Designing Graphics Clusters

Mike Houston, Stanford University
Why clusters?

- Commodity parts
 - Complete graphics pipeline on a single chip
 - Extremely fast product cycle
- Flexibility
 - Configurable building blocks
- Cost
 - Driven by consumer demand
 - Economies of scale
- Availability
 - You can build (small) systems yourself
 - A trip to a local computer shop can bring a node back up
- Upgradeability
 - Graphics
 - Network
 - Processor
- Scalability
 - CPUs
 - Graphics
 - Memory
 - Disk
Why not clusters?

- App rewrites?
- Debugging
- Shared memory requirements
- Massive I/O requirements
- Software solutions
- Support
- Maintenance
- Who’s going to build it?
Design constraints

- Power
- Cooling
- Density
- Performance
- Cost

These all conflict!!!
Power/Cooling/Density

- **Power**
 - Graphics + processor = huge power draw
 - Intel Nocona = 103W (load)
 - Nvidia 6800 Ultra = 110W

- **Cooling**
 - Graphics + processor = lots of heat
 - Fans
 - Noise
 - Reliability
 - Liquid
 - Immense courage

- **Density**
 - How tall?
 - How deep?
 - Cooling?
 - Power?
Primary cluster use
- Graphics
 • Spend on graphics
- Graphics + compute
 • Balance choices, but graphics easier to upgrade
- Compute
 • Spend on processors and memory

Bigger/Better/Faster => expensive
Buy at the “knee”
Component choices

- **Processor**
 - Intel
 - AMD
 - PowerPC

- **Interconnect**
 - GigE
 - Quadrics
 - Infiniband
 - Myrinet

- **Chipset**
 - Consumer
 - Workstation
 - Server

- **Graphics**
 - **Vendor**
 - 3DLabs
 - ATI
 - Nvidia
 - **Market segment**
 - Consumer
 - Workstation

- **Chassis**
 - Desktop case
 - Rackmount
 - Height (1/2/3/4/5U)
 - Depth (Half/Full)
What NOT to do!!!

- Assume a Graphics Cluster is like a Compute Cluster
 - Different cooling, power, performance constraints
 - Different usage scenarios
 - Different bus loads

- Use “riser” boards
 - Signal quality
 - Cooling
 - I’ve seen more issues with this than anything else!!!
What NOT to do!!! continued

- Purchase untested/new chipsets
 - Performance oddities
 - Stability problems
 - Many people bitten by Intel i840/i860 chipsets’ AGP and PCI performance problems

- Buy cheap components
 - Failures
 - Stability
 - Saving $5 off a fan might cost you thousands in hardware failures, down time from instability, and man hours trying to track down the problem
What TO do

- Get help
 - Talk to others who have built these in academia/industry
 - Work with a company that has built these
 - Buy parts/whole thing from a company that has built these

- Testing, Testing, Testing
 - Pound on a few options before you choose, or copy known working solution
 - Processor performance/heat/cooling/stability
 - Graphics performance/heat/cooling/stability
 - Bus performance/stability
 - Network performance/stability
 - Temperature monitoring
What TO do continued

- **Maintenance**
 - Clean filters
 - Clean/check fans
 - Run memory/processor tests
 - Memtest86 (http://www.memtest.org)
 - CPU Burn-in (http://users.bigpond.net.au/cpuburn)
 - Check disks
 - fsck often

- **Monitor your cluster**
 - Temperature fluctuations
 - Node stability
 - Checkout Ganglia (http://ganglia.sourceforge.net)
Sources of Bottlenecks

- **Sort-First**
 - Pack/unpack speed (processor)
 - Primitive distribution (network and bus)
 - Rendering (processor and graphics chip)

- **Sort-Last**
 - Rendering (graphics chip)
 - Composite (network, bus, and read/draw pixels)
Rendering and the network

- **Sort-last**
 - Usage patterns
 - All-to-all
 - Pair-swapping, all nodes
 - Switch requirements
 - Provide backplane to support all nodes sending
 - Non-blocking

- **Sort-first**
 - Usage patterns
 - 1 to N
 - M to N
 - Switch requirements
 - Multicast/broadcast support
Network interconnects

- **GigE**
 - Bandwidth: ~90MB/s (large MTU)
 - Latency: 50-100 usec
 - Cost per port: <$100
 - Get chips with a TOE

- **Bonded GigE**
 - Works great for up to ~4 ports
 - Gets expensive fast, especially for fully connected networks
High speed interconnects

- **Quadrics**
 - Bandwidth: 876MB/s (elan4)
 - Latency: 3usec
 - Cost: $1,866 per port

- **Myrinet**
 - Bandwidth: 500MB/s
 - Latency: 3.5usec
 - Cost: $1,600 per port

- **Infiniband 4X**
 - Bandwidth: 1450MB/s (PCIe) / 850MB/s (PCI-X)
 - Latency: 4usec / 8usec
 - Cost: <$1,000 per port
Graphics readback (AGP)

Readback Performance

Bandwidth (MB/s) vs. Image Size

- R360 RGBA
- R360 BGR
- R360 Depth
- NV40 RGBA
- NV40 BGR
- NV40 Depth
PCIe

The promise
- Graphics readback performance
 - Easier implementation
 - ~2GB/s
- Network performance
- Unified standard for graphics, network, I/O

Problems
- Limited number of slots
 - 1 x16 + 1 x8 or several x4
- Stability/Performance
 - Early implementations have “problems”
Case Study - Stanford’s SPIRE

- 16 node cluster
- 32 2.4GHz P4 Xeons
- E7505 chipset (Supermicro)
- 16GB DDR
- 1.2TB IDE storage
- Mellanox Cougar HCA
- Mellanox 16 port InfiniScale switch
- Dlink 24-port GigE switch
- ATI 9800 Pro 256MB (AGP)
- Linux – Fedora Core 2

http://spire.stanford.edu
Inside a node
Bottleneck Evaluation – SPIRE

- Processor
- Graphics
- Bus
- Network
- Read/Draw

Throughput

0 200 400 600 800 1000 1200
SPIRE vs. Chromium

![Bar chart comparing SPIRE and Chromium throughput for different components: Processor, Graphics, Bus, Network, Read/Draw.]

- Processor: SPIRE higher than Chromium.
- Graphics: SPIRE higher than Chromium.
- Bus: SPIRE and Chromium are similar.
- Network: SPIRE lower than Chromium.
- Read/Draw: SPIRE lower than Chromium.

Throughput
Compositing Performance (GigE)

- RGBA (1024x1024 image across 16 nodes)
 - Software:
 - 9.5fps
 - 152 MPixel/sec
 - Hardware:
 - 17fps
 - 269 MPixel/sec

- Depth (RGB + Z) (1024x1024 image across 16 nodes)
 - Software:
 - 3.8fps
 - 60 Mpixels/sec
 - Hardware:
 - 7.2fps
 - 116 Mpixels/sec
Compositing Performance (Infiniband)

- RGBA (1024x1024 image across 16 nodes)
 - Software:
 - 14fps
 - 224 MPixel/sec
 - Hardware:
 - 45fps
 - 720 MPixel/sec

- Depth (RGB + Z) (1024x1024 image across 16 nodes)
 - Software:
 - 6fps
 - 96 Mpixels/sec
 - Hardware:
 - 11fps
 - 176 Mpixels/sec
SPIRE

- Performance
 - 8.2 GVox/s \((1024^3 \times 8Hz)\)
 - Quake3 @ 5120x4096: 90fps
 - 790MB/s node to node
 - 10.2GB/s cross sectional bandwidth

- Hardware failures
 - 3 Western Digital drives
 - 4 fans (1 rack, 2 chassis, 1 GPU)
 - 1 CPU
Hardware Suggestions
Low end systems

Characteristics: Single processor, GigE

Cost: <$2,000

- Intel Based
 - Intel P4
 - Intel 925X
 - PCIe
 - GigE onboard
 - 1GB DDR
 - Nvidia 6800GT

- AMD based
 - Athlon 64
 - Nforce3 250Gb
 - AGP
 - GigE onboard
 - 1GB DDR
 - Nvidia 6800GT
Mid range systems

Characteristics: Dual processor, GigE
Cost: <$5,000

- Intel Based
 - Intel Xeon
 - Intel E7525
 - PCIe
 - Dual GigE onboard
 - 4GB DDR
 - Nvidia 6800 Ultra

- AMD based
 - Dual Opteron
 - AMD 85XX
 - AGP
 - Dual GigE onboard
 - 4GB DDR
 - Nvidia 6800 Ultra
High end systems

Characteristics: Dual processor, high speed interconnect
Cost: ~$10k => Arm/leg/first born

- Intel Based
 - Intel Xeon
 - Intel E7525
 - PCIe
 - Dual GigE onboard
 - 16GB DDR
 - Nvidia 6800 Ultra / Quadro 4400/G / SLI
 - Infiniband 4X / Quadrics
 - Single or multirail

- AMD based
 - Dual Opteron
 - AMD 85XX
 - AGP
 - Dual GigE onboard
 - 16GB DDR
 - Nvidia 6800 Ultra / Quadro 4400/G / SLI
 - Infiniband 4X / Quadrics
 - Single or multirail
What would I build next?

- **Intel**
 - Dual Nocona
 - E7575 (Tumwater)
 - Infiniband 4X (PCIe)
 - Nvidia NV4X

- **AMD**
 - Dual/Quad Opteron
 - PCIe chipset?
 - AMD
 - Nvidia Nforce4
 - Nvidia NV4X

- **Good things**
 - Known solution
 - Currently available

- **Bad things**
 - Heat
 - PCIe issues

- **Good things**
 - Heat
 - Dual core chips for upgrade
 - Multiple PCIe x16 slots

- **Bad things**
 - Unknown performance/stability
 - Not available just yet
Example E7525 prototype

Courtesy GraphStream
List of graphics cluster companies

- ABBA
- GraphStream
- HP
- IBM
- Orad
Questions?
Supplemental
Chromium

The Chromium Cluster
Chromium Cluster Configuration

- Cluster: 32 graphics nodes + 1 server node
- Computer: Compaq SP750
 - 2 processors (800 MHz PIII Xeon, 133MHz FSB)
 - i840 core logic
 - Simultaneous “fast” graphics and networking
 - Graphics: AGP-4x
 - 256 MB memory
 - 18GB SCSI 160 disk (+ 3*36GB on servers)
- Graphics
 - 16 NVIDIA GeForce3 w/ DVI (64 MB)
 - 16 NVIDIA GeForce4 Ti4200 w/ DVI (128 MB)
- Network
 - Myrinet 64-bit, 66 MHz (LANai 7)
Sort-First Performance

- **Configuration**
 - Application runs application on client
 - Primitives distributed to servers

- **Tiled Display**
 - 4x3 @ 1024x768
 - Total resolution: 4096x2304, 9 Megapixel

- **Quake 3**
 - 50 fps
Sort-Last Performance

- **Configuration**
 - Parallel rendering on multiple nodes
 - Composite to final display node

- **Volume Rendering on 16 nodes**
 - 1.57 GVox/s [Humphreys 02]
 - 1.82 GVox/s (tuned) 9/02
 - 256x256x1024 volume\(^1\)
 rendered twice

\(^1\)Data Courtesy of G. A Johnson, G.P. Cofer, S.L Gewalt, and L.W. Hedlund from the Duke Center for In Vivo Microscopy (an NIH/NCRR National Resource)
Bottleneck Evaluation – Chromium

- Processor
- Graphics
- Bus
- Network
- Read/Draw

Throughput
Cluster Configuration

- 16 node cluster, 3U half depth
- 2.4GHz P4 Xeon (Dual)
- Intel E7505 chipset
- 1GB DDR (up to 4GB)
- ATI Radeon 9800 Pro 256MB
- Infiniband + GigE
 - Mellanox Cougar HCA
 - Mellanox 6 chip 16-port switch
- 80 GB IDE
- Built by Graphstream
 - We already built one and knew better...
 - Someone else to support hardware failures
Inside a node
Infiniband
- 5 months to get IB working and MPI running
 - Driver and firmware issues
- 3 months to get Chromium VAPI layer running
 - No documentation or support
- 1 month to get SDP layer working
 - Driver issues

Linux 2.6 kernel
- Much better I/O performance
- Graphics hardware driver issues
 - 4K stack change
 - Register argument passing (REGPARM)
- Preemptable kernels break many drivers
SPIRE vs. Chromium

- Processor
- Graphics
- Bus
- Network
- Read/Draw

Throughput

- SPIRE
- Chromium

0 200 400 600 800 1000 1200
A deeper look into Infiniband

- Point to Point
- 1 to N
- All to All

- Linux kernel 2.8.6
- MVAPICH 0.9.2
- OpenIB gen1 revision 279
- Mellanox Cougar HCAs (PCI-X)
- Mellanox 16 port InfiniScale switch (6-chip)
Point to Point

Bandwidth

Bandwidth (MB/s)

Message Size (bytes)

Parallel Rendering Workshop – IEEE Vis 2004
Point to Point

Latency vs Message Size (bytes)

- X-axis: Message Size (bytes)
- Y-axis: Latency (usec)

Graph shows an increasing latency with increasing message size.
One to Many Bandwidth

Bandwidth (MB/s)

of nodes

Parallel Rendering Workshop – IEEE Vis 2004
Network Summary

- Peak Bandwidth (point to point)
 - 755MB/s
 - 256KB message size

- Cross sectional bandwidth
 - 10.8 GB/s

- Latency
 - 12usec for small messages (we’ve seen as good as 6usec)
 - Linear scaling for larger messages

- What’s causing the falloff?
 - Driver issues
 - Kernel issues
 - Firmware issues
OpenIB – The Good

- Open source
- Lots of users
- Gen1 performance on par with Mellanox stack
- Gen2 looking good
- MPI works great with gen1! (OSU MVAPICH)
- SDP
 - Fast porting of TCP based code
- Vendor “independent”
- Aiming for Linux kernel inclusion
OpenIB – The Bad

- It’s yet to be generally stable/usable
- OpenSM
 - Too hard to use
 - Make sure to get a switch with an SM
- Connection management
- CPU overhead
- Aiming for Linux kernel inclusion
- VAPI
 - No documentation
 - EVAPI vs. VAPI
 - Multiple connection issues
OpenIB – And The Ugly…

- Vendor agendas
 - Topspin vs. Voltaire vs. Infinicon
 - Lots of bickering

- Roadmap
 - Too many tangents
 - Doesn’t match up with distributions
 - RHEL?
 - FC3?

- Why can’t we just get the basics working before we move on?!?!
 - Gen2 will hopefully do this
 - SDP missing…