
Permission to make digital/hard copy of part of all of this work for personal or
classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication, and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.
© 2003 ACM 0730-0301/03/0700-0879 $5.00

Precomputing Interactive Dynamic Deformable Scenes
Doug L. James and Kayvon Fatahalian

Carnegie Mellon University

(a) Precomputation (b) Reduced dynamics model (c) Reduced illumination model (d) Real-time simulation

Figure 1: Overview of our approach: (a) Given a deformable scene, such as cloth on a user-movable door, we precompute (impulsive)
dynamics by driving the scene with parameterized interactions representative of runtime usage. (b) Model reduction on observed dynamic
deformations yields a low-rank approximation to the system’s parameterized impulse response functions. (c) Deformed state geometries are
then sampled and used to precompute and coparameterize a radiance transfer model for deformable objects. (d) The final simulation responds
plausibly to interactions similar to those precomputed, includes complex collision and global illumination effects, and runs in real time.

Abstract

We present an approach for precomputing data-driven models of
interactive physically based deformable scenes. The method per-
mits real-time hardware synthesis of nonlinear deformation dynam-
ics, including self-contact and global illumination effects, and sup-
ports real-time user interaction. We use data-driven tabulation of
the system’s deterministic state space dynamics, and model reduc-
tion to build efficient low-rank parameterizations of the deformed
shapes. To support runtime interaction, we also tabulate impulse
response functions for a palette of external excitations. Although
our approach simulates particular systems under very particular in-
teraction conditions, it has several advantages. First, parameteriz-
ing all possible scene deformations enables us to precompute novel
reduced coparameterizations of global scene illumination for low-
frequency lighting conditions. Second, because the deformation dy-
namics are precomputed and parameterized as a whole, collisions
are resolved within the scene during precomputation so that run-
time self-collision handling is implicit. Optionally, the data-driven
models can be synthesized on programmable graphics hardware,
leaving only the low-dimensional state space dynamics and appear-
ance data models to be computed by the main CPU.

CR Categories: I.3.5 [COMPUTER GRAPHICS]: Computational
Geometry and Object Modeling—Physically based modeling;
I.6.8 [SIMULATION AND MODELING]: Types of Simulation—

Animation;

Keywords: Deformations, Natural Phenomena Animation, Phys-
ically Based Animation, Physically Based Modeling

1 Introduction

Deformation is an integral part of our everyday world, and a key
aspect of animating virtual creatures, clothing, fractured materi-
als, surgical biomaterials, and realistic natural environments. It
also constitutes a special challenge for real-time interactive envi-
ronments. Designers of virtual environments may wish to incorpo-
rate numerous deformable components for increased realism, but
often these simulations are only of secondary importance so very
limited computing resources are available. Unfortunately, many re-
alistic deformable systems are still notoriously expensive to simu-
late; robustly simulating large-scale nonlinear deformable systems
with many self-collisions is fundamentally expensive [Bridson et al.
2002], and doing so with real-time constraints can be onerous.
Perhaps as a consequence, very few (if any) major video games
have appeared for which complex deformable physics is a substan-
tial component. Numerous self-collisions complicate both runtime
simulation and precomputation of interesting deformable scenes,
and are also a hurdle for synthesizing physical models in real-time
graphics hardware. Finally, realistic real-time animation of global
illumination effects is also very expensive for deformable scenes,
largely because it can not be precomputed as easily as for rigid
models.

The goal of this paper is to strike a balance between complexity
and interactivity by allowing certain types of interactive deformable
scenes, with very particular user interactions, to be simulated at
minimal runtime costs. Our method tabulates state space models of
the system’s deformation dynamics in a way that effectively allows
interactive dynamics playback at runtime. To limit storage costs
and increase efficiency, we project the state space models into very
low-dimensional spaces using least-squares (Karhunen-Loève) ap-
proximations motivated by modal analysis. One might note that the

879

highly complex geometry of dynamical systems’ phase portraits,
even for modest systems, suggests that it may be impractical to ex-
haustively sample the phase portrait [Guckenheimer and Holmes
1983; Abraham and Shaw 1992]. Fortunately, this is unnecessary
in our case. Our goal is not to exhaustively sample the dynamics
to a specified accuracy, nor build a control system, instead we wish
only to plausibly animate orbits from the phase portrait in a com-
pelling interactive fashion. To this end, we sample the phase space
dynamics using parameterized impulse response functions (IRFs)
that have the benefit of being directly “playable” in a simulation
provided the system is excited in similar contexts. We use small
catalogues of interactions defined in discrete impulse palettes to
constrain the range of user interaction, and thus reduce the effort
required to tabulate system responses. This diminished range of in-
teraction and control is a trade-off that can be suitable for virtual
environments where interaction modalities are limited.

A major benefit of precomputing a reduced state space param-
eterization of deformable shapes is that we can also precompute a
low-rank approximation to the scene’s global illumination for real-
time use. To address realistic appearance modeling we build on re-
cent work by Sloan, Kautz and Snyder [2002] for radiance transfer
approximations of global illumination for diffuse interreflections in
low-frequency lighting environments. Data reduction is performed
on the space of radiance transfer fields associated with the space
of deformable models. The final low-rank deformation and trans-
fer models can then be synthesized in real-time in programmable
graphics hardware as in [James and Pai 2002a; Sloan et al. 2002].

1.1 Related Work

Deformable object simulation has had a long history in computer
graphics, and enormous progress has been made [Weil 1986; Ter-
zopoulos et al. 1987; Pentland and Williams 1989; Baraff and
Witkin 1998; O’Brien and Hodgins 1999; Bridson et al. 2002].
More recently, attention has been given to techniques for interactive
simulation, and several approaches have appeared that trade accu-
racy for real-time performance. For example, adaptive methods that
exploit multiscale structure are very effective [Debunne et al. 2001;
Grinspun et al. 2002; Capell et al. 2002; James and Pai 2003].

In this paper we are particularly interested in data-driven pre-
compution for interactive simulation of deformable models. Prior
work includes Green’s function methods for linear elastostat-
ics [Cotin et al. 1999; James and Pai 1999; James and Pai 2003], and
modal analysis for linear elastodynamics [Pentland and Williams
1989; Stam 1997; James and Pai 2002a]. These methods offer sub-
stantial speedups, but unfortunately do not easily generalize to more
complex, nonlinear systems (although see [James and Pai 2002b;
Kry et al. 2002] for quasistatic articulated models).

Dimensional model reduction using the ubiquitous principal
component analysis (PCA) method [Nelles 2000] is closely related
to shape approximation methods used in graphics for compressing
time-dependent geometry [Lengyel 1999; Alexa and Müller 2000]
and representing collections of shapes [Blanz and Vetter 1999;
Sloan et al. 2001]. For deformation, it is well-known that dimen-
sional model reduction methods based on least-squares (Karhunen-
Loève) expansions yield optimal modal descriptions for small vi-
brations [Pentland and Williams 1989; Shabana 1990], and pro-
vide efficient low-rank approximations to nonlinear dynamical sys-
tems [Lumley 1967]. We use similar least-squares model reduction
techniques to reduce the dimension of our state space models. Fi-
nally, online data-reduction has been used to construct fast subspace
projection (Newmark) time-stepping schemes [Krysl et al. 2001],
however our goal is to avoid runtime time-stepping costs entirely
by tabulating data-driven state space models using IRF primitives.

Our work is partly motivated by programmable hardware ren-
dering of physical deformable models using low-rank linear super-

positions of displacement fields. Applications include morphable
models, linear modal vibration models [James and Pai 2002a], and
data-driven PCA mixture models for character skinning [Kry et al.
2002]. Key differences are that (a) we address complex nonlinear
dynamics with self-collisions, and (b) our appearances are based
on low-rank approximations to radiance transfer fields instead of
surface normal fields.

Data-driven tabulation of state space dynamics is an important
strategy for identifying and learning how to control complex non-
linear systems [Nelles 2000]. Grzeszczuk et al. [1998] trained neu-
ral networks to animate dynamical models with dozens of degrees
of freedom, and learned the influence of several control parame-
ters. Reissell and Pai [2001] trained collections of autoregressive
models with exogenous inputs (ARX models) to build interactive
stochastic simulations of a candle flame silhouette and a falling leaf.
In robotics, Atkeson et al. [1997] avoid the difficulties and effort
of training a global regression model, such as neural networks or
ARX models. Instead they use “locally weighted learning” to lo-
cally interpolate state space dynamics and control data, and only
when needed at runtime, i.e., lazy learning. Our data-driven state
space model differs from these three approaches in several ways.
Most notably, our method sacrifices the quality of continuous con-
trol in favor of a simple discrete (impulsive) interaction. This al-
lows us to avoid learning and (local) interpolation by using sam-
pled data-driven IRF primitives that can be directly “played back”
at runtime; this permits complex dynamics, such as nonsmooth con-
tact and self-collisions, to be easily reproduced and avoids the need
to generalize motions from possibly incomplete data. The simple
IRF playback approach also avoids runtime costs associated with
state model evaluation, e.g., interpolation. Another major differ-
ence is that our method uses model reduction to support very large
dynamical systems with thousands or millions of degrees of free-
dom. Data-reduction quality can limit the effectiveness of the ap-
proach for large systems, but more sophisticated data compression
techniques can be used. Finally, our state space model includes
global illumination phenomena.

Our blending of precomputed orbital dynamics segments is re-
lated to Video Textures [Schödl et al. 2000], wherein segments of
video are rearranged and pieced together to form temporally coher-
ent image sequences. This is also related to synthesis of character
motions from motion capture databases using motion graphs [Ko-
var et al. 2002; Lee et al. 2002]. Important differences are that our
continuous deformable dynamics and appearance models can have
a potentially much larger state space dimensionality, and the phys-
ical nature of data reduction is fundamentally different than, e.g.,
character motion. Also, the phenomena governing dynamic seg-
ment transitions are quite different, and we are not concerned with
the issue of control, so much as physical impulse resolution.

Global illumination and physically based deformation are his-
torically treated separately in graphics. This is due in part to the
fact that limited rendering precomputations can be performed, e.g.,
due to changing visibility. Consequently, real-time model anima-
tion has benefitted significantly from the advent of programmable
graphics hardware [Lindholm et al. 2001] for general lighting mod-
els [Peercy et al. 2000; Proudfoot et al. 2001; Olano et al. 2002],
stenciled shadows [Everitt and Kilgard 2002], ray tracing [Purcell
et al. 2002], interactive display of precomputed global illumina-
tion models [Heidrich 2001], and radiance transfer (for rigid mod-
els) [Sloan et al. 2002].

Our contribution: In this paper we introduce a precomputed
data-driven state space modeling approach for generating real-time
dynamic deformable models using black box offline simulators.
This avoids the cost of traditional runtime computation of dynamic
deformable models when not absolutely necessary. The approach is
simple yet robust, can handle nonlinear deformations, self-contact,

880

and large geometric models. The reduced phase space dynamics
model also supports the precomputation and data reduction of com-
plex radiance transfer global illumination models for real-time de-
formable scenes. Finally, the data-driven models allow dynamic
deformable scenes to be compiled into shaders for (future) pro-
grammable graphics hardware.

Scope of Deformation Modeling: Our approach is broadly
applicable to modeling deformable scenes, and can handle various
complexities due to material and geometric nonlinearities, nons-
mooth contact, and models of very large size. Given the combined
necessity of (a) stationary statistics for model reduction and (b)
sampling interactions for typical scenarios, the approach is most
appropriate for scenes involving physical processes that do not un-
dergo major irreversible changes, e.g., fracture. Put simply, the
more repeatable a system’s behavior is, the more likely a useful
representation can be precomputed. Our examples involve struc-
tured, nonlinear, viscoelastic dynamic deformation; all models are
attached to a rigid support, and reach equilibria in finite time (due
to damping and collisions).

2 Data-Driven Deformation Modeling

At the heart of our data-driven simulator is a strategy for replay-
ing appropriate precomputed impulse responses in response to user
interactions. These dynamical time series segments, or orbits (af-
ter Poincaré [1957]), live in a high-dimensional phase space, and
the set of all possible orbits composes the system’s phase por-
trait [Guckenheimer and Holmes 1983]. In this section we first
describe the basic compressed data-driven state space model.

2.1 Deterministic State Space Model

We model the discrete evolution of a system’s combined dynamic
deformation state, x, and globally illuminated appearance state, y,
by an autonomous deterministic state space model [Nelles 2000]:

DYNAMICS : x(t+1) = f(x(t), α(t)) (1)

APPEARANCE : y(t) = g(x(t)) (2)

where at integer time step t,

• x(t) is the deformable system state vector, which describes the
position and velocity of points in the deformable scene;

• α(t) are system parameters describing various factors, such as
generalized forces or modeled user interactions, that affect the
state evolution from x(t) to x(t+1);

• y(t) are dependent variables defined in terms of the deformed
state that describe our reduced appearance model but do not
affect the deformation dynamics; and

• f and g are, in general, complicated nonsmooth functions that
describe our dynamics and appearance models, respectively.

Different system models can have different definitions for x, α and
y, and we will provide several examples later.

2.2 Data-driven State Spaces

Our data-driven deformation modeling approach involves tabulat-
ing the f function indirectly by observing time-stepped sequences
of state transitions, (x(t+1), x(t), α(t)). By modeling deterministic
autonomous state spaces, f does not explicitly depend on time, and

precomputed tabulations can be reused later to simulate dynamics.
Data-driven simulation involves carefully reusing these recorded
state transitions to simulate the effect of f(x, α) for motions near
the sampled state space.

Phase portrait notation: We model the state space as a col-
lection of precomputed orbits, where each orbit is defined by a tem-
poral sequence of state nodes, x(t), connected by time step edges,
e = (x(t+1), x(t), α(t)). Without loss of generality, we can assume
for simplicity that all time steps have a fixed step size ∆t (which
may be arbitrarily small). The collection of all precomputed or-
bits composes our discrete phase portrait, P , and is a subset of the
full phase portrait that describes all possible system dynamics. Our
practical goal is to construct a P that provides a rich enough ap-
proximation to the full system for a particular range of interaction.

2.3 Dimensional Model Reduction

Discretizations of complex deformable models can easily involve
thousands or millions of degrees of freedom (DOF). A cloth model
with v moving vertices has 3v displacement and 3v velocity DOF,
so the discrete phase portrait is composed of orbits evolving in 6v
dimensions; for just 1000 vertices, data-driven state space modeling
already requires tabulating dynamics in 6000 dimensions. Synthe-
sizing large model dynamics directly, e.g., using state interpolation,
would therefore be both computationally impractical and wasteful
of memory resources.

To compactly represent the phase portrait P , we first use model
reduction to reduce state space dimensionality and exploit temporal
redundancy. Here model reduction involves projecting the system’s
displacement (and other) field(s) into a low-rank basis derived from
their observed dynamics. We note that the data reduction process is
a black box step, but that we use the least-squares projection (PCA)
since it provides an optimal description of small vibrations [Sha-
bana 1990], and can be effective for nonlinear dynamics [Krysl
et al. 2001].

2.3.1 Model Reduction Details

Given the set of all N state nodes in P observed while time-
stepping, we extract the vertex positions of each state’s correspond-
ing geometric mesh (for vertices we wish to later synthesize). By
subtracting off the mean position of each vertex (or key represen-
tative shape), we obtain a displacement field for each state space
node. Denote theseN displacement fields as {uk}k=1..N (arbitrary
ordering) where, for a model with v vertices, each uk = (uki)i=1..v

has 3-vector components, and so is anM -vector withM = 3v. Let
Au denote the huge M -by-N dense displacement data matrix1

Au =
[
u1u2 · · · uN

]
=

u1
1 u2

1 uN1
...

... · · ·
...

u1
v u2

v uNv

 . (3)

Similar to linear elastodynamics where a small number of vibra-
tion modes can be sufficient to approximate observed dynamics,Au
can also be a low-rank matrix to a visual tolerance. We stably deter-
mine its low-rank structure by using a rank-ru (ru�N) Singular
Value Decomposition (SVD) [Golub and Loan 1996]

Au ≈ UuSuV Tu (4)

where Uu is an M -by-ru orthonormal matrix with displacement
basis vector columns, Vu is an N -by-ru orthonormal matrix, and

1Let “u” (“a”) subscripts denote displacement (appearance) data.

881

Su = diag(σ) is an ru-by-ru diagonal matrix with decaying sin-
gular values σ = (σk)k=1...ru , on the diagonal. The rank, ru, of
the approximation that guarantees a relative l2 accuracy εu ∈ (0, 1)
is given by the largest ru such that σru ≥ εuσ1 holds. Since Au
can be of gigabyte proportions we compute an approximate output-
sensitive SVD with cost O(MNru) [James and Fatahalian 2003].

2.3.2 Reduced State Vector Coordinates

The reduced displacement model induces a global reparameteriza-
tion of the phase portrait, and yields the reduced discrete phase
portrait, denoted by P̃ . The state vector is defined as

x =

(
qu
q̇u

)
(5)

and its components are defined as follows.

Reduced displacement coordinate, qu: We define the ru-
by-N displacement coordinate matrix Qu by

Qu = SuV
T
u =

[
q1
uq2
u · · · qNu

]
(6)

such that
Au ≈ UuQu ⇔ uk ≈ Uuqku (7)

where qku is the reduced displacement coordinate of the kth dis-
placement field in the orthonormal displacement basis, Uu.

Reduced velocity coordinate, q̇u: The reduced velocity co-
ordinate, q̇ku, of the kth state node could be defined similar to dis-
placements, i.e., by reducing the matrix of all occurring velocity
fields, however it is sufficient to define the reduced velocity using
first-order finite differences. For example, we use a backward Eu-
ler approximation for each orbit (with forward Euler for the orbit’s
final state, and prior to IRF discontinuities),

u̇k = (uk+1 − uk)/∆t = (Uuqk+1
u − Uuqku)/∆t = Uuq̇ku. (8)

Phase Portrait Distance Metric: Motivated by (7) and (8), a
Euclidean metric for computing distances between two phase por-
trait states, x1 and x2, is given by

dist(x1, x2) =
√
‖q1
u − q2

u‖22 + β‖q̇1
u − q̇2

u‖22, (9)

where β is a parameter determining the relative (perceptual) im-
portance of changes in position and velocity. Components of qu
and q̇u associated with large singular values can have dominant
contributions. We choose β to balance the range of magnitudes
of ‖q‖2 and ‖q̇‖2 so that neither term overwhelms the other, and
use β = maxj=1..N ‖qj‖22/maxj=1..N ‖q̇j‖22 as a default value.

3 Dynamics Precomputation Process

We precompute our models using offline simulation tools by craft-
ing sequences of a small number of discrete impulses representative
of runtime usage. Without the ability to resolve runtime user inter-
actions, the runtime simulation would amount to little more than
playing back motion clips.

3.1 Data-driven Modeling Complications

Several issues motivated our IRF simulation approach. Given the
black box origin of the simulation, the function f is generally
complex, and its interpolation is problematic for several reasons
(see related Figure 2). Fundamental complications include in-
sufficient data, high-dimensional state spaces, and divergence of
nearby orbits. State interpolation also blurs important motion sub-
tleties. Self-collisions result in complex configuration spaces that
make generalizing tabulated motions difficult; an orbit tracking
the boundary of an infeasible state domain, e.g., self-intersecting
shapes, is surrounded by states that are physically invalid. For ex-
ample, the cloth example will eventually, and very noticeably self-
intersect if tabulated states are simply interpolated.

?
x

INFEASIBLE Figure 2: Complications of data-
driven dynamics: Interpolating
high-dimensional tabulated mo-
tions for a new state (starting at x)
can be difficult in practice. One
possible “realistic” orbit is drawn
in red.

3.2 Impulse Response Functions

To balance these concerns and robustly support runtime interac-
tions, we sample parameterized impulse response functions (IRFs)
of the system throughout the phase portrait, and effectively replay
them at run time. The key to our approach is that every sampled IRF
is indexed by the initial state, x, and two user-modeled parameter
vectors, αI and αF , that describe the initial Impulse and persis-
tent Forcing, respectively. In particular, given the system in state x,
we apply a (possibly large) generalized force, parameterized by αI ,
during the subsequent time step (See Figure 3). We then integrate
the remaining dynamics for (T − 1) steps with a generalized force
that is parameterized by a value αF that remains constant through-
out the remaining IRF orbit2. The tabulated IRF orbit is then a
sequence of T time steps,

(
e1(αI), e2(αF), . . . , eT (αF)

)
, and we

denote the IRF, ξ, by the corresponding sequence of states,

IRF : ξ(x, αI , αF ;T) =
(
x0 =x, x1, . . . , xT

)
, (10)

with ξt = xt, t = 0, . . . , T.

q

q

αI

αFαF

x

1

2 3

T

αF

αF

αF

Figure 3: The parameterized
impulse response function (IRF),
ξ(x, αI , αF ;T).

An important special case of IRF occurs if the impulsive and
persistent forcing parameters are identical, αI = αF . In this case,
one α parameter describes each interaction type. See Figure 4 for a
three parameter illustration, and Figure 5 for the cloth example.

3.3 Impulse Palettes

To model the possible interactions during precomputation and run-
time simulation, we construct an indexed impulse palette consisting

2Note: It follows from equation (1) that constant α does not imply con-
stant forcing, since x(t+1) depends on both α(t) and x(t).

882

q

q

α Figure 4: A 3-valued αI = αF

system showing orbits in
(qu, q̇u)-plane excited by
changes between the three
α values. The cloth-on-door
example is analogous.

of D possible IRF (αI , αF) pairs:

ID =
(

(αI1, α
F
1), (αI2, α

F
2), . . . , (αID, α

F
D)
)
. (11)

Impulse palettes allow D specific interaction types to be modeled,
and discretely indexed for efficient runtime access (described later
in §5.2). For small D, the palette helps bound the precomputation
required to sample the phase portrait to a sufficient accuracy. By
limiting the range of possible user interactions, we can influence
the statistical variability of the resulting displacement fields.

3.4 Interaction Modeling

Impulse palette design requires some physical knowledge of the
influence that discrete user interactions have on the system. For
example, we now describe the three examples used in this paper
(see accompanying Figure 5).

Dinosaur on moving car dashboard: The dinosaur model
receives body impulse excitations resulting from discontinuous
translational motions of its dashboard support. Our impulse palette
models D = 5 pure impulses corresponding to 5 instantaneous
car motions that shake the dinosaur followed by free motion: αIi
describes the ith body force 3-vector, and there are no persistent
forces (αFi = 0), i.e., ID = {(αI1, 0), . . . , (αI5, 0)}. (Since only
translation is involved, gravitational force is constant in time, and
does not affect IRF parameterization.)

Plant in moving pot: The pot is modeled as moving in a side-
to-side motion with three possible speeds, v ∈ {−v0, 0,+v0}, and
plant dynamics are analyzed in the pot’s frame of reference. Since
velocity dependent air damping forces are not modeled, the plant’s
equilibrium at speed ±v0 matches that of the pot at rest (speed
0). Therefore, similar to the dinosaur, we model the uniform body
forcing as impulses associated with the left/right velocity discon-
tinuities, followed by free motion (no persistent forcing) so that
ID = {(−v0, 0), (+v0, 0)}.

Cloth on moving door: The door is modeled as moving at
three possible angular velocities, ω ∈ {−ω0, 0,+ω0}, with a 90
degree angular range. Air damping and angular acceleration induce
a nonzero persistent force when ω = ±ω0, which is parameterized
as αF = ±ω0, and αF = 0 when ω = 0. By symmetry, the
cloth dynamics can be viewed in the frame of reference of the door,
with velocity and velocity changes influencing cloth motion. In
this example no additional αI impulse parameters are required, and
we model the motion as the special case, αI = αF . Our impulse
palette simply represents the three possible velocity forcing states
ID = {(−ω0,−ω0), (0, 0), (ω0, ω0)}.

3.5 Impulsively Sampling the Phase Portrait

By forcing the model with the impulse palette, IRFs can be im-
pulsively sampled in the phase portrait. We use a simple ran-
dom IRF sampling strategy pregenerated at the start of precom-
putation. A random sequence of impulse palette interactions are

constructed, with each IRF integrated for a random duration, T ∈
(Tmin, Tmax), bounded by time scales of interest.

There are a couple of constraints on this process. First, the ran-
dom sequence of impulse palette entries is chosen to be “represen-
tative of runtime usage” so that nonphysical or unused sequences do
not occur. For example, the plant-in-pot example only models three
pot motion speeds, {−v0, 0,+v0}, and therefore it is not useful to
apply more than two same-signed ±v0 velocity discontinuities in
a row. Similarly, the cloth’s door only changes angular velocity by
|ω0| amounts, so that transitions from−ω0 to +ω0 are not sampled.

Second, a key point is that we sample enough IRFs of sufficiently
long temporal duration to permit natural runtime usage. This is con-
trolled using Tmin and Tmax. In particular, dynamics can either (a)
be played to completion (if necessary), so that the model can natu-
rally come to rest, or (b) expect to be interrupted based on physical
modeling assumptions. As an example of the latter, the cloth’s door
has a 90 degree range of motion, so that IRFs associated with a
nonzero angular velocity, ω, need be at most only 90/|ω| seconds
in duration.

In order to produce representative clips of motion, we filter sam-
pled IRFs to discard the shortest ones. These short orbits are not a
loss, since they are used to span the phase portrait. We also prune
orbits that end too far away from the start of neighbouring IRFs, and
are “dead ends.” We can optionally extend sampled orbits during
precomputation, e.g., if insufficient data exists. Orbits terminating
close enough (in the phase space distance metric) to be smoothly
blended to other orbits, e.g., using Hermite interpolation, can be
extended. In more difficult cases where the dynamics are very ir-
regular, such as for the cloth, one can resort to local interpolation,
e.g., k-nearest neighbor, to extend orbits, but there are no quality
guarantees. In general, we advocate sampling longer IRFs when
possible.

While our sampling strategies are preplanned for use with stan-
dard offline solvers (see Figure 7), an online sampling strategy
could be used. This would allow IRF durations, T , and new sam-
pling locations to be determined at runtime, and could increase sam-
pling quality.

4 Reduced Global Illumination Model

A significant benefit of precomputing parameterizations of the de-
formable scene is that complex data-driven appearance models can
then also be precomputed for real-time use. This parameterized ap-
pearance model corresponds to the second part of our phase space
model (Equation 2). Once the reduced dynamical system has been
constructed, we precompute an appearance model based on a low-
rank approximation to the diffuse radiance transfer global illumina-
tion model for low-frequency lighting [Sloan et al. 2002]. Unlike
hard stenciled shadows, the diffuse low-frequency lighting model
produces “blurry” lighting and is more amenable to statistical mod-
eling of deformation effects.

4.1 Radiance Transfer for Low-frequency Lighting

Following [Sloan et al. 2002], for a given deformed geometry, for
each vertex point, p, we compute the diffuse interreflected trans-
fer vector (Mp)i, whose inner product with the incident light-
ing vector, (Lp)i, is the scalar exit radiance at p, or L′p =
∑n2

i=1(Mp)i(Lp)i. Here both the transfer and lighting vectors are
represented in spherical harmonic bases. For a given reduced dis-
placement model shape3, qu, we compute the diffuse transfer field
M = M(qu) = (Mpk)k=1..s defined at s scene surface points,

3The appearance model depends on the deformed shape of the scene
(qu) but not its velocity (q̇u).

883

Figure 5: Sampled IRF time-steps colored by impulse palette index (2D projection of (qu)1..3 coordinates shown): (Left) dinosaur with 5
impulse types; (Middle) plant with left (blue) and right (red) impulses; (Right) cloth with various door speeds: −ω0 (red), at rest (blue), and
+ω0 (green).

pk, k = 1..s. Here Mpk is a 3n2 vector for an order-n SH ex-
pansion and 3 color components, so that M is a large 3sn2 vector.
We use n = 4 in all our examples, so that M has length 48s, i.e.,
48 floats per-vertex. Note that not all scene points are necessar-
ily deformable, e.g., door, and some may belong to double-sided
surfaces, e.g., cloth.

4.2 Dimensional Model Reduction

While we could laboriously precompute and store radiance trans-
fer fields for all phase portrait state nodes, significant redundancy
exists between them. Therefore, we also use least-squares di-
mensional model reduction to generate low-rank transfer field ap-
proximations. We note that, unlike displacement fields for which
modal analysis suggests that least-squares projections can be opti-
mal, there is no such motivation for radiance transfer.

Given Na deformed scenes with deformation coordinates
(q1
u, . . . , q

Na
u), we compute corresponding scene transfer fields,

Mj = M(qju), and their mean, M̄. We substract the mean from
each transfer field, M̃j = Mj−M̄, and formally assemble them as
columns of a huge 3sn2-by-Na zero-mean4 transfer data matrix,

Aa =
[
M̃1M̃2 · · · M̃Na

]
=

M̃1
p1

M̃2
p1

· · · M̃Na
p1

...
...

...
...

M̃1
ps M̃2

ps · · · M̃Na
ps

 .

We compute the SVD of Aa to determine the reduced low-rank
transfer model, and so discover the reduced transfer field coordi-
nates qja = qa(qju), j = 1 . . . Na, for the Na deformed scenes. We
denote the final rank-ra factorization as Aa ≈ UaQa where Ua are
the orthonormal transfer field basis vectors, and Qa = [q1

a · · · qNaa]
are the reduced appearance coordinates.

4.3 Interpolating Sparsely Sampled Appearances

Computing radiance transfer for all state nodes can be very costly
and also perceptually unnecessary. We therefore interpolate the re-
duced radiance transfer fields across the phase portrait. Normalized
Radial Basis Functions (NRBFs) are a natural choice for interpo-
lating high-dimensional scattered data [Nelles 2000]. We use K-
means clustering [Nelles 2000] to cluster phase portrait states into
Na � N clusters (see Figure 6). A representative state qku clos-
est to the kth cluster’s mean is used to compute radiance transfer
(using the original state node’s unreduced mesh to avoid compres-
sion artifacts in the lighting model). Model reduction is then per-
formed on the radiance transfer fields for the Na states. In the end,

4Formally, there is no need to subtract the data mean prior to SVD (un-
like for PCA where the covariance matrix must be constructed), but we do
so because the first coordinate captures negligible variability otherwise.

we know the reduced radiance values qka at Na state nodes, i.e.,
qka = qa(qku), k = 1 . . . Na. These sparse samples are then in-
terpolated using a regularized NRBF approach. This completes the
definition of the deterministic state space model originally referred
to in Equation 2.

Figure 6: Clustering of deformed dinosaur scenes for transfer com-
putation: (Left) Clustered shape coordinates {qu}; (Right) inter-
polated appearance coordinates {qa}. Only the first three (2D-
projected) components of q are displayed.

5 Runtime Synthesis

At any runtime instant, we either “play an IRF” or are at rest, e.g., at
the end of an IRF. Once an impulse is specified by an index from the
impulse palette, we switch to a nearby IRF of that type and continue
until either interrupted by another impulse signal or we reach the
end of the IRF and come to rest. At each time-step we trivially
lookup/compute qu and qa and use them to evaluate matrix-vector
products for the displacement u = Uuqu and radiance transfer M̃ =
Uaqa fields needed for graphical rendering. This approach has the
benefits of being both simple and robust.

5.1 Blending Impulse Responses

Given the problems associated with orbit interpolation (§3.1), we
wish to transition directly between IRFs during simulation. To
avoid transition (popping) artifacts, we smoothly blend between the
state and the new IRF. We approximate the IRF at x′ with the IRF
ξt(x, αI , αF) from a nearby state x by adding an exponentially de-
caying state offset (x′−x) to the state,

ξt(x′, αI , αF ;T) ≈ ξt(x, αI , αF ;T) + (x′ − x)e−λt, (12)

where t = 0, 1, . . . , T, and λ > 0 determines the duration of the
blend. This approximation converges as x′→x, e.g., as P is sam-
pled more densely, but its chief benefit is that it can produce plausi-
ble motion even in undersampled cases (as in Figure 2). For render-
ing, appearance coordinates associated with ξt(x, αI , αF ;T) are

884

also blended,

qta(x′, αI , αF ;T) ≈ qta(x, αI , αF ;T) + (qa(x′)− qa(x))e−λt.

Finally, the cost of blending is proportional to the dimension of the
reduced coordinate vectors, 2ru + ra, and is cheap in practice.

5.2 Caching Approximate IRF References

A benefit of using a finite impulse palette ID is that each state in the
phase portrait can cache theD references to the nearest correspond-
ing IRFs. Then at runtime, for the system in (or near) a given phase
portrait state, x, the response to any of the D impulse palette exci-
tations can be easily resolved using table lookup and IRF blending.
By caching these local references at state nodes it is in principle
possible to verify during precomputation that blending approxima-
tions are reasonable, and, e.g., don’t lead to self-intersections.

5.3 Low-rank Model Evaluation

The two matrix-vector products, u = Uuqu and M̃ = Uaqa, can
be evaluated in software or in hardware. Our hardware implemen-
tation is similar to [James and Pai 2002a; Sloan et al. 2002] in that
we compute the per-vertex linear superposition of displacements
and transfer data in vertex programs. Given the current per-vertex
attribute memory limitations of vertex programs (64 floats), some
superpositions must be computed in software for larger ranks. Sim-
ilar to [Sloan et al. 2002], we can reduce transfer data requirements
(by a factor of n2 = 16) by computing and caching the 3ra per-
vertex light vector inner-products in software, i.e., fixing the light
vector. Each vertex’s color linear superposition then involves only
ra 3-vectors.

6 Results

We applied our method to three deformable scenes typical of com-
puter graphics that demonstrate some strengths and weaknesses of
our approach. Dynamics and transfer precomputation and render-
ing times are given in Table 2, and model statistics are in Table 1.
The dynamics of each of the three models were precomputed over
the period of a day or more using standard software (see Figure 7).
Radiance transfer computations took on the order of a day or more
due to polygon counts, and sampling densities, Na.

Scene
Precomputation Frame rates (in SW)

Dynamics Transfer Defo Defo + Trnsfr
Dinosaur 33h 21m 74h 173 82 (175 in HW)

Cloth 16h 46m 71h 27m 350 149
Plant ≈ 1 week 11h 40m 472 200

Table 2: Model timings on an Intel Xeon 2.0GHz, 2GB-266MHz
DDR SDRAM, with GeForce FX 5800 Ultra. Runtime matrix-
vector multiplies computed in software (SW) using an Intel perfor-
mance library, except for the dinosaur example that fits into vertex
program hardware (HW).

The cloth example demonstrates interesting soft shadows and il-
lumination effects, as well as subtle nonlinear deformations typical
of cloth attached to a door (see Figure 8). This is a challenging
model for data-driven deformation because the material is thin, and
in persistent self-contact, so that small deformation errors can re-
sult in noticeable self-intersection. By increasing the rank of the
deformation model (to ru = 30), the real-time simulation avoids

Figure 7: Precomputing real-time models with offline simula-
tors: (Left) cloth precomputed in Alias|Wavefront Maya; (Mid-
dle,Right) models precomputed by an engineering analysis package
(ABAQUS) using an implicit Newmark integrator.

visible intersection5. Unlike the other examples, the complex ap-
pearance model appears to have been undersampled by the cluster
shape sampling (Na=200) since there is some uneveness in inter-
polated lighting and certain cloth-door shadows lack proper varia-
tion.

Figure 8: Dynamic
cloth states induced by
door motions: (Left)
cloth and door at rest;
(Right) cloth pushed
against moving door by
air drag.

The plant example has interesting shadows and changing visibil-
ity, and the dynamics involve significant multi-leaf collisions (see
Figures 10 and 11). The plant was modeled with 788 quadrilateral
shell finite elements in ABAQUS, with the many collisions accu-
rately resolved with barrier forces and an implicit Newmark inte-
grator.

5Using a larger cloth “thickness” during precomputation would also re-
duce intersection artifacts.

ra=0 (mean) ra=3 ra=6

Figure 9: Reduced radiance transfer illuminations for an arbitrary
cloth pose illustrate improving approximations as the rank ra is
increased.

Figure 10: View of plant from behind

885

Scene
Deformable Model Appearance Model IRF

F V DOF ru relErr F Vlit DOF Na ra relErr N #IRF
Dinosaur 49376 24690 74070 12 0.5% 52742 26361 1265328 50 7 4.4% 20010 260

Cloth 6365 3310 9930 30 1.5% 25742 16570 795360 200 12 15% 8001 171
Plant 6304 3750 11250 18 2.0% 11184 9990 479520 100 12 6.2% 6245 150

Table 1: Model Statistics: The ru and ra ranks correspond to those used for frame rate timings in Table 2.

Figure 11: Interactive dynamic behaviors resulting from applied impulses

The rubber dinosaur had the simplest dynamics of the three mod-
els, and did not involve collisions. It was precomputed using an
implicit Newmark integrator with 6499 FEM tetrahedral elements,
and displacements were interpolated onto a finer displaced subdivi-
sion surface mesh [Lee et al. 2000]. However, the radiance transfer
data model was easily the largest of the three, and includes inter-
esting self-shadowing (on the dinosaur’s spines) and color bleeding
(see Figure 11). Runtime simulation images, and some reduced ba-
sis vectors, or modes, of the dinosaur’s displacement and radiance
transfer models are shown in Figure 13.

All examples display interesting dynamics and global illumina-
tion behaviors. Significant reductions in the rank of the displace-
ment and appearance models were observed, with only a modest
number of flops per vertex required to synthesize each deformed
and illuminated shape. In particular, Figure 12 shows that the sin-
gular values converge quickly, so that useful approximations are
possible at low ranks. In general, for a given error tolerance, appear-
ance models are more complex than deformation models. However,
when collisions are present, low-rank deformation approximations
can result in visible intersection artifacts so that somewhat higher
accuracy is needed.

defo mode 2 defo mode 3 defo mode 5

transfer mode 3 transfer mode 5 transfer mode 6

Figure 13: Dinosaur modes: (Top) displacement mode shapes;
(Bottom) radiance transfer modes.

7 Summary and Discussion

Our method permits interactive models of physically based de-
formable scenes to be almost entirely precomputed using data-

driven tabulation of state space models for shape and appearance.
Using efficient low-rank approximations for the deformation and
appearance models, extremely fast rendering rates can be achieved
for interesting models. Such approaches can assist traditional sim-
ulation in applications with constrained computing resources.

Future work includes improving dynamics data quality by us-
ing better non-random sampling strategies for IRFs. Building bet-
ter representations for temporal and spatial data could be investi-
gated using multiresolution and “best basis” statistics. Generaliz-
ing the possible interactions, e.g., for contact, and supporting more
complex scenes remain important problems. Extensions to de-
formable radiance transfer for nondiffuse models, and importance-
based sparse shape sampling are also interesting research areas.

Acknowledgments: We would like to acknowledge the helpful
criticisms of several anonymous reviewers, assistance from Christo-
pher Twigg and Matthew Trentacoste, hardware from NVIDIA, and
Cyberware for the dinosaur model.

References
ABRAHAM, R. H., AND SHAW, C. D. 1992. Dynamics - the Geometry of

Behavior. Addison-Wesley.

ALEXA, M., AND MÜLLER, W. 2000. Representing Animations by Prin-
cipal Components. Computer Graphics Forum 19, 3 (Aug.), 411–418.

ATKESON, C., MOORE, A., AND SCHAAL, S. 1997. Locally Weighted
Learning for Control. AI Review 11, 75–113.

BARAFF, D., AND WITKIN, A. P. 1998. Large Steps in Cloth Simulation.
In Proceedings of SIGGRAPH 98, 43–54.

BLANZ, V., AND VETTER, T. 1999. A Morphable Model for the Synthesis
of 3D Faces. In Proc. of SIGGRAPH 99, 187–194.

BRIDSON, R., FEDKIW, R. P., AND ANDERSON, J. 2002. Robust Treat-
ment of Collisions, Contact, and Friction for Cloth Animation. ACM
Transactions on Graphics 21, 3 (July), 594–603.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND POPOVIĆ,
Z. 2002. A Multiresolution Framework for Dynamic Deformations. In
ACM SIGGRAPH Symposium on Computer Animation, 41–48.

COTIN, S., DELINGETTE, H., AND AYACHE, N. 1999. Realtime Elastic
Deformations of Soft Tissues for Surgery Simulation. IEEE Trans. on
Vis. and Comp. Graphics 5, 1, 62–73.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H. 2001.
Dynamic Real-Time Deformations Using Space & Time Adaptive Sam-
pling. In Proceedings of SIGGRAPH 2001, 31–36.

886

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
E

L
A

T
IV

E
 L
2

 E
R

R
O

R

RANK

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
E

L
A

T
IV

E
 L
2

 E
R

R
O

R

RANK

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
E

L
A

T
IV

E
 L
2

 E
R

R
O

R

RANK

Figure 12: Model reduction: Relative l2 error versus model rank, ru and ra, for the displacement (blue) and radiance transfer (red) models.

EVERITT, C., AND KILGARD, M. J. 2002. Practical and Robust Sten-
ciled Shadow Volumes for Hardware-Accelerated Rendering. Tech. rep.,
NVIDIA Corporation, Inc., Austin, Texas.

GOLUB, G. H., AND LOAN, C. F. V. 1996. Matrix Computations, third ed.
Johns Hopkins University Press, Baltimore.

GRINSPUN, E., KRYSL, P., AND SCHRÖDER, P. 2002. CHARMS: A Sim-
ple Framework for Adaptive Simulation. ACM Transactions on Graphics
21, 3 (July), 281–290.

GRZESZCZUK, R., TERZOPOULOS, D., AND HINTON, G. 1998. Neu-
roAnimator: Fast Neural Network Emulation and Control of Physics-
Based Models. In Proceedings of SIGGRAPH 98, 9–20.

GUCKENHEIMER, J., AND HOLMES, P. 1983. Nonlinear oscillations,
dynamical systems, and bifurcations of vector fields (Appl. math. sci.; v.
42). Springer-Verlag New York, Inc.

HEIDRICH, W. 2001. Interactive Display of Global Illumination Solutions
for Non-diffuse Environments - A Survey. Computer Graphics Forum
20, 4, 225–244.

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing Interactive
Dynamic Deformable Scenes. Tech. rep., Carnegie Mellon University,
Robotics Institute.

JAMES, D. L., AND PAI, D. K. 1999. ARTDEFO - Accurate Real Time
Deformable Objects. In Proc. of SIGGRAPH 99, 65–72.

JAMES, D. L., AND PAI, D. K. 2002. DyRT: Dynamic Response Textures
for Real Time Deformation Simulation With Graphics Hardware. ACM
Trans. on Graphics 21, 3 (July), 582–585.

JAMES, D. L., AND PAI, D. K. 2002. Real Time Simulation of Multi-
zone Elastokinematic Models. In Proceedings of the IEEE International
Conference on Robotics and Automation, 927–932.

JAMES, D. L., AND PAI, D. K. 2003. Multiresolution Green’s Function
Methods for Interactive Simulation of Large-scale Elastostatic Objects.
ACM Trans. on Graphics 22, 1, 47–82.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion Graphs. ACM
Transactions on Graphics 21, 3 (July), 473–482.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. EigenSkin: Real Time
Large Deformation Character Skinning in Hardware. In SIGGRAPH
Symposium on Computer Animation, 153–160.

KRYSL, P., LALL, S., AND MARSDEN, J. E. 2001. Dimensional model
reduction in non-linear finite element dynamics of solids and structures.
International Journal for Numerical Methods in Engineering 51, 479–
504.

LEE, A., MORETON, H., AND HOPPE, H. 2000. Displaced Subdivision
Surfaces. In Proc. of SIGGRAPH 2000, 85–94.

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND POLLARD,
N. S. 2002. Interactive Control of Avatars Animated With Human Mo-
tion Data. ACM Transactions on Graphics 21, 3 (July), 491–500.

LENGYEL, J. E. 1999. Compression of Time-Dependent Geometry. In
ACM Symposium on Interactive 3D Graphics, 89–96.

LINDHOLM, E., J.KILGARD, M., AND MORETON, H. 2001. A User-
Programmable Vertex Engine. In Proceedings of SIGGRAPH 2001, 149–
158.

LUMLEY, J. L. 1967. The structure of inhomogeneous turbulence. In
Atmospheric turbulence and wave propagation, 166–178.

NELLES, O. 2000. Nonlinear System Identification: From Classical Ap-
proaches to Neural Networks and Fuzzy Models. Springer Verlag, De-
cember.

O’BRIEN, J., AND HODGINS, J. 1999. Graphical Modeling and Animation
of Brittle Fracture. In SIGGRAPH 99 Conference Proceedings, 111–120.

OLANO, M., HART, J. C., HEIDRICH, W., AND MCCOOL, M. 2002.
Real-Time Shading. A.K.Peters.

PEERCY, M. S., OLANO, M., AIREY, J., AND UNGAR, P. J. 2000. Interac-
tive Multi-Pass Programmable Shading. In Proceedings of SIGGRAPH
2000, 425–432.

PENTLAND, A., AND WILLIAMS, J. 1989. Good Vibrations: Modal Dy-
namics for Graphics and Animation. In Computer Graphics (SIGGRAPH
89), vol. 23, 215–222.

POINCARÉ, H. 1957. Les Méthodes Nouvelles de la Mécanique Célèste I,
II, III. (Reprint by) Dover Publications.

PROUDFOOT, K., MARK, W. R., TZVETKOV, S., AND HANRAHAN,
P. 2001. A Real-Time Procedural Shading System for Programmable
Graphics Hardware. In Proceedings of SIGGRAPH 2001, 159–170.

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P. 2002.
Ray Tracing on Programmable Graphics Hardware. ACM Transactions
on Graphics 21, 3 (July), 703–712.

REISSELL, L. M., AND PAI, D. K. 2001. Modeling Stochastic Dynamical
Systems for Interactive Simulation. Computer Graphics Forum 20, 3,
339–348.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. 2000. Video
Textures. In Proc. of SIGGRAPH 2000, 489–498.

SHABANA, A. 1990. Theory of Vibration, Volume II: Discrete and Contin-
uous Systems, first ed. Springer–Verlag, New York, NY.

SLOAN, P.-P. J., III, C. F. R., AND COHEN, M. F. 2001. Shape by
Example. In ACM Symp. on Interactive 3D Graphics, 135–144.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting
Environments. ACM Transactions on Graphics 21, 3 (July), 527–536.

STAM, J. 1997. Stochastic Dynamics: Simulating the Effects of Turbulence
on Flexible Structures. Computer Graphics Forum 16(3).

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. 1987.
Elastically Deformable Models. In Computer Graphics (Proceedings of
SIGGRAPH 87), vol. 21(4), 205–214.

WEIL, J. 1986. The Synthesis of Cloth Objects. In Computer Graphics
(Proceedings of SIGGRAPH 86), vol. 20(4), 49–54.

887

