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Fig. 1. Ensemble gaze behavior for one of the film clips in our data set. Top: Example frames with recorded gaze points
colored by participant. Dashed boundary shows convex hull. Middle: Convex hull area varies over time. Smaller values
indicate increased a�entional synchrony. Bo�om: Colored bars indicate the presence of hand coded features, e.g. a single
face (dark green) or camera motion such as pans and tilts (light blue). Film: Unforgiven (Warner Bros., 1992).

Film directors are masters at controlling what we look at when we watch a �lm. However, there have been few quantitative
studies of how gaze responds to cinematographic conventions thought to in�uence attention. We have collected and are
releasing a data set designed to help investigate eye movements in response to higher level features such as faces, dialogue,
camera movements, image composition, and edits. The data set, which will be released to the community, includes gaze
information for 21 viewers watching 15 clips from live action 2D �lms, which have been hand annotated for high level features.
This work has implications for the media studies, display technology, immersive reality, and human cognition.
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1 INTRODUCTION
The human eye is constantly in motion. As the eye moves, areas of visual interest are sequentially centered on the
densest region of photoreceptors in the retina, called the fovea. This allows the visual system to piece together
a detailed representation of the world around us. The characterization of eye movements is of great interest
to a wide variety of researchers, as they provide something rare: a measurable external indication of attention.
set of �elds including cognitive science, psychology, and neurology. For example, involuntary eye motion and
pupillometry is used to measure cognitive load [Klingner 2010; Stuyven et al. 2000] and can help characterize
conditions such as schizophrenia [Levy et al. 2010] and autism spectrum disorder [McPartland et al. 2010].
A deeper understanding of the mechanisms behind various eye movements is of practical use as well. In

computer graphics, systems designed for a single user can reduce computational load by employing real-time eye
tracking to monitor gaze location and adaptively deliver high-resolution imagery only to the most sensitive part of
the retina [Guenter et al. 2012; Patney et al. 2016]. With su�ciently high-performance eye tracking, the reduction
in peripheral detail can be made imperceptible to the user. Such systems, known as foveated particular interest
for mobile and augmented reality applications, as computational e�ciency is critical for providing acceptable
quality in a portable form factor.
Thus far, advances in foveated rendering have been limited by the unpredictable and ballistic nature of eye

movements. Better knowledge of where people look in visually rich, dynamic environments would enable
predictive models of gaze and attention and reduce reliance on high-performance eye tracking. Several recent
e�orts to improve our understanding of gaze response have focused on eye and head movements in virtual
reality environments, in response to both virtual reality movies [Serrano et al. 2017] as well as omnidirectional
panoramas [Sitzmann et al. 2016].
Another potential wealth of knowledge in this area comes from �lmmakers, who have spent over a century

exploring the communication of time and space through moving pictures. The development of modern cinemato-
graphic techniques has resulted in the emergence of a rich compendium of best practices thought to direct a
viewer’s attention (e.g., [Alton 2013; Block 2001; Mascelli 1998]). These conventions are known to evolve over
time and as �lmmaking technologies change; for example, Cutting and colleagues have identi�ed gradual image
darkening and decreased average shot length over time [Cutting 2016; Cutting et al. 2011]. Such methods are
critical for producing �lms that are readily understood, as cinema is a complex dynamic audiovisual stimulus that
contains a broad range of information for viewers to comprehend. This information includes human interactions,
dialogue, narrative structure, and the spatial con�gurations of characters and environs.

Cinematographic conventions encompass image composition, the meaning of temporal discontinuities (edits)
in di�erent contexts, camera movements, and beyond1. However, there has been little quantitative analysis of
how gaze responds to this type of highly structured dynamic content. In order to provide the community with a
resource suitable for investigating the in�uence of high-level image features and cinematographic techniques on
gaze position, we contribute the following data set. It contains recorded gaze information for hand curated �lm
clips, which have been augmented via the annotation of selected high-level features. In particular, the data set
contains:

• 15 �lm clips, of duration 1–4 minutes each, selected to represent a variety of visual and editing styles

1 The authors recommend Bordwell and Thompson’s Film Art [2012] for a comprehensive introduction.
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• Recorded gaze behavior for 21 viewers watching those clips
• Frame by frame annotations of high-level cinematographic features

This data set is easily extendable, either with additional hand annotations, or with existing methods from
machine vision. The following sections describe the collection of the data set and outline its potential uses.

2 RELATED WORK
Generally speaking, eye movements can be divided into two categories: endogenous, or internally produced,
and exogenous, or externally produced [Gompel et al. 2007]. Endogenous eye movements, such as scanpaths,
are shaped by both high-level cognitive processes such as search task [Yarbus 1967], as well as by neurological
conditions such as injuries to the visual cortex [Jahnke et al. 1995; Pambakian et al. 2000]. Exogenous (stimulus-
driven) eye movements are re�exive and a�ected by dynamic stimuli in a variety of complex ways. For instance,
small changes to dynamic stimuli can a�ect saccade onset latency and saccade trajectory [Doyle and Walker
2001; Saslow 1967]. Exogenous saccades can also be induced via subtle modulations in the periphery of still
images [Bailey et al. 2009; McNamara et al. 2009]. In other words, gaze location is partially directed by dynamic
image content and not under the conscious control of the viewer.

Many previous studies using eye tracking to probe visual attention have focused on static images; these studies
have explored the in�uence of both low and high-level image features. Low-level features include local image
variations such as contrast, color, and edges. These types of image features have been shown to a�ect gaze;
for example, by manipulating depth of �eld in order to direct �xations into the parts of an image which are in
focus [Cole et al. 2006]. Low-level image features combine to form higher-level features such as people, faces,
and text. Faces are especially well known to be important targets for gaze and attention (e.g., [Buchan et al. 2007;
Crouzet et al. 2010; Haxby et al. 2000]). In video and �lm, size, duration, and number of faces have been shown to
in�uence patterns of eye movements [Cutting and Armstrong 2016; Rahman et al. 2014]. In general, both low
and high-level features a�ect gaze. This observation is behind the data-driven image saliency model of Judd and
colleagues [2009]; it was enabled by gaze recordings for still images, and incorporates both low and high-level
features.

Research focusing on gaze behavior in response to dynamic imagery has employed a variety of stimuli, such as
video games, documentary footage, and narrative �lms [Li et al. 2010; Peters and Itti 2007]. Gaze response in
these settings is challenging to study because, in most realistic scenarios, visual task is unavoidably intertwined
with both low and high-level image features. This results in a mix of exogenous and endogenous factors e�ecting
gaze.

Consequently, it is striking that examinations of gaze behavior in response to feature �lms have shown a great
deal of similarity between viewers [Goldstein et al. 2007]. Their agreement may be due in part to a reduced
diversity of endogenous in�uences on gaze location: when watching a �lm, each viewer is performing a common
task, namely, following the narrative. When multiple viewers attend to the same image region simultaneously,
this is known as attentional synchrony. Attentional synchrony is known to correlate with low-level image features
such as motion, contrast, and �icker [Mital et al. 2011; Smith and Mital 2013].
Gaze response to higher-level image characteristics in moving images is less well understood. Therefore, the

data set described in this paper has been designed to contribute to the understanding of higher-level features in
promoting attentional synchrony during the viewing of dynamic content.

3 FILM SELECTION AND FEATURE ANNOTATION
Directors, cinematographers, and �lm editors exercise tight control over their content, facilitating viewer compre-
hension with the use of conventions in both spatial (e.g., image composition) and temporal (e.g., editing) structure.
We selected �lms likely to furnish good examples of these techniques. From these, we selected a diverse set of
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representative clips which would provide a variety of visual settings, emotional tones, and temporal rhythms.
High-level features that could be readily annotated were identi�ed from previous work in both �lm theory and
eye tracking with still imagery.

3.1 Film Selection
Because �lmmaking is such a highly structured art form, even very di�erent �lms can be expected to resemble
one another in terms of their craft. To ensure our �lms exempli�ed high quality �lmmaking, technical excellence
was inferred by selecting from the nominees and winners of these �lm industry awards:

• American Cinema Editors Awards (The Eddies)
• The American Society of Cinematographers Awards; Category: Theatrical Release
• The British Society of Cinematographers Awards; Category: Theatrical Release
• The Hollywood Foreign Press Association Awards (The Golden Globes); Category: Best Director
• Academy of Motion Picture Arts and Sciences Awards (The Oscars);
Categories: Film Editing, Directing, Cinematography

Films represented in these awards were then given a point score comprised of 1 point for each win and 0.5 points
for each nomination. This score was normalized by the total number of awards given in each release year. Of the
top 100 highest scoring �lms, 13 were chosen. To minimize the e�ect of changes in �lmmaking conventions over
time, these �lms all come from the years 1984–2014, and were approximately evenly spaced throughout that
period. As we wanted low-level image features to be as similar as possible, all �lms are full color and live action.
To minimize any bias due to individual style, we also selected for unique directors, cinematographers, and editors.

3.2 Clip Selection
Clips were chosen from candidate �lms with an eye towards maximizing the presence of features that distinguish
narrative �lms from other types of dynamic imagery found in previous studies. Clips were sought which would
be compelling even out of context and would not reveal key plot points. They were also selected to express the
wide range of aesthetics found in modern cinema. For example, although all clips are in color, color palettes range
widely from highly desaturated (Saving Private Ryan) to vibrant (Slumdog Millionaire, The Last Emperor). Some
color palettes are naturalistic (Amadeus, Unforgiven), while others are more stylized (Birdman).
In nearly all modern �lms, dialogue is a key component in advancing the story. We sought scenes in which

dialogue would be easily understood and engaging, but would not require additional knowledge of the �lm’s plot.
The data set includes clips with no dialogue (No Country For Old Men, Clip 2), monologue (Amadeus, The King’s
Speech, and Shakespeare in Love, Clip 2), and multi-character dialogue (Argo).
Of course, dialogue on screen is almost always coincident with the presence of human faces. This data set

contains examples of single face close-ups (The Departed, The Kings Speech) and small groups of characters
(Argo, Birdman). There are also scenes with larger numbers of faces on screen, such as ensemble dance numbers
(Chicago), and crowd scenes (Gladiator, and Shakespeare in Love).

Clips were also selected in part to illustrate a variety of common �lmmaking techniques, such as composition,
editing, and camera motion. For instance, dialogue scenes are frequently accompanied by the shot/reverse shot
pattern. This technique establishes an imaginary line segment connecting two characters. With the camera
restricted to one side of the line, the �lmmakers alternate between shots of each endpoint (character). Examples
can be found in clips from The Departed and No Country For Old Men (Clip 1). We also include a range of editing
styles; the e�ect of fast paced editing on gaze behavior can be examined in the clip from Gladiator (�ght sequence),
the opening chase scene from Slumdog Millionaire, and the musical number from Chicago. Other clips have much
more modest tempos (e.g., Shakespeare in Love, Clip 2). Finally, both stationary (The Departed) and more dynamic
(Saving Private Ryan, Birdman) approaches towards camerawork are represented.
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Category Coding Description

Faces
f frameX frameY A single face is visible for the speci�ed range of frames: [frameX, frameY]

ff frameX frameY Multiple faces are visible
fa frameX frameY One or more non-human faces are visible

Dialogue
don frameX frameY Dialogue; speaking character is on-screen
doff frameX frameY Dialogue; speaking character’s face is not visible

Camera

pt frameX frameY Pan, tilt, or a combination of the two
d frameX frameY Camera is moving via dolly
z frameX frameY Camera operator is zooming in or out
cr frameX frameY Crane; both camera base and mount are in motion
h frameX frameY Jerky motion of the base and/or mount, as if handheld
r frameX frameY Racking focus (i.e., focal plane in motion)

Edits
c frameX frameY There is a (plain) cut between frames frameX and frameY

xf frameX frameY There is a cross-fade between frames frameX and frameY

Table 1. Binary features included in data set. For terminology, see text.

Each clip is 1–4 minutes in duration, which participants reported to be adequate time to feel immersed in the
narrative. Two �lms, No Country For Old Men and Shakespeare in Love contributed two clips each. These provided
additional instances of crowd scenes and shot/reverse shot dialogue. In total, the data set contains 15 clips from
13 �lms for a total of about 38 minutes of content. A table containing a brief description of each clip can be found
in Appendix B2.

3.3 Hand Annotation of Features
Typically, �lms focus on human stories and therefore contain many salient high-level image features, such as
faces, along with other, potentially salient technical and narrative factors such as camera motion and dialogue.
Unlike many low-level features such as edges, contrast, and optical �ow, higher-level features like these can be
di�cult to accurately detect automatically. To aid in the exploration of higher-level image features and their
in�uence on gaze, we hand coded each frame for the presence or absence of the following:

Faces: Separate codes are used to indicate zero, one, or multiple faces; we also identify frames that contain
non-human faces such as animals or masks.

Dialogue: Codes specify frames in which dialogue is being delivered and whetherthe speaker’s face is visible.

Camera Motion: Several types of camera motion are di�erentiated. These are pan/tilt (azimuthal and/or vertical
rotation of a camera with �xed base), dolly (translation of the camera along a �xed path, without changes in
elevation), crane (combined translation and elevation changes), zoom (change in focal length), rack focus (change
in focal plane), and handheld (erratic perturbations of the camera).

Edits: We code for two common editing techniques. The �rst is the most common: a discontinuity in time, space,
or action in which two shots are joined sequentially such that the last frame of the �rst shot immediately precedes

2 Resources for data set reproduction, including DVD imprint information, clip start times, and �rst and last frames are available at
http://graphics.stanford.edu/~kbreeden/gazedata.html.
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the �rst frame of the second shot. The second is the cross fade; here, frames from two shots are overlaid for a
short period of time, during which the preceding shot fades out and the subsequent shot fades in. Cross fades are
identi�ed by a transition window starting with the �rst frame of the fade out and ending with the �nal frame of
the fade in3.

Table 1 contains a listing of these features as they are found in the data set. These are meant to provide a
useful starting point for the analysis of gaze behavior in feature �lms. As computer vision algorithms continue to
improve, it is our hope that the feature set will expand. An illustration of our hand coding is provided in Figure 1.

4 COLLECTION OF GAZE DATA
In order to facilitate eye movements that would match natural viewing conditions as closely as possible, the
experimental setup was designed to approximate the typical home cinema experience. Gaze locations were
recorded for 21 volunteers aged 22–73 (mean 34, 11 female). Clips were presented in a di�erent randomized order
to each viewer, and sound was delivered by external speaker or using headphones, as preferred.

4.1 Eye Tracker Configuration
Gaze location was recorded using a Gazepoint GP3 table top eye tracker4. This unit samples at 60 Hz and has an
accuracy of between 0.5 and 1�, and is designed to be colocated with a display that is 24” or smaller. However, as
noted by Troscianko and colleagues, both objective and subjective measures indicate that engagement increases
with absolute screen size, even as �eld of view remains constant [2012]. In other words, absolute screen size must
be taken into account when a laboratory environment is meant to promote an immersive viewing experience.

~10°

35 cm

65 cm

73.8 cm

22” LCD, h = 30cm

28.3°

23.9°

94.4°

4.6cm

46”  TV, h = 57.5cm

59.6

10° repose

standard placement
46” TV

22” LCD

With this in mind, we displayed experimental stimuli on a 46”
Sony Bravia wide-format television5 at a distance of 1.8 m. The eye
tracker was mounted on a portable, adjustable arm at a horizontal
distance of 65 cm from the participant, with eye tracker height
adjusted such that the bottom of the screen was just visible over
the top of the eye tracker. This setupmimics the visual �eld of a 22”
monitor colocated with the eye tracker. Note, it was necessary to
recline the viewer 10� in order to raise the television to a workable
height; this arrangement also helped reduce head motion.

4.2 Participant Instructions and Calibration
During set-up, participants were made as comfortable as possible to minimize movement. A neck pillow was
used to stabilize the head, and most chose to elevate their feet. Once positioned, the eyetracker was calibrated
using the 5-point least squares routine packaged with the Gazepoint software. The accompanying visualization
of the calibration result was used to determine whether the setup was adequate; corrections of greater than 1�
prompted the experimenters to reposition the participant and recalibrate. Calibration results were similar to
those observed in the intended set-up. Participant instructions are reproduced in full in Appendix A.
Once the experiment began, advancement to the next �lm clip was self-paced via keyboard controls. A post-

experiment questionnaire was administered to record which �lms had been seen previously by each viewer; see
supplementary materials for details.

3In our data set, cross fades are not common. For the purposes of calculating shot length, the midpoint of the cross fade is used.
4https://www.gazept.com/product/gazepoint-gp3-eye-tracker
5Resolution is 1080p. Model number: KDL-46EX400.
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4.3 Gaze Data Post Processing
After gaze information was recorded for all participants, the raw data was analyzed to identify several sources of
error. These are classi�ed as follows:
Eye tracker error: Due to blinks or other tracking errors, some gaze points were �agged as invalid by the eye
tracker at record time (<1% of all data).
Gaze point o�-screen: Gaze points recorded as falling outside of the frame — either outside the screen entirely or
within the screen but inside frame letterboxing — were �agged as invalid (2.6% of all data).
Invalid subject for clip: Occasionally, the eye tracker would lose tracking for certain viewers6. As experimenters
were able to monitor eye tracker performance in real time and adjustments were possible between trials (i.e.,
individual clips), it was not necessary to invalidate data collected for all clips for these participants. Instead, we
invalidate all gaze points recorded for trials in which the error rate for a speci�c participant exceeded a given
threshold. For the results shown in this paper, we use a threshold of 10%.

5 DATA SET OVERVIEW
This section provides a descriptive overview of the data set, including preliminary observations related to our
hand annotated features.

5.1 Shot Length and Editing
Using our hand-coded edits, we can examine editing characteristics of our �lm clips. Excluding the clip from
Birdman, which was edited to give the impression of a continuous take, the average shot duration in our data
set is 3.7 seconds. Table 2 illustrates the overall distribution of shot lengths, as well as the maximum, minimum,
and average shot length for each clip. Notably, of the 609 total shots in the data set, only 18 (3%) are 13 seconds
6 This was most commonly due to the presence of eyeglass glints.

Film Total
Shots

Shortest
Shot (s)

Longest
Shot (s)

Average
Shot Length (s)

Gladiator 105 0.3 19.8 1.8
Slumdog Millionaire 88 0.3 6.0 1.9
Chicago 65 0.3 10.6 2.3
Argo 69 1.0 10.0 3.1
Unforgiven 45 1.2 12.2 3.3
The Departed 29 0.5 8.7 3.3
No Country For Old Men (2) 14 1.6 9.1 4.0
The King’s Speech 40 1.4 25.0 4.5
Amadeus 42 1.2 16.3 4.7
No Country For Old Men (1) 24 1.4 15.8 5.0
Saving Private Ryan 34 0.8 18.6 5.1
Shakespeare In Love (1) 14 1.6 15.2 5.8
The Last Emperor 21 1.3 47.3 6.4
Shakespeare In Love (2) 18 0.6 32.8 7.0
Birdman 1 246.3 246.3 246.3

Table 2. Shortest, longest, and average shot length (ASL) for each clip.
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Fig. 2. Shot length distribution for all clips. Of all shots in our data set, 85% are 4 seconds or shorter. Histogram is truncated
at 14 seconds, omi�ing a long tail which includes the clip from Birdman.

or longer. By contrast, 519 shots (85%) are 4 seconds or shorter7. Figure 2 contains a histogram illustrating the
relative frequency of di�erent shot durations for our set of clips.

5.2 Distribution of Valid Gaze Points
The process to determine gaze point reliability described in Section 4.3 voids approximately 5.7% the 2.6M
recorded gaze points. This yields an average of 46 valid gaze points per frame, with between 19 and 21 unique
viewers per clip.

Aggregate analysis of the spatial distribution of these gaze points reveals subtle di�erences when compared to
eye tracking still images. Previous experiments have demonstrated that gaze point density is highest at image
center for static images [Judd et al. 2009] (Figure 3, left). This pronounced bias has been attributed to compositional
choices, as photographers are likely to center their images on salient features. By superimposing all recorded
gaze locations for the �lm clips in our data set, it is apparent that the region with peak gaze point density is
not the screen center, but rather just above the center (Figure 3, right). This asymmetry suggests that directors
and cinematographers may be utilizing compositional conventions which di�er slightly from those commonly
employed by still photographers.

5.3 A�entional Synchrony
A number of ways have been proposed to measure attentional synchrony. Bivariate contour ellipse models
(e.g., [Goldstein et al. 2007; Ross and Kowler 2013]) �t a single ellipsoid to the recorded gaze points, and are
appropriate when there is a single area of interest and gaze points are well �t by an ellipsoid. Others have
measured synchrony by comparing the scan paths taken by di�erent viewers [Dorr et al. 2010; Meur and Baccino
2012; Taya et al. 2012]. These methods are useful when comparing the gaze behavior of multiple viewers over
a period of time su�ent in duration to include multiple saccades and �xations. Mital and colleagues [2011]
use Gaussian mixture models to quantify attentional synchrony; Gaussians are �t to each gaze point, and high
synchrony is associated with low cluster covariance. This method is well suited for situations in which robustness
to noise is an issue.
Due to the aforementioned lack of temporal and spatial �delity in our data, as well as the relatively small

number of individuals recorded, we sought a measure which would be more conservative in the face of outliers. In

7 The trend over time towards shorter average shot length described by Cutting and others (e.g. [Cutting 2016; Cutting et al. 2011]) is also
visible in our data set; see our supplementary materials for a plot showing the relationship between ASL and release year.
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Fig. 3. Heat maps depict the distribution of all gaze points in the respective data set. (le�, [2009]) compared with ours (right,
scaled to square). shown in red. Le�: still images used by Judd and colleagues [2009] produce gaze locations with a strong
central tendency. Right: Our data (scaled to square) shows a peak gaze point density slightly above frame center, indicating
that image composition in cinema can be distinguished from that in still images previously used in eye tracking experiments.
As both experiments were preceded by centered fixation targets, the le� plot excludes gaze points prior to the first fixation
event; right plot excludes data collected during the first second of each clip.

other words, we wanted to preserve the possibility that a handful of outliers might indeed represent a meaningful
region of interest. Additionally, we did not want to make assumptions about the shape of the regions of interest.
Therefore we measure the size of the screen region attended to as the area of the convex hull of all valid gaze
points.

Due to its sensitivity to outliers — which have the potential to drastically increase the convex hull area — this
measure should be viewed as an upper bound on attentional synchrony. Even so, we observe that, on average,
viewers attend to only a small portion of the total screen area. This corroborates previous work by Goldstein and
colleagues [2007]. The data set average for convex hull area is 11.0%; the clip with minimum average convex hull
area was The Departed (7.0%) and the maximum was The Last Emperor (14.8%).

Figure 1 illustrates an example use of this data set to examine changes in metrics associated with ensemble gaze
behavior. It shows frame-wise variations in the gaze point convex hull area for a short section of the clip from
Unforgiven. Colored bars (Figure 1, below) denote the presence of hand coded features for the indicated range of
frames. While the ballistic nature of eye movements makes the measure of convex hull area inherently noisy,
some observations can be made. First, we see that faces — whether human or horse — are likely gaze targets.
Image composition and the number of highly attractive targets determine whether gaze points will produce a
di�use collection (Figure 1, example frame, left), or tight clusters (Figure 1, example frame, center). The impact of
camera motion can be studied similarly. For instance, the dolly shot in Figure 1 (dark blue bar, example frame at
right) appears to be associated with reduced attentional synchrony.

5.4 Gaze Response to Faces
Of the approximately 54,000 frames in our data set, hand annotations indicate that 41% contain a single face,
35% contain multiple faces, and 23% of frames contain no faces. As previously observed in still images, viewers’
gazes are strongly attracted to human faces. In our experiments, high gaze synchrony frequently correlates with
the presence of one or more faces; for example, the clip with lowest average gaze point convex hull area, The
Departed, also had one or more faces present in every frame. Attraction to faces is especially noticeable across
cut boundaries; when present, a face will almost always be the �rst target following a cut.

ACM Transactions on Applied Perception, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Fig. 4. During shot/reverse shot dialogue, viewers may fixate on the foreground character even when the visible character is
speaking. Gaze points colored by participant. Film: The Departed (Warner Bros., 2006)

5.5 Dialogue
Dialogue was coincident with 37% of data set frames; in 27% of frames the speaker’s face was visible (coded
as “Dialogue On Screen”), and in 10% of the frames it was not (coded as “Dialogue O� Screen”), typically due
to voiceover or because the speaker was facing away from the camera. Interestingly, during shot/reverse shot
dialogue, it was not uncommon for viewers to �xate on the foreground character’s ear or head, even when they
are out of focus and/or typically salient regions of the face are obscured (Figure 4).

5.6 Camera Motion
Hand coding can be used to categorize frames according to any camera motion present, in order to examine its
e�ect on gaze behavior in isolation. As an illustration of this, Figure 5 shows overlays of all recorded gaze points
for frames in the data set containing pans and tilts, categorized by the direction of motion, either leftward or
rightward. A comparison of the density of gaze points reveals what appears to be anticipatory clustering in the
direction of motion; for example, pans to the left lead to higher gaze point density on the left hand side of the
image. Lateral bias during pans and tilts can be contrasted with the overall upper-center bias shown in Figure 3.
We hypothesize that �lmmakers may be successfully using camera motion as a subtle cue to guide attention.

6 DISCUSSION AND FUTURE WORK
This paper introduces a data set containing human gaze data in response to short �lm clips, along with frame-by-
frame annotations of camera motion, shot boundaries, faces, and dialogue. The clips were curated to provide
strong examples of �lmmaking techniques, and the gaze data has been post-processed to �ag erroneous or suspect
gaze points. It is our hope that this data will enable a variety of experiments to examine the relationship between
gaze position and dynamic image content, the cognitive processes of following a narrative, and the impact of
various �lmmaking techniques on gaze response.

However, a number of important limitations remain, particularly concerning the Gazepoint GP3 eye tracker.
This unit, while a�ordable and easy to use, does not have the �ne spatial accuracy needed to investigate the
in�uence of low-level image features. A more accurate eye tracker, paired with �lm clips transcoded from higher
resolution sources, might allow for more detailed analyses in future experiments. Similarly, the relatively low
sampling rate (60Hz) prohibits the classi�cation of microsaccades; better temporal �delity would also be helpful
in understanding �ne-scale motion of the eye.
Looking forward, we can investigate whether combinations of features reinforce one another or provide

con�icting cues about which region of the screen is most engaging at a given instant in time. For instance, we
might ask whether dialogue provides an additional signal drawing the gaze towards a speaking character’s face,
or if it promotes additional saccades towards other characters on screen. Additionally, the cognitive process of
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Fig. 5. Lateral camera motion is associated with anticipatory clustering in the direction of the pan; heat maps show gaze
point density as in Figure 3. Below: pan and dolly shots moving le�ward (le�) and rightward (right). Above: example frames
demonstrate the e�ect. Films: Gladiator (Dreamworks, 1999) and Shakespeare in Love (Miramax, 1998).

following the narrative should be examined. How narrative in�uences gaze patterns, for example, in situations of
repeat viewing, is an opportunity for further study8.
For cinema scholars, this data could represent an additional source of information in understanding the

evolution of �lmmaking conventions. One such progression that has been well established is the reduction of
average shot length. The e�ect that this trend has on gaze location and target acquisition time is something that
could be measured directly from data sets like this one. This kind of evidence has implications for establishing
data-driven rules of thumb for �lmmakers and �lm editors.

Finally, we encourage others to augment the feature set presented here; these could be hand annotated or even
generated using automatic techniques. Aligning clips with their conformed screenplays, which has previously
been shown e�ective in the automatic recognition of human actions from video [Marszalek et al. 2009], could
enable the use of methods from Natural Language Processing to automatically discern mood and tone and
correlate these with image features and gaze behavior. Similarly, pixel-level local motion (optical �ow) could be
measured within these clips and be used to correlate image dynamism with gaze �xations and smooth pursuit.

Looking ahead, an improved understanding of where people look in information rich, dynamic environments
would impact multiple areas of computer science. Predictive models of gaze behavior could drive adaptive
compression methods for streaming videos in order to preserve detail within regions where gaze �xations are
likely. Predictive models might also support more e�cient foveated displays, and dynamic user interfaces could
be made easier to parse, with improved usability and accessibility. Clearly, there is much to be done towards
understanding the complex ways in which visual content, gaze direction, and attention are interconnected.

8 For researchers interested in these e�ects, information on which viewers had previously viewed the �lms used is provided in the
supplementary materials.
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A PARTICIPANT INSTRUCTIONS
The following starting instructions were given to each participant:

In this experiment, you will be asked to watch clips from a variety of feature �lms. Your eye movements will be
recorded and these measurements will be analyzed in aggregate with that of other participants. Your name and other
identifying information will not be associated with this data.
Please be advised that the types of eye movements we are interested in are generally not under conscious control.

Therefore, you should view each clip as naturally as possible. Do your best to follow the plot and dialogue, as you
would do in a movie theater or in your own home.
The clips you are about to see were selected in part because they did not require extensive knowledge of the

surrounding plot. Many are taken from near the beginning of the �lm, when the intended audience would not have
any additional insight than you do today. None of the clips reveal critical plot information. A list of the �lms used
will be available for you to take home after the experiment.
You will see 15 clips from 13 �lms, and the total duration is approximately 30 minutes. In between each clip, you

will have the opportunity to rest and readjust yourself. To begin, you will see a screen containing the name of the
�lm, followed automatically by a small crosshairs in the center of the screen. Please focus your attention at the X
until the video begins, at which point you should watch the clip normally. The next segment of the experiment will
only begin after you press the Spacebar. If you need to adjust the volume, you can use the keyboard controls. At any
time, you may press the Spacebar to exit the clip.
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B CLIP EXTRACTION AND DESCRIPTIONS
Film clips were transcoded from DVDs using HandBrake (https://handbrake.fr, H264 codec at 23.976 fps). Individ-
ual frames were extracted using FFmpeg (http://�mpeg.org). Table 3 contains a description of the cinematographic
features present in each clip. Information necessary for the generation of our clips can be found in the supple-
mentary materials and at http://graphics.stanford.edu/~kbreeden/gazedata.html.

Film Clip Details Description

Amadeus
(1984)

Director: Miloš Forman Salieri learns that Mozart has been involved with the woman
he loves. Contains: close-up, monologue, dialogue.

Cinematographer: Miroslav Ondříček
Duration: 3:16 (4699 frames)

Argo
(2012)

Director: Ben A�eck Mendez arrives and lays out his plan to get the Americans
home. Contains: shots with 3+ characters, multi-character
dialogue.

Cinematographer: Robert Prieto
Duration: 3:35 (5157 frames)

Birdman
(2014)

Director: Gonzalez Iñaritu Shortly after Riggan arrives at rehearsal, an accident occurs
on stage. He makes a hasty exit. Contains: multi-character
dialogue, complex camera movements.

Cinematographer: Emmanuel Lubezki
Duration: 3:29 (5864 frames)

Chicago
(2002)

Director: Rob Marshall Velma performs “All That Jazz!” as Roxie watches, captivated.
Contains: close-ups, shots with 3+ characters, rapid editing.

Cinematographer: Dion Beebe
Duration: 2:30 (3590 frames)

The Departed
(2006)

Director: Martin Scorsese Billy learns he won’t be allowed to become a police o�cer
and re�ects on his family and their history of crime. Contains:
close-ups, shot/reverse shot dialogue.

Cinematographer: Michael Ballhaus
Duration: 1:36 (2304 frames)

Gladiator
(1999)

Director: Ridley Scott An eager crowd cheers as gladiators battle in an arena.
Contains: crowd scenes, rapid editing, complex camera
movements.

Cinematographer: John Mathieson
Duration: 3:03 (4386 frames)

The King’s
Speech
(2010)

Director: Tom Hooper The Duke of York struggles to deliver a message from the
King. Contains: close-ups, monologue, dialogue.

Cinematographer: Danny Cohen
Duration: 3:01 (4293 frames)

The Last
Emperor
(1987)

Director: Bernardo Bertolucci 3-year-old Puyi is introduced in the Forbidden City. Contains:
crowds, complex camera movements.

Cinematographer: Vittorio Storaro
Duration: 2:12 (3189 frames)

No Country
For Old Men

(2007)

Director: Joel and Ethan Coen Clip 1: A sheri� and deputy discuss a mysterious murder.
Contains: shot/reverse shot dialogue.
Clip 2: Anton Chigurh creates a diversion at the pharmacy.
Contains: close-up.

Cinematographer: Roger Deakins
Duration 1: 0:56 (1345 frames)
Duration 2: 1:59 (2855 frames)

Saving Private
Ryan
(1998)

Director: Steven Spielberg American soldiers land on Omaha beach. Contains: shots with
3+ characters, complex and handheld camera movements.

Cinematographer: Janusz Kamiński
Duration: 2:53 (4141 frames)

Shakespeare
In Love
(1998)

Director: John Madden Clip 1: Theatergoers of all stripes stream into the Globe to see
“Romeo and Juliet”. Contains: crowds.
Clip 2: Viola steps in for the �nal scenes of the play. Contains:
crowds, close-up, monologue.

Cinematographer: Richard Greatrex
Duration 1: 1:20 (1920 frames)
Duration 2: 2:05 (2987 frames)

Slumdog
Millionaire

(2008)

Director: Danny Boyle Young children playing cricket attract the ire of local police; a
chase ensues. Contains: shots with 3+ people, rapid editing,
complex camera movements.

Cinematographer: Anthony Dod Mantle
Duration: 2:43 (3910 frames)

Unforgiven
(1992)

Director: Clint Eastwood Mike and Davey lead a string of ponies into Big Whiskey.
Davey o�ers one to Delilah as a gesture of goodwill. Contains:
shots with 3+ people, dialogue.

Cinematographer: Jack N. Green
Duration: 2:26 (3486 frames)

Table 3. Descriptions of the clips used in our data set.
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