+ < 2−2 log n ≤ n−2.

Combining Lemmas 5.2 and 5.3 we have thus estab-
lished anO

(
log2n/ log log n

)
upper bound on the number

of candidates emerging in a circleCi before its clearance.

5.2 Candidacy-Phase

Upon sending onΓ1 in the main-loop of the algorithm, a
node becomes candidate and competes for joining the MIS.
In this subsection, we are going to show that each candidate
will either join the MIS or will be covered by a MIS node
within time 2δ · log3 n/ log log n. Based on the analysis of
the previous subsection, we can bound the number of nodes
simultaneously executing thecandidacy phase()procedure.
In particular, we know by Lemmas 5.2 and 5.3 that with
high probability, there are at mostτ log2n/ log log n candi-
dates emerging inCi before a clearance, for a constantτ .
Further, all but the sending node restart the main loop after
a clearance, and the sending node itself stops executing the
main loop altogether. Due to the waiting loop at the begin-
ning of the algorithm, no node inCi is going to compete for
becoming candidate during the next2δ · log3 n/ log log n
time-slots. In other words, nodesafter a clearancedo not
interfere with the current candidacy-phase due to their be-
ing inactive. The same holds for allCi ∈ Di and hence,
the number of candidates within the transmission range of
a nodev may not exceed19τ log2n/ log log n. This crucial
observation allows us toseparatecandidacy phases in a cir-
cleDi and analyze them individually because a node’s can-
didacy phase does not take longer than2δ · log3 n/ log log n
time-slots, as shown in the sequel.

Lemma 5.4. Let tm be the time-slot in which nodevm

joins the MIS. The counter of all neighboring nodes
vc, (vm, vc) ∈ E, at time tm is at most c ≤
2δ log3 n/ log log n− 8 log n with high probability.
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Proof. Let vc be a neighboring node having counterc >
δ log3 n/ log log n − 8 log n by the time tm. Assume
for contradiction thatvc exists. By the definition of
the algorithm, vm must have sent in time-slottm −
δ log3 n/ log log n andvc must have sent within the subse-
quent8 log n time-slots. Afterwards,vc has not received a
message fromvm. If it had, it would have reset its counter.
The probabilityPrecv(t) that vc receives a message from
vm in an arbitrary time-slott is

Precv(t) ≥ log log n

log2n

(
1− log log n

log2n

)d(t)

whered(t) denotes the number of candidates within the
transmission range ofvc at timet. We know thatd(t) is in
the range between1 and19τ log2n/ log log n. Precv(t) is a
monotonously decreasing function ind(t) and therefore,

Precv(t) ≥ log log n

log2n

(
1− log log n

log2n

) 19τ log2n
log log n

∈ Ω
(
log log n/ log2n

)
.

The probability that this event does not occur in any of the
δ ·dlog3 n̂/ log log n̂e time-slots followingtm can be shown
to ben−νδ, for some constantν by applying Fact 3.1. By
choosingδ accordingly, this probability can be made arbi-
trarily small.

Let Ei denote the circle with radius5/2 centered at the
center ofCi. Further, letti be the first time-slot in which a
node becomes candidate inDi. The next lemma shows that
with high probability, exactly one node in a circleEi joins
the MIS within timeti + 2δ log3 n/ log log n.

Lemma 5.5. For every candidatevc, eithervc joins the MIS
or a neighboring candidatev′c, (vc, v

′
c) ∈ E, joins the MIS

within timeti + 2δ log3 n/ log log n with high probability.

Proof. The main idea is that once a candidatevc sends with-
out collision at timetc, it will either join the MIS at time
tc + δ log3 n/ log log n or a neighboring candidate will join
the MIS before. Letc(vc) be the value of thevc’s counter
at time tc. As the message is sent without collision, all
neighboring candidatesv′c having the same counter value
will set c(v′c) := −d8 log n̂e due to the received message on
Γ2. Consequently, after time-slottc, c(vc) 6= c(v′c) for all
neighboring candidatesv′c. By sending the message at time
tc, vc has become excited and hence,c(vc) is increased in
each time-slot. In absence of neighboring candidates with
equal counter, there is no way to prevent it from reaching
δ · dlog3 n̂/ log log n̂e, which enables to join the MIS.

It remains to be shown that with high probability, one
candidate inDi sends without collision in the interval

[ti, . . . , ti + δ log3 n/ log log n], such that the above obser-
vation can conclude the proof. Lett be an arbitrary time-
slot. Again,d(t) denotes the number of candidates within
the transmission range of the first candidate inDi. The
probability Psuc(t) that one node sends without collision
is given by

Psuc(t) =
d(t) log log n

log2n

(
1− log log n

log2n

)d(t)−1

.

Psuc(t) being a concave function ind(t), we can focus
our attention on the two border valuesd(t) ≥ 1 and
d(t) ≤ 19τ log2n/ log log n, for all ti ≤ t ≤ ti +
δ log3 n/ log log n. Ford(t) = 1, Psuc(t) simplifies to

Psuc(t) =
log log n

log2n

while for d(t) = 19τ log2n/ log log n, we have

Psuc(t) = 19τ ·
(

1− log log n

log2n

) 19τ log2n
log log n −1

≥
Fact 3.1

19τe−19τ

(
1− log log n

log2n

)

≥
n≥4

15τe−19τ ∈ Ω(1) .

Putting things together, the probability of a successful time-
slot is lower bounded by

Psuc(t) ≥ min { log log n

log2n
, 15τe−19τ}

throughout the considered time interval. The probability
Pn that no candidate sends without collision in the interval
[ti, . . . , ti + δ log3 n/ log log n] is therefore

Pn ≤
(

1−min
{ log log n

log2n
, 15τe−19τ

}) δ log3 n
log log n

≤ max
{
n−δ, n−

15τe−19τ δ log2n
log log n

}
.

For large enoughδ, this probability becomes arbitrarily
small. Thus, with high probability, at least one node will
send without collision within the firstδ log3 n/ log log n
time-slots of the candidacy-phase. Since the same argument
can be repeated for every node, the lemma follows from the
observation stated at the beginning of the proof.

We are now ready to state the main correctness theorem.

Theorem 5.6. With high probability, no two neighboring
candidates join the MIS, i.e. the resulting independent set
is correct.
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Proof. Let vm be a MIS node. Assume for contradiction
thatv′m, (vm, v′m) ∈ E, is the first node violating the MIS
condition. By Lemma 5.4,v′m joins the MIS at least8 log n
time-slots aftervm. During these time-slots,vm sends with
constant probability1/6 on channelΓ3. It is well-known
that in a unit-disk graph,v′m can have at most6 independent
neighbors (i.e., MIS nodes). The probability thatv′m has
received no message byvm can thus easily be shown to be
Precv ∈ O

(
n−2

)
. Observe that the same argument holds for

nodes which area already covered by (up to6) MIS nodes
by the time of their wake-up.

5.3 Running Time

Finally, we derive the algorithm’s running time. In view
of Lemma 5.5 and Theorem 5.6, every node will either join
the MIS or become covered within timeδ log3 n/ log log n
upon becoming candidate. We require the following sim-
ple observation which immediately follows from the algo-
rithm’s definition.

Lemma 5.7. Consider a circleCi and letti be the time-slot
in which the first nodevc ∈ Ci executes line 5 of the main-
loop. With high probability, there is a node inDi which
becomes candidate before timeti + γ log2n.

Proof. By the definition of the algorithm,vc sends with
pvc = 2−β on Γ1 after log n rounds (unlessvc receives a
message from a neighbor in which case the claim holds).
The probabilityPno that vc does not send in any of this
round’sγ log n time-slots can be made arbitrarily small by
choosingγ large enough, i.e.

Pno ≤
(

1− 1
2β

)γ log n

≤
Fact 3.1

n−γ/2β

.

We are now ready to prove the claimed running time of
the algorithm.

Theorem 5.8. Every nodev ∈ G either joins the MIS or
becomes covered by a neighboring node joining the MIS
within timeO

(
log3n/ log log n

)
upon waking up.

Proof. By Lemma 5.5, we know that if a nodew ∈ Di

becomes candidate at timetw, it will be covered (possibly
by joining the MIS itself) beforetw + 2δ log3 n/ log log n.
This implies that there is a nodevm ∈ Ei joining the MIS
beforeti + 2δ log3 n/ log log n, whereti is defined as the
first time-slot a candidate emerges inDi.

Consider an arbitrary nodev ∈ Ci. By Lemma
5.7, we know that2δ log3n/ log log n + γ log2n ∈
O

(
log3n/ log log n

)
time-slots after its wake-up,v will ei-

ther become candidate or there will be another candidate in

Di, from whichv has received a message. In the first case,
v will be covered within the next2δ log3 n/ log log n time-
slots by Lemma 5.5. In the latter case, at least one node in
Ei joins the MIS within the same period. If this node covers
v, we are done. If not, we know that the same conditions as
above hold in the remaining, uncovered part ofEi, because
the waiting period before the main-loop guarantees that a
node cannot take part in the same candidacy-phase twice.
The above argument can thus be repeated. Each timev ei-
ther joins the MIS or becomes covered or one node inEi

joins the MIS in timeO
(
log3 n/ log log n

)
.

By Theorem 5.6, no two neighboring nodes join the MIS.
Hence, the number of different nodes joining the MIS inEi

is bounded by a constant because no more than a constant
number of nodes with transmission range1 can be packed in
a circleEi of radius5/2 such that no two nodes are within
each other’s mutual transmission range. In other words, at
most a constant number of repetitions are required and it
follows that nodev is covered by a node in the MIS (possi-
bly itself) within timeO

(
log3 n/ log log n

)
upon its wake-

up. The same argument holds for every nodev ∈ G which
concludes the proof.

Our analysis is concluded by combining Theorems 5.6
and 5.8 in the following Corollary.

Corollary 5.9. With high probability, the algorithm com-
putes a correct MIS such that each node is covered within
timeO

(
log3 n/ log log n

)
upon waking up.

6 Single-Channel

Realizing independent communication channels by
means of an FDMA scheme may not always be desirable
or possible. In this section, we show that a MIS clustering
can be efficiently computed in the most basicsingle-channel
setting, too. Intuitively, the idea is to simulate each time-
slot in the multi-channel model by a number of time-slots
in the single-channel model. In particular, we show that the
algorithm’s time complexity remains polylogarithmic.

For the mapping to the single-channel case, assume that
all senders sending on any channel in the multi-channel case
send on a single common channelΓ. It is clear that this
can lead to additional collisions. When simulating multi-
ple channels with a single channel, we must guarantee that
each successful transmission in the multi-channel case cor-
responds to a successful transmission in the single-channel
case. The critical cases are those in which a node receives
a message in the multi-channel case, but does not receive it
in the single-channel case, due to a collision caused by the
mapping. For instance, the situation when one node sends
onΓ1 and a collision occurs onΓ2 andΓ3 is a critical case,
because the message onΓ1 is not received onΓ when simu-
lating the three communication channels with a single one.
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If, however, a collision occurs on all channels, it is not a
critical case since no message is successfully transmitted in
the multi-channel case. Our simulation algorithm must en-
sure that a message can be successfully transmitted in all
critical cases.

In accordance to [17], lets and t be time-slots in the
single-channel and multi-channel model, respectively. We
simulate each time-slott with 3α log3n/ log log n time-
slotss for a large enough constantα. The idea is that each
node sending onΓ1, Γ2, or Γ3 in t randomly sends on the
single common channelΓ with probabilitylog log n/ log2n
during the “middle”α log3n/ log log n time-slots (i.e.t ∈
[α log3n/ log log n . . . 2α log3n/ log log n−1]) correspond-
ing to t. During the first and lastα log3n/ log log n time-
slots, such a node will not send. A node not sending on any
channel int remains quiet during the entire interval. This
approach follows the intuition thatα log3n/ log log n time-
slots suffice to “spread” the (at most)O

(
log2n/ log log n

)
senders on each channel in time, enabling each one of them
to send without collision at least once.

Formally, the simulation algorithm is defined as fol-
lows. We write send(t) = 1 if a sender sends in
time-slot t and send(t) = 0, otherwise. Further, let
λ := α log3n/ log log n andp := log log n/ log2n. Each
node simulates time-slott by 3λ single-channel time-slots
s1 . . . s3λ in the following way:

send(t) = 0 ⇒ ∀si ∈ [s1 . . . s3λ] :
send(si) := 0

send(t) = 1 ⇒ ∀si ∈ [s1 . . . sλ , s2λ+1 . . . s3λ] :
send(si) := 0

send(t) = 1 ⇒ ∀si ∈ [sλ+1 . . . s2λ] :

send(si) :=
{

1, with prob.p
0, with prob.1− p

Let suc(t) = 1 denote that a message has been success-
fully transmitted in time-slott, andsuc(t) = 0 otherwise.
We can state the following lemma, the proof of which is
similar to the one given in [17] and is omitted due to space
limitations.

Lemma 6.1. Time-slot t can be simulated
by O

(
log3n/ log log n

)
time-slots si, i ∈

[1 . . . 3α log3n/ log log n], for a large enough con-
stantα such thatsuc(t) = 1 ⇔ ∃i : suc(si) = 1 with
probability1−O

(
1/n2α

)
.

Note that due to asynchronous wake-up, we cannot and
do not assume that intervals of length3λ are aligned among
nodes. Thanks to the “buffer-periods” at the beginning and
end of each interval, we do not rely on such an assumption.
Having Lemma 6.1, it is now straight-forward to correctly
simulate the entire algorithm with a single channel within

polylogarithmic running time: All nodes simulate each of
their time-slots with the algorithm given above, leading to
the following Theorem.

Theorem 6.2. The MIS algorithm in the single-channel
model has time-complexityO(polylog(n)). With high prob-
ability, all critical steps are executed like in the multi-
channel algorithm.

Proof. Time-complexity follows from Theorem 5.8 and
Lemma 6.1. For correctness, we compute the probability
P that all critical steps are correctly simulated. Since the
algorithm’s execution takes at mostC · n log3n/ log log n
steps for a constantC in the multi-channel case,P is

P ≥
(

1− 1
n2α

)Cn log3n
log log n

∈ 1−O
(

log3n

nα

)
.

7 Conclusions

How can we structure the chaos existing during the de-
ployment of an ad-hoc or sensor network? In this paper,
we have tried to provide an answer by analyzing the initial-
ization phase of unstructured multi-hop radio networks. Im-
mediately after deployment, organizing an efficient medium
access scheme is probably the most urgent task at hand, and
computing a good initial clustering is one of the key ingre-
dients to solving it.

We have proposed a novel algorithm which computes a
maximal independent set in polylogarithmic time even un-
der a model featuring many of the realities of unstructured
networks. Besides being a dominating set of excellent qual-
ity, a MIS has the additional property that no two cluster-
heads interfere. This is particularly desirable in the initial-
ization phase of ad-hoc and sensor networks, facilitating the
construction of an efficient MAC layer.

We believe that due to its being fast and simple, our al-
gorithm has practical relevance in a variety of scenarios,
particularly in newly deployed ad-hoc and sensor networks.
Analyzing important issues such as energy-efficiency in
theunstructured radio networkmodel is an interesting and
promising field for future research.
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