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ABSTRACT 

Priming is used as a way of increasing the diversity of proposals in end-user elicitation studies, but priming has not been investigated 

thoroughly in this context. We conduct a distributed end-user elicitation study with 167 participants, which had three priming groups: a no-

priming control group, sci-fi priming, and a creative mindset group. We evaluated the gestures proposed by these groups in a distributed 

learnability and memorability study with 18 participants. We found that the user-elicited gestures from the sci-fi group were significantly 

faster to learn, requiring an average of 1.22 viewings to learn compared to 1.60 viewings required to learn the control gestures, and 1.56 

viewings to learn the gestures elicited from the creative mindset group. In addition, both primed gesture groups had higher memorability with 

80% of the sci-fi-primed gestures and 73% of the creative mindset group gestures were recalled correctly after one week without practice 

compared to 43% of the control group gestures. 

CCS CONCEPTS 

• Human-centered computing → HCI design and evaluation methods. 

KEYWORDS 
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1 Introduction 
Including end-users in the design stage of interactive systems is a common practice in human-computer interaction (HCI). User-

centered design [1] practices—e.g., participatory design [34]—include potential users of a system in the design phase to inform designers 

of the capabilities, expectations, and preferences of the users themselves. End-user elicitation studies—as formalized by Wobbrock et al. 

[51,53]—are a popular example of this practice. The HCI literature includes more than 200 published end-user elicitation studies designing 

interactions with robots [36], drones [8], vehicles [10], bicycles [54], smart TVs [3,30], and involving diverse user populations like children 

[9] and individuals with disabilities [20] in the design of interactive systems. The method works by prompting end-user participants with 

the result of a computing function and asking them to propose the action or input that would trigger that function in an interactive system. 

Numerous published articles put forth best practices and extensions to end-user elicitation studies such as new mathematical formulae to 

calculate agreement among participants’ proposals [12,30,47,48], methods focusing on stimulating participants’ creativity [31], translating 

the methodology online to reach a wider, more-diverse pool of participants [4], formalizing evaluative methods [4], and utilizing online 

crowds and machine learning algorithms to efficiently analyze the results of elicitation studies [3]. 

The first contribution of this paper focuses on extending the work of Morris et al. [31] in which they point out a pitfall of elicitation 

studies they call legacy bias. This pitfall, as they define it, is when “participants in elicitation studies propose familiar interactions from 

current technologies that might not be best suited for new technologies’ form factors or sensing capabilities.” Morris et al. [31] proposed 

principles to reduce legacy bias in elicitation studies. One of their principles is priming, a practice from the field of psychology used to 

enhance creative thinking. The effects of priming in elicitation studies have been explored a little in prior work. One example, Hoff et al. 

[17] found that priming results in fewer legacy gestures and quicker generation of ideas; however, their results were not statistically 

significant and they stated that given the typical small number of participants in (traditionally lab-based) elicitation studies, they do not 

recommend the use of priming.   
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Figure 1. A still from the movie Iron Man 2 [19], showing the main character Tony Stark interacting with an augmented reality 

hologram interface with a hand gesture. 

In this paper, we utilize on Ali et al.’s [4] methods and tools to run distributed elicitation studies efficiently to explore the effects of 

priming with a large number of participants. For our exploration, we used mixed reality (MR) environments as our use case due to their 

novelty as a technology for end-users. These environments are on the cusp of becoming a mainstream technology but have yet to be widely 

adopted by the average technology user. We used priming to push beyond legacy interactions informed by desktop or mobile computing 

and elicit interactions for an MR environment that are easily learnable and memorable. We employed priming in two ways: (1) By having 

participants view a montage of sci-fi films depicting characters interacting with technologies using gestures. For this primer, we drew 

inspiration from the bi-directional relationship between sci-fi and HCI [44]. (2) We looked to the field of psychology and followed 

Sassenberg and Moskowitz’s [41] practice of using a “creative mindset” to suppress stereotyping and “think different.” 

We conducted a between-subjects elicitation study with priming as our independent variable. We recruited 167 participants—more than 

eight times the number of participants in a typical lab-based study (~20) [50]—from Amazon’s Mechanical Turk (mTurk) platform. We 

randomly assigned participants to one of three groups: control (no priming), sci-fi priming, and creative-mindset priming. Participants were 

prompted with 10 functions of a media player in an MR environment and were asked to propose a mid-air gesture to trigger each of the 10 

functions. As a result, we formulated three sets of user-elicited gestures. We found overlap in four gestures across all three groups. The sci-

fi gesture set had only five gestures in common with each of the other two gesture sets. On the other hand, seven of the ten gestures in the 

creative mindset set were identical to the control. Despite the overlap in gestures across the three gesture sets, the sets had some different 

results when we tested their usability in terms of gesture identifiability, learnability and memorability. 

Per the recommendation of Ali et al. [4], we followed our elicitation study with a distributed end-user identification study—the reverse 

of an elicitation study—with 50 new participants from mTurk. The aim of an identification study is to assess the discoverability of the 

gesture-function relationship. Our identification study showed that priming had no statistically significant impact on the number of 

correctly identified gesture-function relationships of user-elicited gestures.   

The second major contribution of this paper centers around distributed interaction evaluation studies. We capitalized on Ali et al.’s 

Crowdlicit system [4] to run supervised distributed interaction-evaluation studies. Extending their work evaluating interaction-

identifiability, we operationalize two new aspects of interaction usability: learnability and memorability. We recruited 18 new online 

participants for a two-part study to evaluate our three gesture sets. In the first part of this study, participants were randomly assigned to 

view one of the three user-proposed gesture sets (control, sci-fi, creative mindset). After viewing a video clip of each gesture in the set 

once, participants were prompted with a function and asked to perform the corresponding gesture they had just learned. After going through 

all 10 functions, participants were allowed to go back and view the video clips of the gestures that they got wrong, if any. We repeated this 

process until the participants learned and were able to correctly perform all 10 gestures in their set. Furthermore, after one week, we 

contacted the same participants and asked them to go through the testing protocol only once to assess the memorability of the gestures—

without allowing them to view the video clips of the gestures. We found that sci-fi-primed gestures were faster to learn, as they required an 

average of 1.22 viewings to learn. Non-primed gestures required an average of 1.60 views and the creative mindset primed gestures 

required 1.56 viewings to learn. After a single viewing, 80% of the sci-fi primed gestures were learned compared to 65% gestures from the 

control and 58% creative mindset sets—sci-fi gestures were learned most quickly. Additionally, the primed gestures had a higher 

memorability accuracy compared to the control gesture set with 80% of the sci-fi gestures and 73% of the creative mindset recalled 

correctly compared to 43% for the control group. 

This work contributes: (1) an empirical study of the effects that priming has in elicitation studies, (2) methods to evaluate the 

learnability and memorability of interaction designs in a distributed manner, and (3) a user-elicited gesture set for a media player in a 

mixed reality environment. 
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2 Related Work 
Relevant prior work includes articles discussing the relationship between sci-fi and HCI, examples of end-user elicitation studies, and 

work on the use of priming to enhance creativity. 

2.1 Sci-fi and HCI 

Science fiction movies such as Iron Man—the namesake of this paper—depict fascinating human-computer interactions. It is no wonder 

there exists a bidirectional relationship between sci-fi and HCI, where each endeavor, at its best, showcases brilliant new possibilities for 

people’s use of technology. Schmitz et al. [43], in their survey of HCI in sci-fi movies, reported that there exists a collaboration between 

filmmakers and scientists regarding the use of HCI in film. They mentioned that director Steven Spielberg consulted with HCI researchers 

to develop the system and interactions shown in his movie Minority Report. Larson [23] stated that sci-fi depictions of technologies mirror 

trends in real life computing. Aaron Marcus, in his article “The History of the Future: Sci-Fi Movies and HCI” [29], stated that sci-fi 

movies can be a useful material to inform designers of possible future technological, social, or cultural contexts. Mubin et al. [33] cited 

many examples of devices and products that have roots that can be traced back to sci-fi movies, like mobile phones inspired by the 

communicators from Star Trek, and video conferencing similar to that depicted in 2001: A Space Odyssey. The recurring “Future Tense” 

section of Communications of the ACM often features sci-fi writers like David Brin who, in the words of the magazine, “present stories and 

essays from the intersection of computational science and technological speculation” (e.g., [7]). Not incidentally, David Brin also gave the 

ACM CHI 2002 keynote address, drawing on themes explored in his sci-fi writings to inspire an audience of HCI researchers. The work 

presented in this paper contributes to this body of literature by investigating the effects of using sci-fi as a primer to influence the design of 

future interactions. 

2.2 Beyond End-User Elicitation Studies 

Hundreds of end-user elicitation studies have been conducted and published since 2009. A recent survey by Villarreal-Narvaez et al. 

[49] shows that at least 216 gesture elicitation studies have been published as of 2020. End-user elicitation studies have been used to design 

interactions for emerging technologies like robots [36,39], drones [8,37], and virtual and augmented reality [18,38], among many other 

things. Going further, many elicitation studies have gone beyond reporting a set of user-elicited interactions and have actually tested the 

usability of these interactions. For example Morris et al. [32] examined users’ preferences for gestures and found that gestures elicited by a 

large group of people were preferable to those authored by one or two designers. Ali et al. [4] formalized end-user identification studies as 

a reversed companion to elicitation studies with the aim of assessing the discoverability of the action-function relationship. Nacenta et al. 

[35] tested the memorability of two groups of gestures and found that user-elicited gestures are more memorable, easier, more fun, and less 

effortful. Unlike Nacenta et al.’s [35] work, we, in this paper, test the identifiability, learnability, and memorability of our user-elicited 

gestures with new populations and do not use the same participants who elicited the gestures themselves. Our work adds to the end-user 

elicitation study literature by conducting an elicitation study to design gestures for a media player in a mixed reality environment. We also 

report, to the best of our knowledge, the first distributed memorability and learnability study on user-elicited interactions. 

2.3 Priming and Legacy Bias 

Priming is a concept with deep roots in the field of psychology dating to 1951 [24]. Sassenberg et al. [42] used priming as a strategy to 

increase creative performance. They stated that a creative mindset undermines the copying of existing ideas. Sassenberg and Moskowitz 

[41] also used priming to suppress stereotyping by asking participants to recall examples of a time when they felt creative—an approach we 

utilize in this paper. Elicitation studies have borrowed priming from psychology. Morris et al. [31] proposed using priming as a way to 

reduce legacy bias, which they define as a potential pitfall in elicitation studies, saying “users’ proposals are often biased by their 

experience with prior interfaces and technologies.” That said, the elicitation literature remains divided on the usefulness of reducing legacy 

bias. Köpsel and Bubalo [21] presented a counterpoint to Morris et al., arguing that legacy bias helps create good interactions. Citing small 

participant numbers, Köpsel and Bubalo argue that the non-legacy interactions will not generalize to a wide user base. They claim that 

legacy gestures, for example, are simpler. However, the concern with legacy interactions is their potential to limit users from taking full 

advantage of emerging applications, form factors, and sensing capabilities; this is the reason we focus our investigation of the usefulness of 

priming in an MR application. Hoff et al. [17] experimentally tested the effects of priming and found that it had a only a small effect on 

their user-elicited gestures. Hoff et al. reported that their study had only 30 participants—as is common in lab-based elicitation studies—

and mentioned that more work with a larger pool of participants is needed to validate their findings. Beşevli et al. [6] tested legacy and 

non-legacy gestures for their memorability, situational fit, and physical ease, using self-reported Likert-type ratings. Their results showed 

legacy gestures to have better scores; on the other hand, users favored non-legacy gestures due to their practicality. Connell et al.’s [9] 

work with children showed legacy bias effects on proposals, as children familiar with some touchscreen interfaces proposed whole-body 

navigational gestures influenced by their experience with touchscreens, while children with no experience with such interfaces gave rise to 

a greater variety of gestures. Ruiz and Vogel [40] showed that physical priming such as constraining participants movements when eliciting 

whole-body gestures encouraged a wider range of proposed gestures.   
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The literature has not offered strong evidence to neither discard legacy-biased interactions nor to implement them confidently. We 

believe that in some situations a legacy interaction might be preferable, but when designing emerging interfaces with new sensing 

capabilities and novel interaction possibilities, reducing legacy bias remains important. In this work, we focus our efforts on investigating 

the effects that priming—by either viewing sci-fi movies or having a creative mindset—has on the results of an elicitation study to create 

gestural interactions for an MR environment. We also contribute, to the best of our knowledge, the largest (in terms of the number of 

participants) investigation on priming in the literature of elicitation studies. 

3 The Effects of Priming on User-Elicited Gestures 
To evaluate the effects of priming on the learnability and memorability of user-elicited gestures, we first conducted a distributed 

elicitation study accompanied by an identification study. The elicitation study resulted in three gesture sets—one for each level of priming 

(control, sci-fi, and creative mindset). The identification study subsequently evaluated how guessable the gestures are in each priming 

group. 

3.1 Creating a User-Elicited Gesture Set 

We conducted a between-subjects distributed elicitation study with 167 online participants using the Crowdlicit platform [4] to design 

gestures for a media player in an MR environment.   

3.1.1 Participants 

We recruited 167 participants in total using Crowdlicit [4] from Amazon Mechanical Turk (mTurk), to provide video recordings of their 

proposed gestures in response to 10 prompts showing functions of a futuristic media player. We followed our elicitation study with a 

distributed identification study, as recommended by Ali et al. [4]. To do so, we recruited 50 new participants from mTurk. In both studies, 

each participant filled out a demographic survey upon completing the study. Table 1 shows the demographic information for both studies. 

Participants needed to have a device with a camera (i.e., a webcam or use a smart phone) to participate in the elicitation study. Participants 

in the elicitation study were compensated $7.50 for participation in the half-hour study. Participants in the 15-minute identification study 

were compensated $3.75. We based our compensation on our state’s $15/hour minimum wage rate. 

 

Demographic Elicitation (N=84) Identification  (N=33) 

Gender Man 59 (70.24%) 20 (60.60%) 

Woman 24 (28.57%) 13 (39.39%) 

Non-binary 1 (1.19%) 0 

Age  Mean (SD) 30.69 (5.61) 38.03 (10.39) 

Nationality USA 71 (84.52%) 24 (72.73%) 

 India 7 (8.33 %) 4 (12.12%) 

 Brazil 3 (3.57%) 3 (9.09%) 

 Canada 1 (1.19%) 1 (3.03%) 

 Germany 1 (1.19%) 0 

 Pakistan 1 (1.19%) 0 

 Italy 0  1 (3.03%) 

Do you own an MR device? Yes 15 (17.86%) 9 (27.27%) 

No 69 (82.14%) 24 (72.73%) 

How often do you use an MR device? 

  

Never 29 (34.52%) 14 (42.42%) 

Daily 2 (2.38%) 4 (12.12%) 

Monthly  20 (23.81%) 5 (15.15%) 

Once or twice ever 33 (39.29%) 10 (30.30%) 

Do you use mid-air gestures? Yes 7 (8.33%) 32 (96.97%) 

No 77 (91.66%) 1 (3.03%) 

Favorite movie genre Comedy 19 (22.62%) 7 (21.21%) 

Action & adventure 15 (17.86%) 5 (15.15%) 

Drama 5 (5.95%) 4 (12.12%) 

Horror 6 (7.14%) 1 (3.03%) 

Sci-fi 18 (21.43%) 9 (27.27%) 

Documentary 7 (8.33%) 2 (6.06%) 

Thriller 10 (11.90%) 2 (6.06%) 

Epic/ historical 2 (2.38%) 1 (3.03%) 

Musicals 2 (2.38%) 1 (3.03%) 

Western 0 1 (3.03%) 

Have you seen this movie before? Minority Report 39 (46.43%) 19 (57.57%) 
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Demographic Elicitation (N=84) Identification  (N=33) 

Iron Man 2 62 (73.81%) 28 (84.85%) 

Black Mirror 43 (51.19%) 16 (48.48%) 

Gamer 11 (13.10%) 4 (12.12%) 

Enders Game 31 (36.91%) 10 (30.30%) 

Table 1. Participants’ demographic information from our elicitation study with 167 participants (84 filled out demographics survey) 

and identification study with 50 participants (33 filled out the survey). 

3.1.2 Apparatus 

We used Ali et al.’s Crowdlicit system [4] to run our distributed elicitation and identification studies. We created video clips—included 

as in the supplementary material of this paper—of 10 functions to interact with a media player in an MR environment. Our 167 online 

participants viewed these video clips as prompts to propose gestures that would trigger the functions shown in the videos. Participants 

recorded their gesture proposals using the web interface and their personal computer’s webcam or via the camera on their mobile device, 

then uploaded the footage to Crowdlicit. This process resulted in 15 unique gestures across the three priming groups. 

We then used Crowdlicit again in our identification study with a set of 50 new online participants. The identification study showed the 

15 elicited gestures as video clips as prompts. For each gesture, participants entered text descriptions of the functions they anticipated the 

gesture would trigger in an MR media player. The Crowdlicit system allowed us to capture self-reported Likert-type ratings after every 

gesture or function proposal. In addition, the system also captured the time participants needed to submit a proposal (in seconds).  

To prime participants in the elicitation study who were assigned to the sci-fi priming condition, we created a short montage film from 

movies and TV shows like Iron Man, Minority Report, and Black Mirror. We created this montage film using the open catalog of gestures 

in sci-fi movies by Figueiredo et al. [11]. Their catalog1 has tags of what task is being performed in the clip (e.g., play, previous, etc.). We 

include these clips in the supplementary material of this paper. The clips are organized by the tag assigned to them in the Figueiredo et al. 

[11] catalog.  

3.1.3 Procedure  

Following Wobbrock et al.’s [51,53] method, we conducted a distributed elicitation study and followed it up with a distributed 

identification study as prescribed by Ali et al. [4] to produce our three user-generated gesture sets for the three priming groups.  

3.1.3.1 Distributed End-User Elicitation  

The 167 participants who accepted the human intelligence task (HIT) on mTurk were directed to a custom webpage that randomly 

assigned them to one of three priming groups (control, sci-fi, and creative mindset). Based on the assignment, participants were 

automatically directed to a Crowdlicit study URL. This setup allowed us to organize the elicited gestures into three groups (control, sci-fi, 

creative mindset). Upon navigating to the unique Crowdlicit study link, participants were presented with instructions for the study 

explaining that they were about to watch 10 video clips of functions for a media player in a mixed reality (MR) environment (Table 2) and 

that such a system responds to mid-air gestures. The participants were required to propose a gesture of their choosing to trigger each of the 

10 functions depicted in the video clips. The instructions also showed a diagram instructing the participants on how to position themselves 

in front of the camera in such a way that would exclude their face from showing in the recording to protect their privacy.  

  The participants in the creative mindset group were asked to provide three examples of a time they were creative before starting the 

elicitation session. We borrowed this technique from Sassenberg and Moskowitz [41].  

All three variations (control, sci-fi, and creative mindset) of the elicitation study on Crowdlicit were identical except for the instructions 

section for the sci-fi group and a pre-session task for the creative mindset group. The instructions for the sci-fi group included a section 

stating: “The environment should respond to gestures like, but not limited to, ones shown in this video.” Below that message was a 

montage film of sci-fi clips2. We chose one clip from a tag that represents each function in our list of functions (Table 2) and compiled 

them into the montage film.  

 

No. Function 

1.  Play a video 

2.  Pause a video 

3.  Fast forward 

4.  Rewind 

5.  Next video 

6.  Previous video 

7.  Close a video 

8.  Pin view to a surface 

9.  Bring view into field of vision 

 
1 goo.gl/XSX5fn 
2 The clips are included in the supplementary material of this paper. 
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10.  Activate headtracking 

Table 2. A list of 10 functions to control a media player in a mixed-reality (MR) environment. “View” refers to the video element. 

The last three functions are specific to an augmented reality environment.  

 

3.1.3.2 Distributed End-User Identification 

Whereas the elicitation study enabled us to show 10 MR functions and elicit 15 unique gestures to trigger them, an identification study 

enabled us to test how guessable those 15 gestures were. In essence, an identification study reverses the elicitation study. The 50 new 

participants who accepted the HIT on mTurk for the identification study were redirected to a custom study webpage created by the 

Crowdlicit system. The identification study had 15 unique gesture prompts. These gestures were the results of our elicitation study, which 

resulted in 15 unique gestures for the 10 functions with overlap across the three priming levels. Figure 2 shows these gestures and which 

ones overlap. Each prompt in the identification study showed a video of a person—the first author of this paper—performing one of the 15 

gestures that resulted from our elicitation study. After viewing a video of a gesture, the participants were asked to propose the function they 

thought a system would trigger in the context of interacting with an MR video player.  

3.1.4 Design and Analysis  

The elicitation study was a single-factor between-subjects design, whose factor was Priming, which had three levels: no priming 

(control), sci-fi priming, and creative-mindset priming. In this study, we collected 1,167 gesture proposals from a total of 167 online 

participants. Due to a server error, 12 gestures were not recorded from the control group, leaving the control group with a total of 381 

gestures; sci-fi and creative-mindset groups each had 393 gestures.  

The identification study was a single-factor within-subjects design, with the same priming factor and levels as the elicitation study. In 

this study, we collected 750 function proposals from our 50 online participants. As a within-subjects study, the identification study showed 

each participant gestures from all three priming groups. 

We investigated the effect of Priming on the results of the distributed elicitation and identification studies on three dependent variables: 

(1) Agreement scores for proposed gestures and functions calculated using Equation 1, below. (2) Self-reported Likert-type satisfaction 

ratings (ease, match, enjoyment). (3) Proposal time—i.e., time it took participants to come up with a gesture or a function. In addition, we 

explored subjective differences across the three user-elicited gesture sets that we created from our elicitation study. We also compared 

identification accuracy across the three gesture sets in our identification study.  

To calculate a gesture agreement score, we used Wobbrock et al.’s [51,53] original Equation 1: 

Equation 1 𝑨 =  
𝟏

|𝑹|
 ∑  ∑ (

|𝑷𝒊|

||𝑷𝒓|
)

𝟐

𝑷𝒊⊆𝑷𝒓𝒓∈𝑹  

In Equation 1, r is a prompt in the set of all prompts R. Pr is the set of all proposals for a given prompt r. Pi is the subset of similar 

proposals in Pr.  Wobbrock et al.’s [51,53] Equation 1 was updated in some subsequent publications [12,47,48]; however, because we 

collected a single gesture proposal per prompt in the same manner as Wobbrock et al.’s original paper, we opted to use the original 

equation in our analysis. Furthermore, Ali et. al [4] used that equation to calculate function agreement in identification studies. To provide 

a sense of uniformity for our analysis throughout this paper, we decided that Equation 1 was the best fit for our analysis. Agreement scores 

have an upper limit of 1.0. The upper limit represents total agreement in which all the proposals collected in response to a prompt match 

each other. 

Because agreement scores are bounded, we used a non-parametric Kruskal-Wallis test [22] to assess the differences in agreement scores 

among the three levels of Priming. We followed a significant omnibus test with post hoc comparisons using a pairwise Mann-Whitney U 

test [28], corrected with a Tukey HSD test [5]. To investigate differences in the ordinal Likert-type self-reported ease, match, and 

enjoyment ratings, we used mixed ordinal logistic regression [2,15] [cite]. Then, we conducted post hoc analyses on any significant 

omnibus tests using a Tukey HSD test [5].  To investigate the effect of Priming on the time it took participants to propose a gesture or a 

function, we used a linear mixed model analysis of variance [13,26]. We log-transformed the time response prior to analysis, as is common 

[25], to comply with the assumption of conditional normality. We followed up any significant omnibus test with a post hoc Tukey HSD test  

[5].  

3.2 Results  

We identified the gesture with highest agreement for each one of the 10 functions in each of the priming groups (control, sci-fi, and 

creative mindset). If all gestures were unique, this would result in 10 × 3 = 30 gestures, but due to substantial overlap among the groups, 

there were 15 unique gestures in all. These gestures are shown inError! Reference source not found., and served as prompts in our 

subsequent identification study.  
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Figure 2. Three gesture sets for 10 functions containing a total of 15 unique gestures. Functions in blue show that the same gesture 

among the three sets was proposed by the majority of participants in that group. The last three functions are specific to an 

augmented reality environment 
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3.2.1.1 User-Elicited Gesture Sets 

We compared gestures for each function across the three sets for their similarity and found that for four functions (play, pause, 

pin view to a surface, and bring view into field of vision) had the exact same gestures across the three gesture sets (point, palm, 

pinch, close fist up, respectively). The sci-fi gesture set had five gestures in common with the control set that triggered the 

same function. The creative-mindset set had seven in common with the control set, leaving only three functions triggered by a 

different gesture (fast forward, dismiss and headtracking). The sci-fi and creative mindset gesture sets had five gestures in 

common (the four gestures found across all three gesture sets and the gesture circle clockwise to trigger the fast forward 

function). 

We compared the gestures in the sci-fi group against the gestures appearing in our sci-fi montage video that we used as a 

primer to see if any of the gestures in the video were replicated by participants. The circle finger clockwise and 

counterclockwise gestures were present in the montage clip (Black Mirror clip under the rewind tag) and so was the “pan palm 

to screen” gesture (Enders Game clip under the play tag). Other gestures from the montage like close fist up, and swipe from 

the clip were present throughout all three gesture sets and not limited to the sci-fi group.  

3.2.1.2 Agreement Scores  

For the control level of Priming, the mean agreement score—the degree to which the participants agreed on a gesture to trigger a 

function—was A = .182 (SD = .077); for sci-fi, it was A = .178 (SD = .088); and for creative mindset it was A = .186 (SD = .084). A 

Kruskal-Wallis test found no statistical significance among these scores (χ2(2, N=30) = 0.267, n.s.).  

For the identification study, the function agreement scores were also similar across Priming levels. For control the mean agreement was 

A = .170 (SD = .094); for sci-fi, it was A = .191 (SD = .086); for creative mindset it was A = .173 (SD = .067). A Kruskal-Wallis test found 

no statistical significance in the differences among these scores (χ2(2, N=30) = 0.937, n.s.). 

 

 

Figure 3. Agreement scores for three gesture sets created under three Priming levels (control, sci-fi, and creative mindset) 

3.2.1.3 Priming Effect on Self-Reported Ratings 

We collected Likert-type ratings on a scale of 1–7 (1. Strongly disagree, 7. Strongly agree). The scales assessed the following 

statements: 1. Ease, my proposal is easy to perform. 2.  Match, my proposal is a good match for its intended purpose. 3. Pleasure, my 

proposal is enjoyable to perform. Admittedly, Likert-type ratings are ordinal in nature and their numeric markings (1–7) cannot be taken as 

scalar responses. That said, for illustrative purposes and for the reader’s appreciation, we report the means and standard deviations of the 

Likert-type ratings in Table 3. The self-reported ease, match, and pleasure scores from the 167 participants in the elicitation study and 50 

participants in the identification study. Higher numbers mean “easier,” “better matches,” and “more enjoyable,” respectively. *Bold font 

indicates statistically significant differencein addition to the median scores and interquartile ranges. 
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 Priming Rating Median (IQR) Mean (SD) Priming Rating 
Median 

(IQR) 
Mean (SD)  

E
L

IC
IT

A
T

IO
N

 

Control 

Ease 

6 (3) 5.12 (2.47) Control 

Ease 

7 (1) 6.07 (1.25) 

ID
E

N
T

IF
IC

A
T

IO
N

 

Sci-fi 6 (1) 6.06 (1.19) Sci-fi 6 (2) 6.00 (1.27) 

Creative mindset  7 (1) 5.69 (2.21) Creative mindset 6 (2) 6.02 (1.27) 

Control 

Match 

6 (3) 4.97 (2.43) Control 

Match 

6 (2) 5.30 (2.15) 

Sci-fi 6 (2) 5.71 (1.29) Sci-fi 6 (2) 5.30 (2.13) 

Creative mindset 6 (2) 5.48 (2.20 Creative mindset* 6 (2) 5.87 (1.27) 

Control 

Pleasure 

5 (3) 4.62 (2.34) Control 

Pleasure 

5 (3) 4.84 (2.11) 

Sci-fi 6 (3) 5.48 (1.31). Sci-fi 5 (3) 4.86 (2.09) 

Creative mindset 6 (3) 5.08 (2.16) Creative mindset* 6 (3) 5.36 (1.40) 

Table 3. The self-reported ease, match, and pleasure scores from the 167 participants in the elicitation study and 50 participants in 

the identification study. Higher numbers mean “easier,” “better matches,” and “more enjoyable,” respectively. *Bold font indicates 

statistically significant differences using mixed ordinal logistic regression [2,15] (p < .05). 

The numeric ease ratings were higher, on average, for sci-fi (6.06) compared to control (5.12) and creative mindset (5.69) as reported by 

the 167 participants in our elicitation study. On the other hand, the ease ratings were nearly identical across all three levels as reported by 

the 50 participants in our identification study. An analysis of variance based on mixed ordinal logistic regression indicated no statistically 

significant effect on ease ratings of Priming in either the elicitation study (χ2(2, N=1167) = 4.41, n.s.) or identification study (χ2(2, N=750) 

= 3.22, n.s.).  

The numeric match ratings for sci-fi (5.71) were also higher, on average, than control (4.97) and creative mindset (5.48), according to 

the participants who proposed the gestures in the elicitation study. However, sci-fi (5.30) and control (5.30) match scores were similar and 

lower than creative mindset (5.87) as rated by the participants who attempted to identify the function associated with the gesture in our 

identification study. These differences were not detectably different in the elicitation study (χ2(2, N=1167) = 1.98, n.s.). However, the 

creative mindset match ratings in the identification study were significantly higher than the other priming groups (χ2(2, N=750) = 8.60, p < 

.05). Post hoc pairwise comparisons using Tukey’s HSD correction indicated that creative mindset vs. control (Z = 2.44, p < .05) and 

creative mindset vs. sci-fi (Z = -2.60, p < .05) were statistically significant. The sci-fi vs. control match ratings were not detectably different 

(Z = -0.14, n.s.).  

Finally, the numeric pleasure ratings had a similar outcome to the match ratings with sci-fi gestures (5.48) rated higher than control 

(4.62) and creative mindset (5.08) gestures in the elicitation study, showing no detectable differences (χ2(2, N=1167) = 3.42, n.s.). In the 

identification study, the creative mindset gestures (5.36) had significantly higher pleasure ratings (χ2(2, N=750) = 8.67, p < .05) than the 

almost identical ratings of sci-fi (4.86) (Z = -2.457, p < .05) and control gestures (4.84) (Z = 2.60, p < .05). 

3.2.1.4 Priming Effect on Elicitation Time 

The mean time needed by participants to provide a gesture in the control group was the highest at 58.3 seconds (SD = 59.2). The 

creative-mindset group was second at an average 49.3 seconds (SD = 41.8), and the sci-fi group had the fastest elicitation time with an 

average 46.5 seconds (SD = 46.1). Despite the effect of priming on lowering the mean elicitation time, a linear mixed-effects model 

analysis of variance indicated no statistical significance in time differences (F(2, 123.81) = 1.617, n.s.).  

As for the time needed to identify the function associated with a gesture in the identification study, the results were very close across all 

three priming groups—control: 38.0 seconds (SD = 34.6); sci-fi: 38.7 (SD = 41.7); creative mindset: 39.4 (SD = 39.0). There were no 

statistically significant differences among these results (F(2, 14.973) =  0.70, n.s.). 

3.2.1.5 Priming Effect on Identifiability  

The percentage of correctly identified gestures did not differ much across the three levels of Priming. The control gesture set had 22.2% 

(SD = 41.6%) of its gestures identified correctly. The sci-fi gesture set had 24.2% (SD = 42.8%) identified correctly, and the creative-

mindset gesture set had 22.2% (SD = 41.47%) of its gestures identified correctly by the 50 participants in the distributed identification 

study. Priming had no statistically significant effect on the count of correctly identified gestures across the three levels, according to an 

analysis of variance based on mixed logistic regression [14] (χ2(2, N=750) = 3.417, n.s.).   

4 Learnability and Memorability of Elicited Gestures 
Priming had some effect on the elicited gestures and their identifiability, but of crucial importance to system designers is how learnable 

a set of gestures is—and once learned, how memorable those gestures are. In this phase of our investigation, we sought to see whether 

priming affects gesture learnability and memorability. Accordingly, we conducted a two-part supervised distributed study again using the 

Crowdlicit platform [4] to evaluate the learnability and memorability of the three gesture sets we created as a result of our distributed 

elicitation study.  
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4.1 Participants  

We recruited 18 new participants using convivence and snowball sampling by advertising our study on our university’s Slack channels, 

and on social media platforms. Two of our participants failed to complete the demographics survey. Of our 16 participants who did 

complete the demographics survey, nine were female, six were male, and one non-binary. The mean age was 27.3 years (SD = 4.84). The 

participants’ nationalities were mostly from the United Stated (10/16), other nationalities included India, China, and Kazakhstan. Seven 

participants had never used an MR device, and five had only used one once or twice. Two participants used an MR device on a monthly 

basis and two others used one on a daily basis. As for participants’ use of mid-air gestures to interact with technologies, only two 

participants reported having used mid-air gestures to interact with a desktop music app and an Xbox Kinect.   

4.2 Apparatus 
We used the Crowdlicit system [4], once again utilizing its web-based video recording capabilities to collect, store, and organize the 

data in our study. We used Google Meet to video-call our participants and guide them through the procedures of the studies. For the first 

part of the study, which was devoted to learnability, we created a custom learning website for participants, which came in three versions 

corresponding to the three gesture sets we created as a result of our elicitation study (control, sci-fi, and creative mindset). In each version, 

the website displayed 10 videos, each depicting a gesture from the corresponding set. 

4.3 Procedure  

Once the first author connected with a participant over Google Meet, he asked them to share their screen and directed them to the 

custom learning site. The page displayed all 10 videos of one of the three gesture sets shown in Figure 2 in a random order. Participants 

were asked to view each video once and then navigate via a Crowdlicit-generated link to perform all 10 gestures. We used the Crowdlicit 

system to prompt participants with a function and asked them to record a video of themselves performing the gesture corresponding to that 

function, which they had just learned on the page with 10 videos. The first author monitored the video recordings as they were being 

uploaded to the Crowdlicit system and assessed their correctness. The first author then refreshed the custom learning page, removing the 

videos of the correctly performed gestures, leaving only videos of the gestures that the participant missed. Participants repeated the learning 

and performing process until they learned all 10 gestures successfully. How many times the videos had to be viewed before all 10 gestures 

were learned successfully was taken as a measure of gesture learnability. 

To assess memorability, all 18 participants from the learnability study were informed they would be contacted via Google Meet one 

week after the learnability session to perform the gestures again using the Crowdlicit system. Participants did not have access to the 

learning page to practice the videos in the interim period. 

4.4 Design and Analysis  

Both the learnability and memorability studies used single-factor between-subjects designs, with a factor for Priming having three 

levels: no priming (control), sci-fi priming, and creative mindset priming. We collected a total of 263 gesture trials from our 18 online 

participants. The learnability study had the following dependent variables: (1) initial learnability—the number of gestures learned after a 

single viewing of all 10 gesture videos; (2) overall learnability—the total video views needed to learn a gesture; and (3) learned-gesture 

performance time.  

We used mixed logistic regression [14] to analyze the dichotomous results of the first trial, i.e., whether a gesture was performed 

correctly or incorrectly after viewing each of the 10 gesture videos once. We carried out post hoc testing using Tukey’s HSD test [45,46] 

for multiple comparisons. For the total number of views required to learn a gesture, we used an interaction contrast [16,52], corrected with 

Tukey’s HSD correction [45,46]. Again, post hoc pairwise comparisons were conducted using Tukey’s HSD correction. For analyzing 

gesture performance time, we used the same analysis approach as in the elicitation study. 

In the memorability study, we collected 18 × 10 = 180 gesture trials from our 18 online participants. We used the same analysis 

approach from the learnability study to evaluate two dependent variables: (1) the number of correctly recalled gestures, analyzed in the 

same manner as initial learnability; (2) the time to recall and perform a gesture analyzed in the same manner as the learned-gesture 

performance time.  

4.5 Results  
We evaluated the effects Priming had on the learnability of user-elicited gestures in terms of initial learnability, overall learnability, and 

learned-gesture performance time. For the effects of priming on memorability, we evaluated the gestures based on the number of correctly 

remembered gestures and gesture-recall time.  

4.5.1 Initial Learnability 

Initial learnability is the number of gestures performed correctly (out of 10) after one viewing each of the 10 gesture videos in each 

priming set. The number of learned gestures after a single viewing for the control set was 39 gestures (out of 60 total gestures, or 65%); for 
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the sci-fi set it was 48 gestures (80%); and for the creative mindset set it was 35 (58%). These differences were marginally significant for 

Priming’s overall effect on initial learnability (χ2(1, N=180) = 5.75, p = .056). Post hoc pairwise comparisons using Tukey’s HSD 

correction indicated that creative mindset gestures were significantly less learnable initially than sci-fi gestures (Z = -2.36, p < .05). 

4.5.2 Overall Learnability 

Overall learnability is the total number of gesture video views required to learn all 10 gestures from a giving priming group. For the 

control gesture set, the mean count of viewings required to learn a gesture was 1.60 (SD = 1.06); for the sci-fi gesture set it was 1.22 (SD = 

0.45); and for the creative mindset gesture set it was 1.56 (SD = 0.87). Priming had a statistically significant effect on overall learnability 

(F(2, 38.5)= 3.35, p < .05). Post hoc pairwise comparisons using Tukey’s HSD correction showed that the difference between sci-fi and 

creative mindset was marginally significance (t(267) = -2.40, p = .062). Specifically, sci-fi gestures seemed easier to learn than creative 

mindset gestures. 

 

Figure 4 A boxplot of the number of viewings required to learn a gesture by Priming. 

4.5.3 Memorability 

For each level of Priming (control, sci-fi, and creative mindset), we assessed the memorability of the gesture set—i.e., whether or not a 

gesture was recalled and performed correctly one week after the learning session, without continued exposure between sessions. Each 

priming condition had 6 participants (3 conditions × 6 participants) who were asked to recall 10 gestures one week after learning them. Out 

of the 60 gestures for the control group (6 participants × 10 gestures), only 26 gestures (43%) were recalled correctly. For the primed 

groups, the percentage of correctly recalled gestures increased significantly, with 48 of the 60 sci-fi gestures (80%) recalled correctly, and 

44 of the 60 (73%) creative mindset gestures recalled correctly. Indeed, Priming had a statistically significant effect on memorability (χ2(1, 

N=180) = 11.54, p < .01). Post hoc pairwise comparisons using Tukey’s HSD correction indicated that the control group gestures were 

recalled significantly less than either the sci-fi gestures (Z = 3.17, p < .01) or the creative mindset gestures (Z = 2.57, p < .05).   
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Figure 5. A bar chart of the percentage of correctly remembered gestures by level of Priming. 

4.5.4 Gesture Performance and Recall Time  

In the learnability study, the mean time to perform a gesture successfully after learning it by watching a video clip was 17.3 seconds 

(SD = 10.3) for the control gesture set; for the sci-fi gesture set it was 16.6 seconds (SD = 11.9); and for the creative mindset gesture set it 

was 16.8 seconds (SD = 12.5). These differences were not statistically significant (F(2, 14.97)= 0.25, n.s.).  

In the memorability study, the mean time to recall and perform a gesture from the control gesture set was 18.8 seconds (SD = 10.6);  for 

the sci-fi gesture set, it was 14.0 seconds (SD = 7.3); and for the creative mindset gesture set, it was 13.7 seconds (SD = 6.7). These 

differences were not detectably different (F(2, 14.99)= 2.19, n.s.).  

5 Discussion  
In this section, we discuss our findings about the effects of priming across our various studies (elicitation, identification, learnability, 

and memorability), and some insights on running distributed interaction design studies.    

5.1 Effects of Priming on User-Proposed Gestures 

Sci-fi priming had half of its gestures (5 out of 10) unique only to it. By contrast, creative mindset priming and no priming (control) had 

7 out of 10 gestures in common. The sci-fi gesture set showed more cohesion, despite the gestures for each function being elicited 

independently. This cohesion was visible in functions that have inverse associations like fast-forward and rewind. The sci-fi gesture set 

contained the gestures “circle counterclockwise” and “circle clockwise.” These gestures were present in our sci-fi movie montage clip 

(Black Mirror clip under the Rewind tag) that we showed our participants as a primer, and they mapped to the same functions. The control 

gesture set had “point right” and “swipe right” for fast forward and rewind, respectively. We noticed this lack of cohesion during our 

learnability and memorability studies, as these gestures were the hardest to learn—i.e., they required the largest number of viewings.  

On average, priming seemed to increase the match and pleasure ratings of gestures, both in the elicitation study and in the identification 

study, although only creative mindset gestures were shown to have statistically significantly higher match and pleasure scores in the 

identification study. Although the results from the Likert-type ratings were largely non-significant, taken together, there is a clear trend 

suggesting that priming produces gestures that are perceived to be a better fit to their functions and more pleasurable to perform. This is a 

limitation of our results and further research is needed, perhaps with a different set of participants or different types of priming, to confirm 

this trend. This paper offers a large-scale investigation into the contested usefulness of priming in end-user elicitation studies and highlights 

multiple directions for future research to build upon the results shown here.  

5.2 Gestures’ Learnability and Memorability  

Sci-fi priming significantly increased the initial learnability of gestures, as 80% of the sci-fi gestures were performed correctly after a 

single viewing, compared to only 58% of creative mindset gestures and 65% of the control gesture set. Sci-fi priming also significantly 

increased the overall learnability of gestures, with an average of 1.22 views required to learn each sci-fi gesture, compared to 1.60 views 

for control gestures and 1.56 views for creative mindset gestures. Furthermore, priming in general resulted in gestures that were more 

memorable than control group gestures, with 80% of sci-fi gestures and 73% of creative mindset gestures recalled correctly, but only 43% 
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of control group gestures recalled correctly. Thus, it seems again that priming, has advantages in gesture learnability and memorability. 

Perhaps Sci-fi gestures provided a sense of familiarity that led to their higher learnability and memorability. The enhanced performance of 

gestures elicited under the sci-fi condition could perhaps be attributed to the high-budget production of the movies that made gestures 

depicted in them more appeal and easier to learn and remember, or the fact that some of these gestures were created to be memorable by 

consulting with HCI researchers—as the case is with Minority Report whose director collaborated with researcher from MIT to create these 

gestures. In any case, interaction designers working on utilizing gestures in their systems could benefit from using movies as inspiration for 

creating learnable and memorable gestures for easy enjoyable experiences for their systems. In addition, given the similarity in 

performance from both primed gesture sets (sci-fi and creative mindset) the work we present in this paper shows that it is perhaps the 

mindset of primed participants that lead to improved learnability and memorability performance not just the type of priming. These results 

offer an argument for using priming in future elicitation studies at least in the use case presented in this paper.  

5.3 Distributed Design Studies 

In this work, we demonstrated multiple methods of conducting distributed user-centered design studies typically carried out in a lab. We 

replicated the distributed elicitation and identification methods presented by Ali et al. [4]. Further, we added two more usability metrics to 

their distributed interaction-evaluation approach: learnability and memorability. Due to the requirement of providing feedback in 

learnability studies to participants—so participants would know what gestures they learned and which ones they needed to review and 

attempt to perform again—we had to conduct our distributed learnability study in a supervised manner. A limitation of supervised 

distributed user studies is they are slower than unsupervised distributed studies like the elicitation and identification studies. It took us a 

few hours to recruit and collect data for our unsupervised distributed studies compared to our supervised studies that required multiple days 

to conduct—plus the one week that separated the learnability and memorability studies. Supervised studies, like our learnability and 

memorability studies, are hard to run in parallel like the unsupervised elicitation and identification studies. This limitation is the reason why 

our learnability and memorability studies had only 18 participants like an in-lab study—a number that was sufficient for our investigation 

in this paper. Having multiple researchers conducting a supervised study could increase the number of participants. Distributed learnability 

and memorability studies enjoy other benefits of distributed studies like increased diversity of participants—in terms of both geographical 

distribution and physical abilities—and discarding physical requirements such as testing labs. In addition, Ali et al. [4] reported that 

participants are more willing to participate in online studies than lab-based ones. In this work, we were able to capitalize on Ali et al.’s [4] 

Crowdlicit platform to facilitate all of our studies, collecting, organizing and storing study data, validating this platform’s versatility. The 

platform also provided the participants with an easy-to-use interface to participate in the studies. 

5.4 Limitations and Future Work  

These studies aim to inform the design of future devices with users’ preferences, cutting down on the resources required to build, 

deploy, test, and adjust interaction designs. A limitation of our approach is we were relying on our participants’ imaginations to interact 

with a system. Interacting with an actual system would be a different experience that takes into account gesture-recognition error, among 

other limitations. Our study only tested two types of priming: the viewing of a sci-fi montage and recalling times of creativity to be in a 

creative mindset. Priming with other sci-fi clips might produce different results and have a different impact on use cases other than a 

gesture-controlled mixed reality video player—especially given that some clips depicted characters interacting with a media player. 

Another limitation to this work with sci-fi priming is that participants could have mimicked gestures popularized by the movies which led 

to the creation of a more learnable and memorable gesture set. Given the overlap in gesture sets and ambiguity of some of the results, it is 

hard to tell from the results of this study whether the impact on the sci-fi gestures was because participants were primed to think creatively 

or mimicked the gestures from the primer. Further investigation is needed to solidify these results. Given the advances the field of 

elicitation studies has seen recently with systems such as Crowdlicit [4] and Gelicit [27] that enable the collection of gestures online at a 

large scale, it would be easy to replicate or extend this study to gain a deeper understanding of the effects of priming in elicitation studies in 

general, and perhaps the effects of sci-fi priming more specifically.  

Future work would be to take the gesture sets recommended in this paper and test them either in a usability study that mimics an actual 

system, like a Wizard of Oz type of study, or invest the resources to build an interactive prototype of a system to test those interactions. 

Other future work might test the effects of the sci-fi clips we include in this paper on other modes of user-elicited interactions like voice 

commands of graphical interface elements like icons, or use the video clips of the MR functions we include here to replicate this elicitation 

study under different conditions. For example, using different priming approaches like having participants do physical activities before an 

elicitation session could have different effects on the mid-air gestures proposed to trigger the functions listed in this paper to control an MR 

video player.  

6 Conclusion 
We conducted the largest investigation, to our knowledge, into the effects of priming on user-elicited gesture in a distributed end-user elicitation study. We evaluated the effects of 

priming by viewing science fiction clips and having a creative mindset on user-elicited gestures with a novel approach of running supervised distributed learnability and 

memorability studies. We showed that priming produces user-elicited gestures that are significantly faster and easier to learn and remember. Besides the empirical investigation 
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into the effects of priming, the distributed learnability and memorability methodological contributions, this work contributes a user-elicited gesture set for a media player in a 

mixed reality environment. We recommend using priming in elicitation studies to unlock participants creativity and elicit interactions that are guessable, learnable, and memorable.  
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