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Abstract

In this paper we present a simple framework for activity
recognition based on a model of multi-layered finite state
machines, built on top of a low level image processing mod-
ule for spatio-temporal detections and limited object iden-
tification. The finite state machine network learns, in an
unsupervised mode, usual patterns of activities in a scene
over long periods of time. Then, in the recognition phase,
usual activities are accepted as normal and deviant activity
patterns are flagged as abnormal. Results, on real image
sequences, demonstrate the robustness of the framework.

1. Introduction

Analyzing complex spatio-temporal changes in a dynamic
scene in order to recognize logical sequences of usual ac-
tivity patterns and detect unusual deviations has become
an important problem in computer vision, especially in the
context of visual surveillance. In this paper we present a
simple framework for activity recognition based on a model
of multi-layered finite state machines, built on top of a low
level image processing module for spatio-temporal detec-
tions and limited object identification. We fix the modes of
interaction in the lower physical layer of the network ar-
chitecture depending on the context of the problem, and
automatically find clusters of high probability sequences
of transitions to learn usual behavioural patterns in an un-
supervised manner. Low probability sequences which are
not recognized by the FSM network are diagnosed as un-
usual. We argue that such a model is more suitable for
detection and recognition of activity patterns in surveil-
lance situations than some of the more complex models sug-
gested in the literature - based on Hidden Markov Models
[16, 12, 17, 14, 15], Bayesian networks [2, 13, 8, 9] and
stochastic context free grammars [11].

In contrast with most of the techniques found in the liter-
ature which are either hard coded to recognize only specific
activities or model activity patterns using supervised learn-

ing, we consider two different scenarios -

1. unsupervised learning of usual activity patterns and de-
tection of unusual activities. Any activity which is not
recognized as normal is flagged as deviant.

2. explicit programming of the FSM’s for recognition of
complex activities or training using supervised learn-
ing.

Examples of the first of the above may include learning
usual activity patterns of movements of people in an air-
port terminal or of people and cars in a parking lot, and de-
tecting deviant patterns like walking in a wrong direction,
straying in to restricted areas, crossing of barriers, wrong
parking and suspicious behaviours like taking more than
usual amount of time to open the door of a car. Our frame-
work for this case is generic - only the low level detectors
in the image processing layer and the physical layer of the
network structure need to be changed with context, the al-
gorithms for activity learning and recognition require no
changes whatsoever and can be trained using unsupervised
learning, even for multiple types of unknown activities.

Examples of the second may includeunattended bag-
gage detection, wherein a person leaves a bag in the scene
and walks away and the bag lies unattended for a certain
duration of time; andstealing, where a person puts a bag
down and a second person picks it up and rushes away. Our
system can either be explicitly programmed to recognize
activities such as these or may be trained to recognize these
activities by enacting them a number of times.

The rest of the paper is organized as follows. In Section
2 we review some of the literature on activity recognition
and detection and put our approach in perspective. In Sec-
tion 3 we describe our low level image processing module
and object detectors. In Section 4 we describe our activity
analysis framework based on layered finite state machines.
We present some results on examples of the type mentioned
above in Section 5. Finally, in Section 6, we conclude the
paper.



2. Related work
Recently, the problem of activity detection and recognition
in the context of visual surveillance has received consider-
able attention [1]. There has been significant work that span
across techniques for low level event detection [5, 20, 23, 4]
and activity modeling [16, 12, 17, 14, 15, 11, 2, 13, 8, 9, 6,
21, 3, 10].

Starting from the early work of Yamato et. al. [22],
HMM’s have been a popular tool for activity modeling, mo-
tivated primarily by its successful use in speech recognition.
A HMM is a stochastic finite state machine which mod-
els an activity pattern by learning transition probabilities
among its non-observable states such that the likelihood of
observation of a temporal sequence of symbols represent-
ing the activity is maximized. HMM’s have been used to
model simple isolated hand gestures [19], and more com-
plex variants like coupled HMM’s [17] and layered HMM’s
[16] have been proposed to model events such as interac-
tion between multiple mobile objects. Some of these en-
hancements also implicitly model dynamic time warping.
However, unlike in speech (and perhaps in gestures, to a
certain extent), where the relationship of the observed out-
put symbol to the internal semantic state is uncertain at
any instant of time necessitating the use of ‘hidden’ states,
in surveillance applications the relationship is often more
direct. Consider, for example, the stealing example (see
above). The internal semantic states are clearly character-
ized by the sequence ‘person A puts a bag down’, ‘person B
approaches the bag’, ‘person B picks up the bag’, ‘person B
rushes away’ - and all of these are directly observable from
the image sequence. For representing such activities it is
perhaps prudent to use a model where the state representa-
tions are ‘transparent’ with well identified physical mean-
ings rather than ‘hidden’. This would not only facilitate
direct estimation of the state transition probabilities from
the observables, thereby eliminating the need for solving
a complex maximum likelihood estimation problem using
iterative techniques, but also avoid the problems of over-
parametrization and over-fitting especially when the train-
ing data is inadequate.

In [11] a parsing technique based on stochastic context-
free grammars is proposed to compute the probability of a
temporally consistent sequence of primitive actions recog-
nized by a HMM model. A model that recognizes a context-
free grammar is indeed more powerful than a FSM model
which can capture only regular languages. For example, it
allows for recognition of languages like{anbn, n ≥ 0} for
logical symbolsa and b, which cannot be recognized by
FSM’s. However, in typical surveillance applications, ac-
tivity patterns that need to be modeled are seldom of the
type that requires bracket matching using a stack, and sim-
ple precedence requirements usually suffice in most cases,
which can be effectively modeled by FSM’s. In [18] it is

argued that a finite state machine cannot model temporal
inter-leavings of low level events which may occur concur-
rently and do not have simple temporal precedence relation-
ships in complex multi-actor activities. To deal with such
situations the authors propose an multi-layered extension of
FSM’s calledPropagation networks. However, we show
that such situations can be effectively captured by coupled
FSM’s.

Another popular approach for activity recognition is
though the use of Bayesian networks. In fact, in an ap-
proach closely related to ours Hongeng et. al. [8, 9] pro-
pose a multi-layered FSM model for activity recognition.
However, they estimate the parameters of their model using
supervised training using a Bayesian formulation. The ma-
jor difficulty with the Bayesian formulation lies in obtaining
the apriori estimates, especially for unusual activities which
are not part of a closed set. Moreover, in their model the
states of the FSM’s depend on absolute time clocks caus-
ing an explosion of possibilities for state changes. Also, the
method cannot be directly extended to unsupervised clus-
tering.

Recently, there have been some interesting approaches to
detection of unusual activities. In [21, 3] moving objects on
a 2D plane are treated as point clusters, whose deformable
shapes in time represent usual patterns of activities. Devi-
ations are then detected from the shape changes. In [10],
usual activities in a video stream are learned using unsu-
pervised clustering. However, the application scenarios of
these approaches are different from ours.

In contrast to some of the other finite state models, the
states in our multi-layer FSM framework have well iden-
tified physical meanings. They represent single or mul-
tiple objects, their positions and distance vectors. There
is no explicit need for fixing the size of the network apri-
ori. Also, the state transition probabilities, at any layer, can
be directly estimated from the observables. As our results
clearly demonstrate, our framework can also handle com-
plex activities involving concurrent and interleaved actions
by multiple actors in a scene. Further the system is totally
programmable in the sense that one can feed in an FSM to
the system, described on the physical states provided by the
lower level image processing layer. The richer this layer is,
the more the variety of FSM’s can be specified on it. Most
of the existing systems do not support this programmability.

3. Image analysis modules

As mentioned above, our state descriptions are derived from
physically observable attributes like object types and their
positions on the ground plane. We use standard image pro-
cessing techniques to detect and compute these from on-line
sequences [5]. Our system works in real-time at full frame
rate. We assume the ground plane to be calibrated in terms



of aXY grid whose resolution is dependent on the context.
We also assume that the homography of the ground plane
to be known from calibration [7]. Our low level image pro-
cessing layer consists of the following modules:

1. segmentation using adaptive multi-layer background
subtraction [5].

2. identification of splitting and merging of image seg-
ments.

3. object identification using principle component analy-
sis. Currently, we detect only three types of objects -
humans, cars and normal bags.

4. object tracking using Kalman filters and inter-frame
object matching using volume intersection of hue-
saturation histograms of detected objects.

5. detection of the position of the object on theXY grid
on the ground plane. For humans we compute this
by identifying the position of the feet on the ground
plane as the lowest point in the segmented region along
the vertical direction (whose vanishing point is known
from calibration) and then applying the homography
of the ground plane. For top views of cars we compute
the centroid of the segmented region and apply the ho-
mography. For perspective views of cars we locate the
lowest point.

Of course, segmentation is problematic to say the least,
and the low level image processing is clearly the weakest
link of our method. In the present state of our implementa-
tion dense situations, severe occlusions and unfavourable
lighting result in failures more often than not. Conse-
quently, our experiments are mainly restricted to sparse sit-
uations and good illumination conditions.

4. Framework of multi-layered finite
state machines

Our architecture of multi-layered FSM’s for learning and
recognition of complex actions is depicted in Figure 1.

The low-level image processing methods described in
the previous section can provide only a physical description
of the dynamic scene. The semantic interpretation of the
physical events is carried out in the FSM’s in thephysical
layer of the architecture. The interpretation at this level is
in terms of the number of objects of different types present
in the scene, their split and merge history, their geometric
positions, and changes in these positions with time. High
probability sequences of single object motions and multi-
object interactions at the physical layer represent logical in-
terpretations of the physical actions. Examples of such log-
ical interpretations may be a person walking or running in

Figure 1: Multi-layered FSM model

a certain direction, a person walking toward a car, a person
putting a bag down, two people moving toward each other
etc. These logical actions in time represent the symbols and
states in the higherlogical layer. The types of interactions
between objects that are to be considered are specified apri-
ori depending on the context. The logical states are deter-
mined automatically as high probability sequences of phys-
ical transitions.

In many situations, where interactions between multi-
ple objects are unimportant, the scene interpretation can
be completed at the logical layer level itself. For example,
consider the monitoring of proper/improper parking of indi-
vidual cars, or straying of individuals in to restricted areas.
Such logical events can be flagged without even consider-
ing inter-object interactions. However, for more complex
actions one requires to analyze high probability sequences
of such primitive logical actions. Examples include a) a per-
son walking toward a car, opening the door of the car and
merging with the car and driving away - a sequence of three
high probability events in the logical layer involving a per-
son and a car, or b) stealing as described before involving
two people and a bag. The high probability sequences in the
logical layers are extracted as events which are states in the
event layer. Even more complex events which are charac-
terized by high probability sequences of simpler events are
detected at the event layer.

Note that when trained in the unsupervised mode, the
states at the higher layers are just high probability sequences



at the lower layers detected automatically by clustering.
While these states have clear semantics, they are still name-
less. Recognition of usual behavioural patterns and detec-
tion of deviant ones can still be carried out regardless. In
what follows we describe the details of each layer.

4.1. The physical layer
The structure of the physical layer is specific to the con-
text. LetOp be thepth object detected in the scene which
may be one ofK possible types. For each suchOp we dy-
namically create a FSM at the lowest physical layer. The
states of the FSM’s are the geometric positionsXY in the
rectangular grid partitioning the ground plane. The edges
in these FSM’s represent transitions to neighbouring grid
positions. We fix apriori what type of inter-object inter-
actions are important from the context. If objectsOp and
Oq interact, we also create a FSM corresponding toOpOq,
the states of which represent all possible distance vectors
from positions ofOp to positions ofOq measured in the
grid coordinates, and their merging and splitting history.
For example, in a parking lot scenario, we create a FSM
for each(carp, personq) pair of detected cars and people,
in addition to individual FSM’s for eachcarp andpersonq

(assuming that we are not interested in modeling possi-
ble interactions between two cars or two people, like ac-
cidents or collisions). Each state of a(carp, personq) FSM
is of the type(∆X, ∆Y, status) wherestatus is one of
{split,merge, separate}. Each state of acarp or personq

FSM is of the type(X, Y ).
For each FSM corresponding to an instance of an ob-

ject or inter-object interactions, we also maintain the fol-
lowing data structures. ForM possible states,transMx
andtimeMx areM × M matrices andtime states is an
array of sizeM . transMx[i][j] maintains the count of the
number of transitions of the object from statei to statej.
timeMx[i][j] maintains the mean and the variance of the
time taken for the transition.time state[i] maintains the
mean and the variance of the time spent by the object in
statei.

During the training phase, we aggregate all the statis-
tics obtained from individual examples in to generic class
specific FSM’s. These generic FSM’s accumulate the
transMx, timeMx and timestate data from individual
FSM’s, which can be used to assign a weightPij to each
edge(i, j), wherePij is the probability that given the sys-
tem is in statei it makes a transition to statej. Clearly,
Pij = transMx[i][j]∑

j
transMx[i][j]

.

Statistics on time taken for transition (timeMx) be-
tween states and time spent(timestate) in different states
by the system can also be calculated in these generic FSM’s.
For example, in the parking lot scenario, all state transi-
tion statistics from individual FSM’s likecarp, personq and

S = {i, j}
P = Pij

seq = φ
forward = false

find sequence(S, P, forward) =
i = first state(S)
j = last state(S)
ini = incomingedges(i)
outj = outgoingedges(j)
for eache ∈ outj

if Pje > Tedge ∧ P ∗ Pje > Tseq then {
find sequence(S ∪ {e}, P ∗ Pje, true)

}
for eache ∈ ini

if Pei > Tedge ∧ P ∗ Pei > Tseq then {
if forward == false then

find sequence({e} ∪ S, P ∗ Pei, false)
}

if no edge qualifies above threshold conditionsthen
seq = seq ∪ S

Figure 2: Algorithm for findingHPL sequences

(carp, personq) are aggregated in to three generic FSM’s
called cars, people and (car, people) respectively.

4.2. The logical layer

As we have mentioned above, we consider the high prob-
ability sequences of the physical layer FSM’s to represent
logical events. We want to extract all maximal sequences
Sn = (i, j, . . . , n) such thatP (Sn) = PijPjk . . . P.n >
Tseq andPlm > Tedge for every consecutive pairs of states
(l, m) in Sn, where Tseq and Tedge are the probability
thresholds for a sequence and an edge respectively. We call
such sequencesHPL sequences (High Probability Logical
sequences). Starting from any edge(i, j), the algorithm in
Figure 2 finds all sequencesSn with (i, j) as an edge by
examining sub-sequences in both forward and backward di-
rections. We ignore the backward branches of a sequence
generated by all forward expansions in order to avoid reach-
ing the same sequence from more than one path, as shown
in Figure 3.

Every HPL sequence in the physical layer represents a
state in the logical layer. The system is in a logical statei
if the system has most recently gone through a sequence of
physical states corresponding to the logical statei. The state
transitions at the logical layer happens when the physical
state shifts from oneHPL sequence to another.



Figure 3: Example of multiple paths for the same sequence

4.3. Event layer

For determining complex events which are high probability
transitions in the logical layer, we employ an identical al-
gorithm at the logical layer. In our current experiments, we
have restricted our framework to three levels of hierarchy.

4.4. Aggregation of training data

During the training phase, the data is processed on-line to
do the following tasks - i) build generic FSM’s in the phys-
ical states as described in Section 4.1 and ii) building of
higher level states: with each transition in the physical state
the HPL algorithm is run to see if any new logical states
are found. Any such logical state is pushed up and stored
for detection of unusual events as described later. The same
process is repeated for each higher level layer.

4.5. Detection of unusual events

We maintain a counterfailcount with eachHPL sequence,
which tracks the number of times the FSM corresponding
to aHPL sequence fails to make a valid transition. A global
counter totalcount maintains a count of the time from
which any logical transition has occurred. Iftotalcount ex-
ceeds a certain threshold, then eachfailcount is checked.
If all thefailcount’s are over a threshold, then the system is
in an undefined logical state and an unusual event is flagged.
If any transition in aHPL sequence is faster or slower than
than that predicted by the learning phase statistics, then an
unusual timealarm is flagged. This, for example, can indi-
cate running when the usual behavioural pattern is to walk.

4.6. Explicit programming of the FSM’s

Finally, an FSM network described on the physical states
provided by the lower level image processing layer can just
be fed into the system for detecting unusual events in a su-
pervised manner. In Figure 10 we give one such example of
the FSM at the event layer corresponding to the sequence of
logical events leading to the interpretation of stealing.

Figure 4: The walking example, recognition of a usual
event.

Figure 5: The walking example, back-ground subtraction
and tracking.

5. Results
In what follows we present some results on activity recog-
nition. Please visithttp://www.cse.iitd.ernet.
in/vglab/research/research_group2/1/
activmon/index.shtml to see the videos.

In Figure 4 we show results of recognition of usual walk-
ing patterns. The system was trained (unsupervised) with
sequences in which people walk in the corridor in either di-
rections. The green box (upper right corner) indicates that
some logical sequence has been completed. In Figure 5 we
show the corresponding back-ground subtracted frames and
the extracted ground positions. In Figure 6 we show a se-
quence in which the person tries to cross a barrier and jump
in to thin air. The red signal (upper right corner) indicates
that unusual sequence transitions have happened.

In Figure 7 we show results in a parking lot scenario.
The system was trained with sequences in which different
cars move in to the parking slots. The slot in front of the
gate (fourth from the right) is actually marked as ‘No Park-



Figure 6: The walking example, detection of an unusual
event.

ing’. The white car is recognized to have parked correctly,
indicated by the small green square on the car. The parking
of the red car in to the illegal area is flagged as an unusual
event, indicated by a red square on the car. The training was
unsupervised.

Both of the above examples are based on learning of
transitions of absolute positions of individual objects. In
the example of Figure 8 we show results of an FSM rep-
resenting interaction of two objects - a person and a car.
The states of the FSM represent distance vectors between a
person and a car, and events such as splitting and merging.
The system is trained with sequences in which people walk
toward cars, open the door and get in. The figure on the
left shows usual recognition - the green box indicates that
some logical sequence has been completed. The figure on
the right shows a frame of the sequence in which the time
spent in the state is more than usual - the blue signal indi-
cates a time alarm, i.e., system is in a particular state for
more than the expected time. In Figure 9, we show a simi-
lar example where the walking people interact with several
cars. Usual events recognized are ‘walking past a standing
car’, ‘approaching a car’, ‘opening the door and getting in’.
These are marked with a green square on the person. Un-
usual events detected are ‘more than usual amount of time
spent’ - marked with a blue square on the person.

Our final result, in Figure 10, corresponds to explicit pro-
gramming of stealing. We show one frame of a stealing se-
quence, and the corresponding state as detected during a run
of the FSM.

6. Conclusion
We have presented a new framework for unsupervised
learning of usual activity patterns and detection of unusual
activities based on a network of finite state machines. The
FSM framework is simple yet powerful and can reliably

Figure 7: Frames from a car-parking example.

Figure 8: An example of detection of possible car theft.

capture complex and concurrent inter-object interactions.
Our preliminary results demonstrate the potential of the ap-
proach. In our present implementation, we do not handle
the cases of complex image processing and tracking under
occlusion. In future we plan to include such cases and test
the framework rigorously under dense situations with many
activities happening simultaneously. Presently our hypoth-
esis about the objects in the frame is based on a single frame
which may not be very reliable due to image processing er-
rors. Error correction in higher level layers can be added to
make the system more robust. In future we plan to incorpo-
rate such error corrections in our system.
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