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Abstract

The efficient use of a machine’s memory system and parallel processing resources has be-

come one of the most important challenges in program optimization. Moreover, efficient

use of the memory hierarchy is increasingly important because of the power cost of data

transfers through the system. Architecture trends are leading to large scale parallelism us-

ing simpler cores and progressively deeper and complex memory hierarchies. These new

architecture designs have improved power characteristics and can offer large increases in

performance, but traditional programming techniques are inadequate for these architec-

tures.

In this dissertation, we explore a programming language and runtime system for making

efficient use of the memory hierarchy and parallel processing resources. This dissertation

provides an overview of Sequoia, a programming language we have developed at Stanford

to facilitate the development of memory hierarchy aware parallel programs that remain

portable across modern machines featuring different memory hierarchy configurations. Se-

quoia abstractly exposes hierarchical memory in the programming model and provides

language mechanisms to describe communication vertically through the machine and to

localize computation to particular memory locations within it.

This dissertation presents a platform independent runtime interface for moving data and

computation through parallel machines with multi-level memory hierarchies. We show that
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this interface can be used as a compiler target for the Sequoia language and compiler, and

can be implemented easily and efficiently on a variety of platforms. The interface design

allows us to compose multiple runtimes, achieving portability across machines with multi-

ple memory levels. We demonstrate portability of Sequoia programs across machines with

two memory levels with runtime implementations for multi-core/SMP machines, the STI

Cell Broadband Engine, a distributed memory cluster, and disk systems. We also demon-

strate portability across machines with multiple memory levels by composing runtimes and

running on a cluster of SMP nodes, out-of-core algorithms on a Sony Playstation 3 pulling

data from disk, and a cluster of Sony Playstation 3’s. All of this is done without any source

level modifications to the Sequoia program. With this uniform interface, we achieve good

performance for our applications and maximize bandwidth and computational resources on

these system configurations.
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Chapter 1

Introduction

Current programming languages and runtime systems do not provide the mechanisms nec-

essary to efficiently manage data movement through the memory hierarchy or efficiently

manage the parallel computational resources available in the machine. Moreover, previous

research has a limited degree of portability across different architectures because of built-

in assumptions about the underlying hardware capabilities. Sequoia has been designed to

allow efficient use of the memory system and parallel computational resources while pro-

viding portability across different machine types and efficient control of complex memory

hierarchies.

Most parallel programs today are written using a two-level memory model, in which the

machine architecture, regardless of how it is physically constructed, is abstracted as a set

of sequential processors executing in parallel. Consistent with many parallel programming

languages, we refer to the two memory levels as local (local to a particular processor) and

global (the aggregate of all local memories). Communication between the global and local

levels is handled either by explicit message passing (as with MPI [MPIF, 1994]) or by

language-level distinctions between local and global references (as in UPC [Carlson et al.,

1
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1999] and Titanium [Yelick et al., 1998]). Using a two-level abstraction to program a multi-

level system, a configuration with more than one level of communication, obscures details

of the machine that may be critical to performance. On the other hand, adding support

outside of the programming model for moving computation and data between additional

levels leads to a multiplicity of mechanisms for essentially the same functionality (e.g.,

the ad hoc or missing support for out-of-core programming in most two-level systems). It

is our thesis that programming abstractions, compilers, and runtimes directly supporting

multi-level machines are needed.

This work is based on the belief that three trends in machine architecture will continue

for the foreseeable future. First, future machines will continue to increase the depth of

the memory hierarchy, making direct programming model support for more than two-level

systems important. Second, partly as a result of the increasing number of memory levels,

the variety of communication protocols for moving data between memory levels will also

continue to increase, making a uniform communication API desirable both to manage the

complexity and improve the portability of applications. Lastly, architectures requiring ex-

plicit application control over the memory system, often through explicit memory transfers,

will become more common. A current extreme example of this kind of machine is LANL’s

proposed Roadrunner machine, which combines disk, cluster, SMP, and the explicit mem-

ory control required by the Cell processor [LANL, 2008].

In this thesis, we present an API and runtime system that virtualizes memory systems,

giving a program the same interface to data and computation whether the memory level is a

distributed memory, a shared memory multiprocessor (SMP), a single processor with local

memory, or disk, among other possibilities. Furthermore, this API is composable, meaning

that a runtime for a new multi-level machine can be easily constructed by composing the

runtimes for each of its individual levels.
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The primary benefit of this approach is a substantial improvement in portability and ease

of maintenance of a high performance application for multiple platforms. Consider, for ex-

ample, a hypothetical application that is first implemented on a distributed memory cluster.

Typically, such a program relies on MPI for data transfer and control of execution. Tuning

the same application for an SMP either requires redesign or reliance on a good shared mem-

ory MPI implementation. Unfortunately, in most cases the data transfers required on the

cluster for correctness are not required on a shared memory system and may limit achiev-

able performance. Moving the application to a cluster of SMPs could use a MPI process

per processor, which relies on a MPI implementation with recognition of which processes

are running on the same node and which are on other nodes to orchestrate efficient commu-

nication. Another option is to use MPI between nodes and Pthreads or OpenMP compiled

code within a node, thus mixing programming models and mechanisms for communication

and execution. Another separate challenge is supporting out-of-core applications which

need to access data from disk, which adds yet another interface and set of mechanisms that

need to be managed by the programmer. As a further complication, processors that require

explicit memory management, such as the STI Cell Broadband Engine, present yet another

interface that is not easily abstracted with traditional programming techniques.

Dealing with mixed mode parallel programming and the multiplicity of mechanisms and

abstractions makes programming for multi-level machines a daunting task. Moreover, as

bandwidth varies through the machine, orchestrating data movement and overlapping com-

munication and computation become difficult.

The parallel memory hierarchy (PMH) programming model provides an abstraction of mul-

tiple memory levels [Alpern et al., 1993]. The PMH model abstracts parallel machines as

trees of memories with slower memories toward the top near the root, faster memories
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toward the bottom, and with CPUs at the leaves. The Sequoia project has created a full lan-

guage, compiler, runtime system, and a set of applications based on the PMH model [Fa-

tahalian et al., 2006; Knight et al., 2007; Houston et al., 2008]. The basic programming

construct in Sequoia is a task, which is a function call that executes entirely in one level

of the memory hierarchy, except for any subtasks that task invokes. Subtasks may execute

in lower memory levels of the system and recursively invoke additional subtasks at even

lower levels. All task arguments, including arrays, are passed by value-result (i.e., copy-in,

copy-out semantics). Thus, a call from a task to a subtask represents bulk communication,

and all communication in Sequoia is expressed via task calls to lower levels of the ma-

chine. The programmer decomposes a problem into a tree of tasks, which are subsequently

mapped onto a particular machine by a compiler using a separate mapping dictating which

tasks are to be run at which particular machine levels.

Although our early Sequoia work demonstrated applications running on IBM Cell blades

and a cluster of PCs, it did not show portability to multi-level memory hierarchies. More

importantly this earlier work also relied on a custom compiler back-end for Cell and a

complex and advanced runtime for a cluster of PCs which managed all execution and data

movement in the machine through a JIT mechanism. The difficulty with this approach

is that every new architecture requires a monolithic, custom backend and/or a complex

runtime system.

The Sequoia compiler, along with the bulk optimizations and custom backend used for

Cell, is described by Knight et al. [Knight et al., 2007]; the Sequoia language, programming

model, and cluster runtime system is described by Fatahalian et al. [Fatahalian et al., 2006].

In this dissertation, we build on the previous PMH and Sequoia work, but we take the

approach of defining an abstract runtime interface as the target for the Sequoia compiler and

provide separate runtime implementations for each distinct kind of memory in a system. As

discussed above, our approach is to define a single interface that all memory levels support.
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Since these interfaces are composable, adding support for a new architecture only requires

assembling an individual runtime for each adjacent memory level pair of the architecture

rather than reimplementing the entire compiler backend.

1.1 Thesis Contributions

This dissertation explores the design and development of an abstract machine model and

runtime system for efficiently programming parallel machines with multi-level memory

hierarchies. We make several contributions in the areas of computer systems, parallel pro-

gramming, machine abstractions, and portable runtime systems outlined below. Our ap-

proach is to define a single interface that provides one abstraction for communication and

control between multiple levels in a memory hierarchy. Since these interfaces are compos-

able, adding support for a new architecture only requires assembling an individual runtime

for each adjacent memory level pair of the architecture rather than reimplementing a spe-

cialized program for each machine or a custom compiler backend.

Abstract machine model for parallel machines We present a uniform scheme for ex-

plicitly describing memory hierarchies. This abstraction captures common traits im-

portant for performance on memory hierarchies. We formalize previous theoretical

models and show how the proposed abstraction can be composed to allow for the

execution on machines with multiple levels of memory hierarchy.

Portable runtime API We discuss the development and implementation of a runtime API

that can be mapped to many system configurations. This interface allows a com-

piler to optimize and generate code for a variety of machines without knowledge of

the specific bulk communication and execution mechanisms required by the machine
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configuration. We explore the abstraction by evaluating the efficiency of implemen-

tations on several common parallel system configurations.

1.2 Outline

The centerpieces of this thesis are the abstract machine model and runtime interface for

memory hierarchies, enabling Sequoia to run on multiple architectures, its implementation

on various architectures, and the analysis of the portability and efficiency of the abstraction

on multiple platforms, including the cost of mapping the abstraction to each platform. The

Sequoia language and complete system are discussed, but the focus of the discussion is on

the features of the language and the design decisions made along the way to preserve porta-

bility and maintain performance on our platforms. Some of these decisions directly impact

the types of applications that can be written easily in Sequoia and executed efficiently

on our runtime systems. These unintended consequences are discussed in the discussion

(Chapter 7).



Chapter 2

Background

2.1 Architecture Trends

2.1.1 Memory Systems

In modern architectures, the throughput and latency of the main memory system is much

lower than the rate at which the CPU can execute instructions. This limits the effective

processing speed when the processor is required to perform minimal processing on large

amounts of data, the processor must continuously wait for data to be transferred to or from

memory. As the difference between compute performance and memory performance con-

tinues to widen, many algorithms quickly become bound by memory performance rather

than compute performance. This effect is known as the von Neumann bottleneck. When

many abstract models of computation were created, compute performance was the bottle-

neck. As VLSI scaling and processor technologies have improved, we can perform com-

putation at much faster rates than we can read from main memory. For example, the Intel

7



CHAPTER 2. BACKGROUND 8

Core2Duo Quad (QX9650) can perform computation at 96 GFLOPS and yet has ∼5 GB/s

of bandwidth to main memory. We have already passed an order of magnitude difference

between our compute capability and bandwidth to main memory and the gap is continuing

to widen.

Caches have reduced the effects of the von Neumann bottleneck, but in an effort to keep the

computational units of the processor busy, processors have gained multiple levels of cache,

thus building a memory hierarchy. Processors now have multiple levels of caches with

high-bandwidth, low latency, but small caches close to the processor, and lower-bandwidth,

higher latency, larger caches further away. For optimum performance, even on simple

applications, the user must make efficient use of all the caches in the hierarchy. This is

generally done by carefully blocking data into the caches to maximize the amount of reuse.

For example, the first-order optimization effect for matrix multiply over the naive triple

nested for loop implementation is to carefully block data for the cache hierarchy of the

processor as well as the register file in the machine. This optimization accounts for the

majority of the performance gain in this application for a single processor and will be

explored further in the next chapter.

Several new architectures choose to directly expose the memory hierarchy instead of emu-

lating the traditional von Neumann architecture. For example, graphics processors (GPUs)

and the STI Cell Broadband engine (Cell) require explicit movement of data into memories

visible to the processor. In the case of GPUs, data must be moved from node memory

into the graphics memory on the accelerator board for algorithm correctness. The SPEs

in the Cell processor can only directly reference data in their small local memories, and

data must be explicitly DMAed in and out of these memories during algorithm execution.

Architectures that require explicit data movement are referred to as exposed communica-

tion architectures in the literature. Programming models that depend on a single address

space fail to map efficiently to these architectures. Carefully using the memory system is
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no longer just about performance optimization but is also required for correctness on these

architectures.

For both cache based and exposed communication memory systems, accessing data in bulk

is required to efficiently use the memory hierarchy, and over time bulk access only becomes

more important because latencies are rapidly increasing with respect to processing speed.

In exposed communication memory systems, bulk data access translates into bulk data

transfers. Since just initiating a transfer can have a latency of thousands of cycles, it is

wise to transfer as much data as possible for each initiated transfer to amortize the transfer

cost. For example, the cost of issuing a DMA for a single byte from host memory into

the local store of a SPE on the Cell processor has the same latency as a 1KB data transfer.

In a cache hierarchy based systems, accessing data in bulk leads to spatial locality in the

cache, more efficient cache line prefetching, minimal misses to higher levels of the memory

hierarchy which have even more access latency, and the amortization of cache miss costs

along the cache line. Furthermore, some architectures like GPUs achieve extremely high

bandwidths by using high latency but wide memory interfaces. For example, AMD’s R600

processor uses a 512-bit memory interface to achieve greater than 100 GB/s to graphics

memory [AMD, 2007]. However, this performance requires a burst size of 256-bytes for

each memory request to efficiently make use of the wide interface and the high degree of

interleaving and banking in the memory system.

Ideally, we would like to maximize the computational and bandwidth utilization of our

machine. If we can overlap computation and communication, we can maximize the use of

both for a given application. On cache machines, this can be done with data prefetching;

exposed communication memory systems can use asynchronous transfer mechanisms. For

optimal performance, we want to prevent stalling the compute resources as much as possi-

ble. As such, we need to do our best to make sure the data is available before computation

begins. This requires identifying the data that will be needed next and starting transfer of
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Figure 2.1: Single threaded scaling performance has come to an end.

the data as early as possible in the algorithm. This formulation is sometimes referred to as a

streaming formulation. In practice, either computational resources or bandwidth resources

become the limiting performance factor in this style of computation.

2.1.2 From Sequential to Parallel

As can be seen in Figure 2.1, performance scaling of single core performance according to

Moore’s Law has slowed considerably. Whereas single threaded performance has scaled at

∼52% per year from the mid-1980s to 2001, Intel now projects only a ∼10% performance

increase each year in single threaded performance. Previous generations of processors have

relied on progressively more advanced out-of-order logic, speculative execution, and super-

scalar designs along with increasing clock frequencies to continually increase performance

of sequential, single threaded application performance. However, because of power and

design limitations, we have largely hit the wall in scaling clock frequency, and superscaler

processor design has reached the limit of available instruction level parallelism for most
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programs. Future processor designs are shifting transistor resources into multiple simpli-

fied processors on a single die. The STI Cell is a somewhat extreme example as the cores

are in-order, have no branch prediction hardware, and the simplest cores on the die, the

SPEs, do not even contain support for caches and require explicit data movement. In many

ways, the design of each core represents the state of the art in architecture from more than a

decade ago, albeit at much higher clock frequencies. The upcoming Intel Larabee design is

comprised of many massively simplified x86 cores [Carmean, 2007]. Simpler cores allow

a much denser packing of compute resources. Doug Carmean, the architecture lead of the

Larabee project, has proposed that four of these simpler cores can fit in the same space as a

current Core2 generation core. Clock for clock, the Larabee cores also have four times the

theoretical compute performance of the traditional x86 designs from Intel, but sequential,

single threaded performance may be as low as 30% of the current Intel designs [Carmean,

2007]. The difficulty with this architecture trend is that for programmers to increase ap-

plication performance, they can no longer rely on improvements in sequential performance

scaling and they now have to be able to effectively use parallel resources.

Traditional parallel programming techniques are beginning to break down as systems are

becoming more and more parallel. The latest shipping CPUs currently have four cores,

but road-maps from the CPU vendors show that scaling is expected to continue at a rate

matching Moore’s Law, meaning that if this scaling holds, then consumers will see 64

cores by 2015 and upwards of 100 cores in high-end workstation machines. In the high

performance computing space, supercomputers have become extremely large, with the top

10 supercomputers having more than eight thousand processors. Ideally, we would like

to have programming solutions that allow parallelism to scale easily from small numbers

of processing elements to many, allowing algorithms and applications designed today on

several cores to scale up to many cores.
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2.2 Programming Systems

There has been a great deal of research on parallel languages, with some efforts going back

several decades. Parallel languages and programming have continued to come in and out

of vogue, with the last major efforts being in the mid to late 1990s. Most languages have

focused on the high performance computing (HPC) domain, e.g. scientific computing like

that performed at the US Department of Energy. High-performance computing has grad-

ually become more common place with more industries now relying on large numbers of

processors for financial modeling, bioinformatics, simulation, etc. As people have begun to

see the reality of scalar processor performance hitting a wall, exploring programming mod-

els and parallel programming in general are actively being researched again. The DARPA

HPCS program is now funding several research programming systems that reduce the cost

and programming difficulty, increase the performance on large machines, provide portabil-

ity across systems, and increase robustness of large applications [DARPA, 2007]. GPUs

have also driven research into stream programming and data parallel languages in order to

efficiently use these high performance, but esoteric, architectures [Owens et al., 2008].

While there have been many languages for parallel computing, most applications in HPC

rely on MPI for distributed memory machines and OpenMP for shared memory systems. In

the mainstream computing/consumer space, threading APIs like PThreads remain the most

common. Streaming languages, largely driven by the difficulty in programming GPUs for

more general computation than just graphics, remain largely ignored by the programming

community and have yet to be used in common consumer applications or code develop-

ment. Each language closely matches the underlying architecture it was originally targeted

for, making portability to different machines while maintaining performance challenging.
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2.2.1 Programming Models

Random Access Machine

The Random Access Machine (RAM) model [Aho et al., 1974] views a machine as a pro-

cessor attached to a uniform and equal access cost memory system. A RAM is a multiple

register machine with indirect addressing. Data access in a RAM program is modeled as

instantaneous; thus, a processor never waits on memory references. The Parallel Random

Access Machine (PRAM) model [Fortune and Wyllie, 1978] extends the RAM model to

parallel machines. In a PRAM machine, data access from all processors to memory as well

as synchronization between processors is modeled as instantaneous.

The RAM and PRAM models do not accurately model modern architectures. Even in a

sequential system, data in the L1 cache can be accessed much faster than data in main

memory, but all data transfers have some cost in terms of latency and are not instantaneous.

Moreover, since data is transferred in bulk in modern architectures (cache-lines, memory-

pages, etc.) locality of access is not taken into account in this model. Fine-grain, random

data access is much more costly than bulk, coherent access because you can cause the

memory system to load data in bulk (e.g. a cache-line of data) and then only use a small

amount of the data loaded (e.g. a single byte of the cache-line). Despite only needing a

small amount of data, the programmer pays for the bandwidth and latency of the larger

transfer and can cause thrashing in the memory system. In the case of a parallel system,

coherence protocols and non-uniform memory access (NUMA) designs further increase

the cost of poor data access patterns. Moreover, the PRAM model treats synchronization

as instantaneous and having no cost, but on modern architectures synchronization can cost

hundreds of cycles. Algorithms designed using these computational models tend to perform

poorly on modern architectures.
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However, the RAM and PRAM model provide a very simple abstraction for computation

and the PRAM model aides in understanding concurrency. These models serve as good

teaching tools for algorithms and computational complexity, but provide little insight into

the most performance critical aspects of contemporary algorithm design and analysis.

Bulk Synchronous Parallel

The Bulk Synchronous Parallel (BSP) model [Valiant, 1990] differs from the PRAM model

in that communication and synchronization costs are not assumed to be free. An important

part of the analysis of programs written according to the BSP model is the quantification

of the communication and synchronization during execution. A BSP program is comprised

of three supersteps: 1) concurrent computation, 2) communication, and 3) synchronization.

During the computation phase, the same computation occurs independently on all proces-

sors operating only on data local to each processor. During the communication phase, the

processors exchange data between themselves en masse. During the synchronization phase,

each processor waits for all other processors to complete their communication phase. Al-

gorithms are comprised of many of these supersteps.

The main advantages of BSP over PRAM is that algorithms are comprised of separate

computation, bulk communication, and synchronization steps. The programmer is made

aware of the cost of communication and synchronization and is encouraged to transmit data

in larger chunks. However, the BSP model as presented in the literature does not model

memory hierarchies with more than two levels: main memory and processor memory.
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LogP

The LogP model [Culler et al., 1993] is based on parameters that describe the latency (L),

communication overhead (o), gap between consecutive communications (g), and the num-

ber of processor/memory models (P) of the machine. Compared to the BSP mode, the LogP

model has more constrained communication mechanisms and lacks explicit synchroniza-

tion, but allows for more flexible communication and execution capabilities. Unlike the

BSP model, communication and computation are asynchronous, and a processor can use a

message as soon as it arrives, not just at superstep boundaries. LogP works to encourage co-

ordinating the assignment of work with data placement to reduce bandwidth requirements

as well as encouraging algorithms that overlap computation and communication within the

limits of network capacity.

Like BSP, LogP does not assume zero communication delay or infinite bandwidth, nor

does it tailor itself to a specific interconnect topology as do simpler models. Implicit in

the model is that processors are improving in performance faster than interconnect per-

formance, and that latency, communication overhead, and limited bandwidths will be the

performance critical aspects of algorithm design. However, like the BSP model, the LogP

model models two level memory hierarchies and is really targeted towards modeling inter-

connected computers and not the full memory hierarchy of the machine. Some researchers

have argued that the BSP model is a more convenient programming abstraction and com-

putational model for parallel computation; however, the LogP model can be more exact in

modeling some machines as compared to BSP [Bilardi et al., 1996].
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Cache Oblivious

Cache oblivious algorithms are designed to exploit a cache hierarchy without knowledge

of the specifics of the caches (number, sizes, length of cache lines, etc.) [Frigo et al., 1999].

In practice, cache oblivious algorithms are written in a divide-and-conquer form where the

problem is progressively divided into smaller and smaller sub-problems. Eventually, the

sub-problem will become small enough to fit in a cache level and further division will fit

the problem into smaller caches. For example, matrix multiply is performed by recursively

dividing each matrix into four parts and multiplying the submatrices in a depth first manner.

However, for optimal code, the user must define a base case for the recursion that allows for

an efficient implementation of the computation. In practice, the base case stops recursion

after the data fits in the cache closest to the processor and an optimized function is written

to optimize register usage and take advantage of available SIMD instructions. The elegance

of cache oblivious algorithms is that they can make efficient use of the memory hierarchy

in an easy to understand way. Accordingly, this is an attractive place to start the design of

our system.

However, there are several issues with the cache oblivious approach. Firstly, the cache

oblivious model makes the assumption that the memories are caches and that data at the

base of the recursion can be accessed via global addresses. This model has problems on

systems that have exposed communication hierarchies as the address spaces are distinct

and cannot be accessed using global addresses. The cache oblivious model also relies on a

memory system comprised of a cache hierarchy in which all data access can be driven from

the bottom of the hierarchy and misses into a cache will generate requests into the cache

above it and so on until the memory memory request can be satisfied and the data can be

pulled into the lowest level cache. It also assumes that higher level caches are inclusive,

i.e. they include all of the data in the caches below them. We must stall on every miss and
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rely on low miss rates, which is the general case for optimal cache oblivious algorithms.

However, since the data access is fine grained and generated from the bottom of the memory

system, we do not have the ability to transfer data in bulk, required for efficient memory

transfers on exposed communication hierarchies, nor the ability to prefetch data to avoid

stalls and allow for overlapping computation and communication. Parallelism is also not

able to be directly described in this model.

Streaming

The stream programming model is designed to directly capture computational and data lo-

cality. A stream is a collection of records requiring similar computation while kernels are

functions applied to each element of the stream. A streaming processor executes a kernel

for each element of the input stream(s) and places the results into the output stream(s).

Similar to BSP, streaming computations are comprised of a communication phase to read

inputs, a computation phase performing calculations across the inputs, and a communica-

tion phase placing the results into the outputs. However, unlike BSP, synchronization is not

required as each stream element is executed on independently and communication does not

exist between elements. Streaming formulations also have the benefit that the communi-

cation and computation phases are overlapped to maximize the resources of the machine.

Also, stream programming encourages the creation of applications with high arithmetic in-

tensity, the ratio of arithmetic operations to memory bandwidth [Dally et al., 2003], with

the separation of computation into kernels applied to streams. The drawback of traditional

streaming approaches is they only handle two levels of the memory hierarchy, off processor

and on processor memory.
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2.2.2 Programming Languages

Global View

Global view languages allow for arbitrary access to the total system memory, providing

RAM/PRAM models of computation. ZPL [Deitz et al., 2004], Chapel [Callahan et al.,

2004], and High Performance Fortran (HPF) [Forum, 1993] are examples of global view

languages. These three languages are array-based, borrowing from Fortran syntax. Since

there are no pointers or pointer arithmetic, more aggressive compiler analysis is possible.

All three languages allow the programmer to express parallelism via simple data parallel

iteration constructs such as parallel for loops. The data parallel basis of these lan-

guages provides guarantees that there is no aliasing on writes to arrays and execution and

control are defined in bulk, which allows for aggressive optimizations. Since synchroniza-

tion primitives are not exposed to the user and there are guarantees about data aliasing, the

compiler can be aggressive in scheduling by relying on data dependence analysis of the call

chain.

A limitation of these languages is that there is no first class language support for specifying

how to place data in the machine for locality. Regions combined with distributions in ZPL

and Chapel provide information about what data is needed for a computation but not where

that data resides. Regions do have the nice property that the area of memory that can be ac-

cessed is well defined so that memory movement can be scheduled in the case of distributed

memory, but these languages do not provide a way to specify how data should be laid out

to minimize communication. Furthermore, these languages have no notion of the memory

hierarchy of the machine on which the code is executing and allow fine-grain data access

to the global system memory. As mentioned above with the RAM/PRAM models, this can

lead to inefficient data access. In theory, the region constructs from ZPL/Chapel could be
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nested in order to decompose the data, but the user would have to explicitly manage the

decomposition for each target machine.

Partitioned Global Address

Partitioned Global Address Space (PGAS) languages have been the most successful parallel

programming languages to date in terms of implementations available on many machines

and user community size. For example, Unified Parallel C (UPC) [Carlson et al., 1999]

is available on several supercomputers including the Cray X1 family and T3E series, as

well as large cluster machines such as Blue Gene/L. Co-Array Fortran [Numrich and Reid,

1998], an extension of Fortran 95, is being studied for inclusion into the Fortran 2008

specification. Titanium [Yelick et al., 1998] is a Java-based language with similar properties

to UPC.

The PGAS model presents two levels of the memory hierarchy: data is either local to a

processor or global to all processors. PGAS languages can only capture locality in two

levels of memory, limiting execution to architectures which can be abstracted as two level

machines. The PGAS model also allow fine grain data access, making the generation of

bulk data transfers difficult, thus leading to potentially inefficient execution on architectures

such as distributed memory systems. Programmers specify whether data is local or global

and can access each in standard C syntax. UPC has recently gained API functions to sup-

port bulk transfers via memcpy’s to help improve performance across slower interconnects;

however, the user must decide when they are going to use bulk transfers over fine grain data

access. Similar extensions have been proposed for Titanium and Co-Array Fortran. The

added performance of using these extended mechanisms come at the cost of portability as

not all machines nor compiler/runtime implementations have support for these constructs.
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In UPC 2.0, extensions for asynchronous bulk transfers have also been proposed, but the

user is responsible for scheduling data movement.

PGAS models also have difficulty with memory coherence and consistency on machines

that do not provide these capabilities in hardware. Since the machine is presented to the

user as distributed shared memory, the user is responsible for synchronization, but mem-

ory consistency behavior is unclear in the general case (“relaxed consistency” in the UPC

documentation) and behavior can vary between machine types. This leads to overzealous

synchronization in user code, possibly sequentializing execution during large parts of the

code. Another subtle issue with the current PGAS models is that they do not support nested-

parallelism. As such, the nested parallel loops must be flattened into a single parallel loop

by the user manually to increase parallelism.

Threading languages

Cilk [Blumofe et al., 1995] provides a language and runtime system for light-weight thread-

ing, which is particularly suited, but not limited, to cache-oblivious algorithms implicitly

capable of using a hierarchy of memories. Cilk is a simple addition the the C programming

language, and simple elision of Cilk programs can be compiled by standard C compilers

and executed on sequential machines. The main difference between Cilk and C is the sup-

port for a fork/join execution model in Cilk. The user can spawn threads for computation

using fork and then wait for thread completion with joins. Cilk relies on an efficient runtime

system to spawn and schedule threads to processing elements.

Like C, the user is allowed to use fine grain memory access from global data and may

run into the performance pitfalls of a random access memory model. Moreover, compiler

optimizations are made difficult by potential pointer aliasing in the programmer’s code.

When code is written in a cache-oblivious manner, the behavior of the memory system can
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be vastly improved, but access is still fundamentally to the entire global memory. This

limits efficient execution of Cilk to shared memory machines. However, Cilk’s runtime

system has the ability to better handle irregular computations than many other systems.

GPGPU

Given the promising computational capabilities of graphics processors, there have been

several academic and industry efforts to create languages for general purpose computa-

tion on graphics processors (GPGPU). BrookGPU [Buck et al., 2004], a derivative of the

Brook [Ian Buck, 2003] streaming language based on C with streaming extensions, is de-

signed to abstract a graphics processor as a streaming processor. Data is explicitly trans-

ferred to and from host memory using streamRead and streamWrite operators to ini-

tialize streams of data. As a streaming computation model, the user defines kernels which

operate over streams. The kernels are invoked once per output stream element and executed

in a data parallel fashion with no communication or synchronization between kernel invo-

cations. BrookGPU allows kernels to read from streams in a general way (gathers) but does

not allow arbitrary writes to streams (scatter). The functional capabilities of BrookGPU

directly correspond to what can be done using graphics APIs, and all runtime calls and ker-

nels are mapped to graphics API primitives such as textures, framebuffers, and fragment

shaders. BrookGPU is inherently a two level memory model with explicit data transfers:

data is either in host memory or in device memory. However, there are multiple levels of

cache and scratch-pad memories available on the latest GPUs that are not exposed via the

programming model that can limit application performance.

Nvidia’s CUDA [NVIDIA, 2007] programming language is based on C with extensions

for data parallel execution. CUDA presents the GPU as a bag of parallel processors on

which programs can be executed. Similar to BrookGPU, the user must explicitly transfer
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data from host memory to device memory before program execution. However, CUDA

does not use streaming semantics during program execution and instead uses explicit gen-

eral reads and writes via pointers and arrays. The user describes an execution grid which

specifies how many times to invoke the program in total creating the specified number of

threads, and how to divide the execution grid into blocks of threads to be scheduled on

the processor. Moreover, CUDA exposes small scratch-pads per processor that data can be

explicitly read to and written from the program to allow data sharing between threads on

a processor. This memory is not directly in a hierarchy, i.e. one cannot cause a transfer

from device memory directly to the scratch-pad and instead must use registers as an inter-

mediate and use two transfer operations. Thus, CUDA exposes three memories to the user–

host, device, and scratch-pad. Another difference between CUDA and BrookGPU is that

CUDA allows limited synchronization. Synchronization is defined for threads in a block

allowing for data sharing and communication between threads via the scratch-pads. While

there are claims of performance gains using this model, the user must explicitly code to

the specific architecture implementations to use these more advanced features potentially

limiting portability to other GPUs.

2.2.3 Runtime Systems and APIs

Compiler assisted

OpenMP is a successful system for parallelizing code via compiler hints on shared memory

machines. Programmers write their code in standard programming languages like C, C++,

and Fortran, and provide hints to the compiler via pragmas about which loops can be par-

allelized and how the execution of the loop should be distributed among processors. More

aggressive compilers will attempt to automatically parallelize all loops. OpenMP is very

attractive to programmers because they do not have to use a new programming language
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or model and still get parallel code. The compilers must be conservative in parallelizing to

maintain correctness but often struggle with pointer aliasing. The user must progressively

add hints and/or re-factor their code to avoid the potential for aliasing and help expose more

potential parallelism to the compiler in order to gain better performance. Unfortunately, the

pragmas differ between compilers, although there is a standard subset which is generally

used. Using the vendor specific extensions for better optimization and targeting of a spe-

cific machine come at the cost of portability. Moreover, in practice, the ability of OpenMP

compilers to parallelize arbitrary code is very limited and users have to go through many

iterations exploring pragmas and restructuring their code to allow the compiler to better

parallelize.

OpenMP can be inefficient on large shared memory machines because of non-uniform

memory access effects and makes distributed memory implementations problematic since

there is no notion of locality and the model is built around fine-grain global data access.

Since there are no direct methods for bulk data transfers, performance can suffer greatly

across slow interconnects, or the user must reorder their code and add progressively more

hints to get the compiler to generate code for efficient data transfers. OpenMP is also un-

able to provide asynchronous data transfers thus leading to a reactive memory system in

the common case where a data access may cause a stall for an undefined amount of time.

Some implementations can work around this by implementing user level threads on each

execution unit and switching execution threads on expensive data transfers.

APIs

The Parallel Virtual Machine (PVM) [Geist et al., 1994] and MPI [MPIF, 1994], both

preceded by [Su et al., 1985], are perhaps the oldest and most widely used systems for



CHAPTER 2. BACKGROUND 24

programming parallel machines and are supported on many platforms. Both systems con-

centrate on the explicit movement of data between processors within one logical level of

the machine. The user must specify all communication manually and communication re-

quires both the sending and receiving node to be involved. The user must also explicitly

control the creation of parallel contexts and all synchronization. MPI-2 [MPIF, 1996] adds

support for single sided data transfer making programming easier, but these functions are

not supported on all platforms. MPI-2 can also abstract parallel I/O resources, thus expos-

ing another memory level, but the API is very different from the core communication API

functions.

The Pthreads library allows direct programming of shared-memory systems through a

threading model and also assumes a uniform global address space. The user is respon-

sible for creation, destruction, and synchronization of all parallel contexts. Moreover,

since by default all data in the parent process is shared by all threads, so the user is

responsible for maintaining thread local storage and managing communication and syn-

chronization between threads. Other two-level runtime systems include Charm++ [Kalé

and Krishnan, 1993], Chores [Eager and Jahorjan, 1993], and the Stream Virtual Machine

(SVM) [Labonte et al., 2004]. None of these systems are designed for handling more than

two levels of memory or parallel execution in a unified way.

The IBM Cell SDK [IBM, 2007b] provides an API for programming for the IBM Cell pro-

cessor. This API is a very low level programming interface closely matching the hardware

and explicitly supports only two-levels of memory. The user must create and manage exe-

cutions contexts on the SPEs, manage loading of executable code into the SPEs as overlays,

communicate between the PPE and SPE, and control DMAs and synchronization. This API

is unlike any of others described and provides yet another distinct programming system and

mindset.



Chapter 3

Abstract Machine Model

In order to meet our goals of portability across machines while maintaining good perfor-

mance, we need to find a computational model and machine abstraction that fits our needs.

As discussed previously, modern architectures are gaining ever increasing amounts of par-

allelism (Section 2.1.2) and deeper memory hierarchies (Section 2.1.1). As such, we need

to find a computational model that encapsulates the performance critical aspects of modern

architectures. Also, since there are many different types of architectures, we need to find a

uniform way to abstract machines.

Most theoretical machine models in computer science do not address certain performance

issues important for creating high performance programs on modern architectures. Careful

tuning of an algorithm to closely match the characteristics of the architecture can lead to

more than an order of magnitude increase in program performance. Many performance

tuning problems that arise after the algorithm and data structures have been chosen amount

to efficiently moving data through the machine. Much of the large performance increase

comes from taking into account the various aspects of the memory hierarchy of the target

25
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machine. However, this tuning requires detailed knowledge of the machine’s architectural

features.

Traditional models of computation, such as the Random Access Machine (RAM), ignore

the non-uniform cost of memory access. For example, let us explore the performance of

matrix multiplication to show the difference between theory and practice. In the RAM

model, where every memory access is uniform, the complexity of this program is O(N3).

Implementing the matrix multiplication in this model leads to the traditional naive triple-

nested for loop formulation. However, real contemporary systems have multiple levels

of caching and requirements on alignment for performance and this formulation which

are not well suited to this formulation. On an Intel 2.4 GHz Pentium4 Xeon machine,

this naive implementation compiled with the Intel compiler performs a 1024x1024 matrix

multiplication at 1/150th the performance of Intel’s Math Kernel Library, more than two

orders of magnitude lower performance. The performance of the naive implementation is

limited by the latency and throughput of the last level of the memory hierarchy. However,

if we take into account the memory hierarchy of this machine, we can greatly increase

performance to the point where the actual performance better matches the performance of

a highly tuned implementation.

The Intel Pentium4 Xeon processor has several levels of memory hierarchy as shown in

Figure 3.1: a register file, a 32 KB L1 cache, a 512 KB L2 cache, and main memory.

The register file is extremely fast but very small. As we get further away from the func-

tional units, the larger the memory gets, but the lower the bandwidth and the higher latency

becomes. We can start by first performing small blocked matrix multiply operations in clos-

est/fastest memory, the register file, and then building the larger matrix multiply in terms

of these smaller matrix multiplies. This leads to a 6-nested for loop implementation, a

triple-nested for loop representing the 4x4 matrix multiplies fitting into the registers, and

another triple-nested for loop which blocks the full matrix multiplication in terms of the
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Figure 3.1: Intel Pentium4 Uniform Memory Hierarchy example

Na
iv

e

+R
eg

ist
er

+L
1

+L
2

+L
ay

ou
t0

5

10

15

20

25

Pe
rc

en
ta

ge
 of

 In
tel

 M
KL

 P
er

fo
rm

an
ce

Figure 3.2: Optimizing matrix multiply for the memory hierarchy. Starting from a naive
implementation, we can progressive add more optimizations and get to within 1/4 of the
performance of the highly tuned MKL library with only memory system optimizations.
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smaller 4x4 matrix multiplications. This adaptation to just explicitly take advantage of the

fastest/lowest level of the memory hierarchy, without considering any other levels explic-

itly, increases performance to 1/22 of MKL, a performance increase of almost a factor of 7

with just this simple modification. Similarly, we can block for execution into the next level

of the memory hierarchy, the L1 cache, performing 32x32 matrix multiplies comprised

of 4x4 register matrix multiplies, by adding yet another set of triple-nested for loops.

Blocking for the L1 cache increases performance by another factor of 2, to 1/10 of MKL

performance. Blocking again for the next level of the memory hierarchy, the L2 cache, per-

forming 256x256 matrix multiplies, increases performance to ∼ 1/8 of MKL performance.

If we manually reformat the data to better match the cache line sizes of the processor and

the data order in which the hardware prefetch units function, we can get within 1/4 of the

performance of MKL. The performance effect of this progression of optimization is shown

in Figure 3.2. Notice that we can achieve 1/4 of the performance of a processor vendor’s

code with only optimizations for the memory hierarchy. Hand-tuning the inner loop along

with fairly heroic optimizations yields the remaining factor of 4 in performance.

3.1 Memory Hierarchy Model

The matrix multiplication example motivates a programming model that captures the rel-

evant performance aspects of the hierarchical nature of computer memory systems. The

Uniform Memory Hierarchy (UMH) model of computation [Alpern et al., 1994] presents a

framework for machines with more than two levels in the memory hierarchy. As a theoret-

ical model, UMH refines traditional methods of algorithm analysis by including the cost of

data movement through the memory hierarchy. However, the UMH model also provides a

way to abstract machines as a sequence 〈M0, . . . ,Mn〉 of increasingly larger memory mod-

ules with computation taking place in M0. For example, M0 may model the computer’s
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central processor and register file, while M1 might be cache memory, M2 main memory,

and so on including all levels of the memory hierarchy in a given machine. For each mod-

ule Mn, a bus Bn connects it with the next larger memory module Mn+1. Buses between

multiple memory levels may be active, simultaneously transferring data. Data is transferred

along a bus in fixed-sized blocks. The size of these blocks, the time required to transfer a

block, and the number of blocks that fit in a memory module increase as one moves up the

memory hierarchy.

An important performance feature of the UMH model is that data transfers between multi-

ple memory modules in the hierarchy can be active simultaneously. Hence, the UMH model

accounts for overlapping computation and communication, leading to programs bound by

memory performance or compute performance rather than the sum of communication and

computation. The UMH model expresses the tight control over data movement and the

memory hierarchy that is necessary for achieving good performance on modern architec-

tures.

As mentioned in Section 2.1.2, we are quickly moving away from sequential processing to

parallel processing. While the UMH model has been shown to be a good match for per-

formance programming on sequential processors, it does not provide a solution for parallel

processors. The Parallel Memory Hierarchy (PMH) model [Alpern et al., 1993] extends the

UMH model for parallel systems. Instead of a linear connection of memory modules, the

PMH model abstracts parallel machines as a tree of memory modules, see Figures 3.3 and

3.4. Similar to the UMH model’s benefits over the RAM model of computation, the PMH

model provides a better computational model than the Parallel Random Access Machine

(PRAM) model. The PRAM model is a special case of the PMH model with only two

levels of memory: a root memory module representing all of memory with p children each

having a memory of size 1. The use of a tree to model a parallel computer’s communication
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Figure 3.3: Two level example of a Parallel Memory Hierarchy

structure is a compromise between the simplicity of the PRAM model and the accuracy of

a arbitrary graph structure.

The PMH abstract representation of a system containing a Cell processor (at left in Fig-

ure 3.5) contains nodes corresponding to main system memory and each of the 256KB

software-managed local stores (LSes) located within the chip’s synergistic processing units

(SPEs). At right in Figure 3.5, a PMH model of a dual-CPU workstation contains nodes

representing the memory shared between the two CPU’s as well as the L1 and L2 caches

on each processor. The model permits a machine to be modeled with detail commensurate

with the programmer’s needs. A representation may include modules corresponding to all

physical levels of the machine memory hierarchy, or it may omit levels of the physical hi-

erarchy that need not be considered for software correctness or performance optimization.

3.2 Space Limited Procedures

Space Limited Procedures (SLP) [Alpern et al., 1995] provides a methodology for pro-

gramming in the PMH model and defines the general attributes of the underlying system.
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Figure 3.5: A Cell workstation (left) is modeled as a tree containing nodes corresponding
to main system memory and each of the processor’s software-managed local stores. A
representation of a dual-CPU workstation is shown at right.
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SLP takes the PMH model and transforms the theoretical model into a methodology for

obtaining portable high-performance applications.

To achieve high performance on a machine, the processing elements of that machine must

be kept as busy as possible doing useful work. To keep processing elements busy, one must:

• decompose problems into independent sub-problems that can be executed concur-

rently,

• distribute these sub-problems among the processing elements in the machine,

• place necessary data as close to the processing element as possible, and

• overlap communication with computation when possible.

In SLP, each memory module can hold at least as much data as all its children combined

and is parameterized by its capacity and the number of children it has. Data moves between

a module and a child over a channel (bus) in fixed sized blocks. Each memory module runs

a PMH routine that choreographs the flow of data between a module and its children and in-

vokes PMH routines on its children. A problem instance begins in a memory module that is

large enough to satisfy the application’s storage requirements. The problem is then broken

into sub-problems that can be executed using the storage available in the current module’s

children. Before a routine is invoked on the child, the input data must be present in the

child memory module as well as storage available for the routine’s results. Thus, the parent

transfers data to its children, starts sub-problems in the children, waits for completion, and

transfers the results back. These sub-problems are broken down further into progressively

smaller sub-problems and passed down the tree of memories. Eventually, sub-problems

small enough to fit into the leaves flow into the leaves where they are solved and their re-

sults are returned up the tree. The solutions to sub-problems may either be used as input to

later sub-problems or passed up to the parent as part of the solution of the current problem.
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SLP programs are comprised of procedures that call procedures. The resulting call graph

structure directly reflects the PMH tree structure representation of the target machine. Calls

that can be executed in parallel may be identified explicitly or deduced via analysis. Al-

ternative algorithms and/or data structures are indicated by overloading procedure names,

thus providing multiple variants of the same procedure. Tuning parameters for space lim-

ited programs come in three forms: machine parameters are the parameters of the PMH

model and reflect the performance relevant features of the target computer, problem param-

eters reflect the performance relevant features of the problem instances, and free parameters

which defer other performance relevant choices until program specialization. Arguments

to a procedure are identified as read, write, or readwrite.

The body of a variant of a space-limited procedure is composed of conventional program-

ming language statements: control structures, procedure calls, and assignments. Argu-

ments to the called procedure must take up substantially less space than those of the calling

procedure. During specialization, the tuning parameters are defined, variants are chosen,

and procedure calls are mapped to different memory modules in the machine.

3.3 The Sequoia Model

Although the UMH and PMH work define a theoretical model of computation and the SLP

work provides a programming methodology, they do not provide an explicit abstraction

nor an implementation for any parallel machines. We need a way to provide a uniform

abstraction that allows us to efficiently execute on many parallel architectures, and then

develop a language, compiler, and runtime system around this abstraction.

We adapt the SLP methodology with the realization that the techniques required to ac-

commodate the different mechanisms in different levels of the memory hierarchy, from
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Figure 3.6: Two level example of our abstraction. Each tree node is comprised of a control
processor and a memory. Interior control processors, denoted with a dashed line, can only
operate to move data and transfer control to children. Leaf control processors are also
responsible for executing user defined procedures

network interfaces to disk systems, are fundamentally the same. We model the diverse

features among different systems with the same mechanism, the tree node, and the capa-

bilities we allow for the tree nodes. From Section 2.1.1, we know the importance of the

memory hierarchy and that bulk asynchronous transfers are required for performance on

many machines. From Section 2.1.2, we know that we need to accommodate parallelism

explicitly.

Since many machines have complex non-tree topologies, we allow our tree abstraction to

include virtual levels that do not correspond to any single physical machine memory. For

example, it is not practical to expect the nodes in a cluster of workstations to communicate

only via global storage provided by networked disk. As shown in Figure 3.7, our model

represents a cluster as a tree rooted by a virtual level corresponding to the aggregation of all

workstation memories. The virtual level constitutes a unique address space distinct from

any node memory, e.g. memory designated as part of the virtual level does not overlap with

memory designated for the node level. Transferring data from this global address space into

the child modules associated with individual cluster workstations results in communication

over the cluster interconnect. The virtual level mechanism allows us to generalize the
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Figure 3.7: The point-to-point links connecting PCs in a cluster are modeled as a virtual
node in the tree representation of the machine.

tree abstraction for modeling vertical communication to encapsulate horizontal inter-node

communication as well. The virtual level is analogous to the PGAS model’s global memory

and the actual physical node memory analogous to the PGAS model’s the local memory.

Following from the PMH model, we abstract machines as a tree of nodes. We formalize

the abstraction as follows:

A node has one control thread and one memory.

Threads can:

• transfer in bulk to/from parent asynchronously,

• wait for transfers to/from parent to complete,

• allocate data in their memory,

• only access their memory directly,

• transfer control to child nodes,
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• wait for children to complete execution,

• synchronize with siblings, and

• non-leaf threads can only operate to move data and transfer control.

The main differences between the implied SLP abstraction and ours are child centric data

transfers and sibling synchronization. The original SLP work states that transfers happen

from parent to child before the child begins execution. On modern parallel systems, this

formulation creates several problems. As stated above, in order to model a cluster of work-

stations, we have included the notion of virtual levels to represent the distributed aggregate

memory of the cluster. If we allowed parent driven transfers, this would mean that a virtual

node would have to transfer data to each of its children, represented by actual machines.

Since the node is virtual, it does not actually own any data making parent directed transfers

unnatural. If instead we initiate transfers from the children, transfers with the parent turn

into horizontal communication with other nodes. On machines without virtual levels, initi-

ating transfers with the children instead of the parent allows for distributed communication,

thus improving data transfer performance.

In the original SLP work, synchronization was performed by returning control to the parent

node. When control is returned to the parent, the output data from the child execution must

also be transferred to the parent. However, if there is significant data reuse in a child

between procedures but the next procedure needs data computed by a sibling and returned

to the parent, then we can save overhead and potentially extra data transfers if we can

synchronize siblings without returning control to the parent.

This abstraction allows us to capture the performance critical aspects of machines, includ-

ing the use of parallel resources and efficient use of the memory hierarchy while providing

a practical match to actual machine capabilities.



Chapter 4

Sequoia

4.1 Hierarchical Memory

In Figure 4.1, we illustrate the hierarchical structure of a computation to perform blocked

matrix multiplication, an example we will revisit in this chapter and is the example we

used to motivate the Sequoia machine model in Chapter 3. In this algorithm, which fea-

tures nested parallelism and a high degree of hierarchical data locality, parallel evaluation
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128x128

matrix mult

Task:

128x128
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Task:
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Figure 4.1: Multiplication of 1024x1024 matrices structured as a hierarchy of independent
tasks performing smaller multiplications.
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of submatrix multiplications is performed to compute the product of two large matrices.

Sequoia requires such hierarchical organization in programs, borrowing from the idea of

Space Limited Procedures (Section 3.2), to encourage hierarchy-aware, parallel divide-

and-conquer programs. Sequoia tasks (Section 4.2) generalize and make concrete the con-

cept of a space-limited procedure into a central construct used to express communication

and parallelism and enhance the portability of algorithms. We have implemented a com-

plete programming system around this abstraction.

Writing Sequoia programs involves abstractly describing hierarchies of tasks (as in Figure

4.1) and then mapping these hierarchies to the memory system of a target machine. Sequoia

requires the programmer to reason about a parallel machine as a tree of distinct memory

modules, a representation that extends the Parallel Memory Hierarchy (PMH) model of

Alpern et al. [1993] (Section 3.3). Data transfer between memory modules is conducted

via (potentially asynchronous) block transfers. Program logic describes the transfers of

data at all levels, but computational kernels are constrained to operate upon data located

within leaf nodes of the machine tree.

Establishing an abstract notion of hierarchical memory is central to the Sequoia program-

ming model. Sequoia code does not make explicit reference to particular machine hierar-

chy levels and it remains oblivious to the mechanisms used to move data between memory

modules. For example, communication described in Sequoia may be implemented using a

cache prefetch instruction, a DMA transfer, or an MPI message depending on the require-

ments of the target architecture. Supplying constructs to describe the movement of data

throughout a machine while avoiding any reference to the specific mechanisms with which

transfers are performed is essential to ensuring the portability of Sequoia programs while

retaining the performance benefits of explicit communication.
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As with the PMH model, our decision to represent machines as trees is motivated by the

desire to maintain portability while minimizing programming complexity. A program that

performs direct communication between sibling memories, such as a program written using

MPI for a cluster, is not directly portable to a parallel platform where such channels do not

exist.

4.2 Sequoia Language

The principal construct of the Sequoia programming model is a task: a side-effect free

function with call-by-value-result parameter passing semantics. Tasks provide for the ex-

pression of:

• Explicit Communication and Locality. Communication of data through the mem-

ory hierarchy is expressed by passing arguments to tasks. Calling tasks is the only

means of describing data movement in Sequoia.

• Isolation and Parallelism. Tasks operate entirely within their own private address

space and have no mechanism to communicate with other tasks other than by calling

subtasks and returning to a parent task. Task isolation facilitates portable concurrent

programming.

• Algorithmic Variants. Sequoia allows the programmer to provide multiple imple-

mentations of a task and to specify which implementation to use based on the context

in which the task is called.

• Parameterization. Tasks are expressed in a parameterized form to preserve indepen-

dence from the constraints of any particular machine. Parameter values are chosen

to tailor task execution to a specific hierarchy level of a target machine.
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1 void task matmul :: inner ( in float A[M][T],

2 in float B[T][N],

3 inout float C[M][N] )

4 {

5 // Tunable parameters specify the size

6 // of subblocks of A, B, and C.

7 tunable int P;

8 tunable int Q;

9 tunable int R;

10
11 // Compute all blocks of C in parallel.

12 mappar (int i=0 to M/P, int j=0 to N/R) {

13 mapseq (int k=0 to T/Q) {

14 // Invoke the matmul task recursively

15 // on subblocks of A, B, and C.

16 matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],

17 B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],

18 C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

19 }

20 }

21 }

22
23 void task matmul ::leaf( in float A[M][T],

24 in float B[T][N],

25 inout float C[M][N] )

26 {

27 // Compute matrix product directly

28 for (int i=0; i<M; i++)

29 for (int j=0; j<N; j++)

30 for (int k=0; k<T; k++)

31 C[i][j] += A[i][k] * B[k][j];

32 }

Figure 4.2: Dense matrix multiplication in Sequoia. matmul::inner and matmul::leaf

are variants of the matmul task.

This collection of properties allows programs written using tasks to be portable across

machines without sacrificing the ability to tune for performance.

4.2.1 Explicit Communication And Locality

A Sequoia implementation of blocked matrix multiplication is given in Figure 4.2. The

matmul task multiplies M x T input matrix A by T x N input matrix B, accumulating the

results into M x N matrix C (C is a read-modify-write argument to the task). The task
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partitions the input matrices into blocks (lines 16–18) and iterates over submatrix multipli-

cations performed on these blocks (lines 12–20). An explanation of the Sequoia constructs

used to perform these operations is provided in the following subsections.

The definition of a task expresses both locality and communication in a program. While a

task executes, its entire working set (the collection of all data the task can reference) must

remain resident in a single node of the abstract machine tree. As a result, a task is said to

run at a specific location in the machine. In Figure 4.2, the matrices A, B, and C constitute

the working set of the matmul task. Pointers and references are not permitted within a task

and therefore a task’s working set is manifest in its definition.

Notice that the implementation of matmul makes a recursive call in line 16, providing

subblocks of its input matrices as arguments in the call. To encapsulate communication,

Sequoia tasks use call-by-value-result (CBVR) [Aho et al., 1986] parameter passing se-

mantics. Each task executes in the isolation of its own private address space (Subsection

4.2.2) and upon task call, input data from the calling task’s address space is copied into

that of the callee task. Output argument data is copied back into the caller’s address space

when the call returns. The change in address space induced by the recursive matmul call is

illustrated in Figure 4.3. The block of size P x Q of matrix A from the calling task’s address

space appears as a similarly sized array in the address space of the called subtask. CBVR

is not common in modern languages, but we observe that for execution on machines where

data is transferred between distinct physical memories under software control, CBVR is a

natural parameter passing semantics.

The mapping of a Sequoia program dictates whether a callee task executes within the same

memory module as its calling task or is assigned to a child (often smaller) memory module

closer to a compute processor. In the latter case, the subtask’s working set must be trans-

ferred between the two memory modules upon task call/return. Thus, the call/return of a
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Figure 4.3: The matmul::inner variant calls subtasks that perform submatrix multiplica-
tions. Blocks of the matrices A, B, and C are passed as arguments to these subtasks and
appear as matrices in the address space of a subtask.

subtask implies that data movement through the machine hierarchy might occur. Explicitly

defining working sets and limiting communication to CBVR parameter passing allows for

efficient implementation via hardware block-transfer mechanisms and permits early initia-

tion of transfers when arguments are known in advance.

4.2.2 Isolation and Parallelism

The granularity of parallelism in Sequoia is the task and parallel execution results from

calling concurrent tasks. Lines 12–20 of Figure 4.2 describe iteration over submatrix mul-

tiplications that produces a collection of parallel subtasks. The i and j dimensions of the

iteration space may be executed in parallel while the innermost dimension defines a sequen-

tial operation which performs a reduction. In Sequoia, each of these subtasks executes in

isolation, which is a key property introduced to increase code portability and performance.
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Isolation of task address spaces implies that no constraints exist on whether a subtask must

execute within the same level of the memory hierarchy as its calling task. Additionally,

Sequoia tasks have no means of communicating with other tasks executing concurrently

on a machine. Although the implementation of matmul results in the execution of many

parallel tasks, these concurrent tasks do not function as cooperating threads. The lack of

shared state among tasks allows parallel tasks to be executed simultaneously using multiple

execution units or sequentially on a single processor. Task isolation simplifies parallel

programming by obviating the need for synchronization required by cooperating threads.

Sequoia language semantics require that output arguments passed to concurrent subtasks

do not alias in the calling task’s address space. We currently rely on the programmer to

ensure this condition holds as this level of code analysis is difficult in the general case.

4.2.3 Task Decomposition

We now introduce Sequoia’s array blocking and task mapping constructs: first-class prim-

itives available to describe portable task decomposition.

In Sequoia, a subset of an array’s elements is referred to as an array block. For example,

A[0:10] is the block corresponding to the first 10 elements of the array A. The matmul task

uses the Range Array Block blocking function to describe a regular 2D partitioning of its

input matrices. In line 16, array blocking syntax is used to divide the matrix A into a set of

range array blocks each P x Q in size. Sequoia provides a family of blocking functions via

array syntax (see Table 4.1) to facilitate decompositions that range from the simplicity of

ranged blocks to the irregularity of arbitrary array gathers.

After defining a blocking for each array, matmul iterates over the blocks, recursively call-

ing itself on blocks selected from A, B, and C in each iteration. As introduced in Subsection
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4.2.2, the mappar construct designates parallel iteration, implying concurrency among sub-

tasks but not asynchronous execution between calling and child tasks. All iterations of a

mappar, mapseq, or mapreduce must complete before control returns to the calling task.

Imperative C-style control-flow is permitted in tasks, but use of blocking and mapping

primitives is encouraged to facilitate key optimizations performed by the Sequoia compiler

and runtime system. A complete listing of Sequoia blocking and mapping constructs is

given in Table 4.1.

4.2.4 Task Variants

Figure 4.2 contains two implementations of the matmul task, matmul::inner and matmul::

leaf. Each implementation is referred to as a variant of the task and is named using the

syntax taskname::variantname. The variant matmul::leaf serves as the base case of

the recursive matrix multiplication algorithm. Notice that the Sequoia code to recursively

call matmul gives no indication of when the base case should be invoked. This decision is

made as part of the machine-specific mapping of the algorithm (Section 4.4).

Inner tasks, such as matmul::inner, are tasks that call subtasks. Notice that matmul::

inner does not access elements of its array arguments directly and only passes blocks of

the arrays to subtasks. Since a target architecture may not support direct processor access

to data at certain hierarchy levels, to ensure code portability, the Sequoia language does not

permit inner tasks to directly perform computation on array elements. Instead, inner tasks

use Sequoia’s mapping and blocking primitives (Section 4.2.3) to structure computation

into subtasks. Ultimately, this decomposition yields computations whose working sets fit

in leaf memories directly accessible by processing units. An inner task definition is not
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matmul::inner

matmul::leaf matmul_node_inst
variant = inner

P=128 Q=128 R=128
node level

matmul_cluster_inst
variant = inner

P=1024 Q=1024 R=1024
cluster level

matmul_L2_inst
variant = inner
P=32 Q=32 R=32

L2 level

matmul_L1_inst
variant = leaf

L1 level

Cluster Task Instances

Parameterized Tasks

matmul_mainmem_inst
variant = inner
P=128 Q=64 R=128

main memory

matmul_LS_inst
variant = leaf

LS level

CELL Task Instances

Figure 4.4: The call graph for the parameterized matmul task is shown at top left. Special-
ization to Cell or to our cluster machine generates instances of the task shown at bottom
left and at right.

associated with any particular machine memory module; it may execute at any level of the

memory hierarchy in which its working set fits.

Leaf tasks, such as matmul::leaf, do not call subtasks and operate directly on working

sets resident within leaf levels of the memory hierarchy. Direct multiplication of the input

matrices is performed by matmul::leaf. In practice, Sequoia leaf tasks often wrap plat-

form specific implementations of computational kernels written in traditional languages,

such as C or Fortran.

4.2.5 Task Parameterization

Tasks are written in parameterized form to allow for specialization to multiple target ma-

chines. Specialization is the process of creating instances of a task that are customized to
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operate within, and are mapped to, specific levels of a target machine’s memory hierarchy.

A task instance defines a variant to execute and an assignment of values to all variant pa-

rameters. The Sequoia compiler creates instances for each of the various contexts in which

a task is used. For example, to run the matmul task on Cell, the Sequoia compiler generates

an instance employing the matmul::inner variant to decompose large matrices resident

in main memory into LS-sized submatrices. A second instance uses matmul::leaf to per-

form the matrix multiplication inside each SPE. On a cluster machine, one matmul instance

partitions matrices distributed across the cluster into submatrices that fit within individual

nodes. Additional instances use matmul::inner to decompose these datasets further into

L2- and then L1-sized submatrices. While parameterized tasks do not name specific vari-

ants when calling subtasks, specialized task instances make direct calls to other instances.

The static call graph relating matmul’s parameterized task variants is shown at top left in

Figure 4.4. Calls among the task instances that result from specialization to Cell and to a

cluster are also shown in the figure. Notice that three of the cluster instances, each mapped

to a different location of the machine hierarchy, are created from the matmul::inner vari-

ant (each instance features different argument sizes and parameter values).

Task variants utilize two types of numeric parameters, array size parameters and tunable

parameters. Array size parameters, such as M, N, and P defined in the matmul task variants,

represent values dependent upon array argument sizes and may take on different values

across calls to the same instance. Tunable parameters, such as the integers U, V, and X

declared in matmul::inner (lines 7-9 of Figure 4.2), are designated using the tunable

keyword. Tunable parameters remain unbound in Sequoia source code but are statically

assigned values during task specialization. Once assigned, tunable parameters are treated

as compile-time constants. The most common use of tunable parameters, as illustrated by

the matrix multiplication example, is to specify the size of array blocks passed as arguments

to subtasks.
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Parameterization allows the decomposition strategy described by a task variant to be ap-

plied in a variety of contexts, making the task portable across machines and across levels

of the memory hierarchy within a single machine. The use of tunable and array size pa-

rameters and the support of multiple task variants is key to decoupling the expression of

an algorithm from its mapping to an underlying machine. Tasks provide a framework for

defining the application-specific space of decisions that must be made during the process of

program tuning. In the following section, we describe the process of tuning and targeting

Sequoia applications to a machine.

4.3 Sequoia Compiler

The front-end of our system is an adaptation of the Sequoia compiler [Knight et al., 2007].

The compiler (1) transforms a standard AST representation of input Sequoia programs into

a machine-independent intermediate representation (IR) consisting of a dependence graph

of bulk operations, (2) performs various generic optimizations on this IR, and (3) generates

code targeting the runtime interface described in the next chapter. The runtime interface

provides a portable layer of abstraction that enables the compiler’s generated code to run

on a variety of platforms. The original compiler optimization research specifically targeted

for the Cell processor was generalized for our runtime system.

The compiler’s generic IR optimizations span three main categories:

• locality optimizations, in which data transfer operations are eliminated from the pro-

gram at the cost of increasing the lifetimes of their associated data objects in a mem-

ory level;
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• operation grouping, in which “small”, independent operations are fused into larger

operations, thereby reducing the relative overheads of the operations; and

• operation scheduling, in which an ordering of operations is chosen to attempt to

simultaneously maximize operation concurrency and minimize the amount of space

needed in each memory in the machine.

With the exception of the scheduling algorithms, which operate on the entire program at

once, all compiler optimizations are local; they apply to a single operation at a time and

affect data in either a single memory level or in a pair of adjacent memory levels. The com-

piler’s optimizations require two pieces of information about each memory in the target ma-

chine’s abstract machine model; its size and a list of its properties, specifically whether the

memory has the same namespace as any other memories in the machine model (as happens

in the SMP target) and whether its logical namespace is distributed across multiple distinct

physical memory modules (as in the cluster target). These specific machine capabilities

affect the choice of memory movement optimizations the compiler applies. For example,

copy elimination is required on machines with a shared namespace to prevent unneeded

transfer overhead. A per-machine configuration file provides this information. Aside from

these configuration details, the compiler’s optimizations are oblivious to the underlying

mechanisms of the target machine, allowing them to be applied uniformly across a range

of different machines and also across a range of distinct memory levels within a single

machine.

Although the input programs describe a single logical computation spanning an entire ma-

chine, the compiler generates separate code for each memory level and instantiates a sep-

arate runtime instance for each pair of adjacent levels. Each runtime is oblivious to the

details of any runtimes either above or below it.
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instance {

name = matmul_mainmem_inst

task = matmul :: inner

runs_at = main_memory

calls = matmul_LS_inst

tunable P=128,Q=64,R=128

}

instance {

name = matmul_LS_inst

variant = matmul ::leaf

runs_at = LS_level

}

instance {

name = matmul_cluster_inst

variant = matmul :: inner

runs_at = cluster_level

calls = matmul_node_inst

tunable P=1024 ,Q=1024 ,R=1024

}

instance {

name = matmul_node_inst

variant = matmul :: inner

runs_at = node_level

calls = matmul_L2_inst

tunable P=128,Q=128,R=128

}

instance {

name = matmul_L2_inst

task = matmul :: inner

runs_at = L2_cache_level

calls = matmul_L1_inst

tunable P=32,Q=32,R=32

}

instance {

name = matmul_L1_inst

task = matmul ::leaf

runs_at = L1_cache_level

}

Figure 4.5: Specification for mapping the matmul task to a Cell machine (left) and a cluster
machine (right).

4.4 Specialization and Tuning

Tasks are generic algorithms that must be specialized before they can be compiled into ex-

ecutable code. Mapping a hierarchy of tasks onto a hierarchical representation of memory

requires the creation of task instances for all machine levels. For each instance, a code vari-

ant to run must be selected, target instances for each call site must be chosen, and values

for tunable parameters must be provided.

One specialization approach is to rely upon the compiler to automatically generate task in-

stances for a target by means of program analysis or a heuristic search through a pre-defined

space of possibilities. In Sequoia, the compiler is not required to perform this transforma-

tion. Instead, we give the programmer complete control of the mapping and tuning phases

of program development. A unique aspect of Sequoia is the task mapping specification that

is created by the programmer on a per-machine basis and is maintained separately from the

Sequoia source. The left half of Figure 4.5 shows the information required to map matmul
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onto a Cell machine. The tunables have been chosen such that submatrices constructed by

the instance matmul mainmem inst can be stored entirely within a single SPE’s LS.

In addition to defining the mapping of a task hierarchy to a machine memory hierarchy,

the mapping specification also serves as the location where the programmer provides op-

timization and tuning directives that are particular to the characteristics of the intended

target. A performance-tuned mapping specification for matmul execution on a cluster is

shown in Figure 4.6. The instance matmul cluster inst runs at the cluster level of the

machine hierarchy, so the distribution of array arguments across the cluster has significant

performance implications. The instance definition specifies that task argument matrices be

distributed using a 2D block-block decomposition consisting of blocks 1024x1024 in size.

The definition also specifies that the transfer of subtask arguments to the individual nodes

should be software-pipelined across mappar iterations to hide the latency of the transfers.

As an additional optimization, matmul L2 inst specifies that the system should copy the

second and third arguments passed to matmul::leaf into contiguous buffers to ensure

stride-1 access in the the leaf task.

Mapping specifications are intended to give the programmer precise control over the map-

ping of a task hierarchy to a machine while isolating machine-specific optimizations in a

single location. Performance is improved as details in the mapping specification are refined.

While an intelligent compiler may be capable of automating the creation of parts of a new

mapping specification, Sequoia’s design empowers the performance-oriented programmer

to manage the key aspects of this mapping to achieve maximum performance.



CHAPTER 4. SEQUOIA 51

instance {

name = matmul_cluster_inst

task = matmul

variant = inner

runs_at = cluster_level

calls = matmul_node_inst

tunable U=1024 , X=1024 , V=1024

A distribution = 2D block -block ( blocksize 1024 x1024)

B distribution = 2D block -block ( blocksize 1024 x1024)

C distribution = 2D block -block ( blocksize 1024 x1024)

mappar loop -partition = grid 4x4

mappar software -pipeline = true

}

instance {

name = matmul_node_inst

task = matmul

variant = inner

runs_at = node_level

calls = matmul_L2_inst

tunable U=128 , X=128 , V=128

}

instance {

name = matmul_L2_inst

task = matmul

variant = inner

runs_at = L2_cache_level

calls = matmul_L1_inst

tunable U=32, X=32, V=32

subtask arg A = copy

subtask arg B = copy

}

instance {

name = matmul_L1_inst

task = matmul

variant = leaf

runs_at = L1_cache_level

}

Figure 4.6: A tuned version of the cluster mapping specification from Figure 4.5. The
cluster instance now distributes its working set across the cluster and utilizes software-
pipelining to hide communication latency.

4.5 Sequoia System

Figure 4.7 shows how the pieces of the system are all put together. First, the user writes

their program using Sequoia. The user’s source file is fed into the compiler’s front-end.

This in turn generates a call graph representing the decomposition of the application. The

call graph along with a machine description file are fed into the specialization phase of

the compiler. This phase maps the call graph onto the specified machine, performs opti-

mizations, and schedules tasks and data transfers between all levels of the machine. The

compiler generates C++ code along with runtime API calls which will be compiled by the

vendor supplied C++ compiler into machine code.
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Front-end

task matmul::inner( in    float A[M][T],
in    float B[T][N],
inout float C[M][N] )

{
tunable int P, Q, R;

mappar( int i=0 to M/P,
int j=0 to N/R ) {

mapseq( int k=0 to T/Q ) {
matmul( A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],                

B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N]  )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Sequoia 
source Specialization

<?xml version="1.0"?>
<machine name="cluster">
<machinemodule name="cpuMem1" 
type="ReferenceCpu">
<size unit="MB">8192</size>
<nchildren>16</nchildren>
<alignment>16</alignment>
<os-managed>yes</os-managed>
<virtuallevel>no</virtuallevel>
<cluster>yes</cluster>
</machinemodule>

<machinemodule name="cpuMem0" 
type="ReferenceCpu">
<size unit="MB">512</size>
<nchildren>0</nchildren>
<alignment>16</alignment>
<os-managed>no</os-managed>
</machinemodule>
</machine>

Machine 
description

Task A

Task B

Call graph

Code Gen

...

... ...

C++ code
Runtime API Calls

Task table

Figure 4.7: Sequoia system overview.
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Sequoia Array Blocking Syntax

Range Array Blocks

A[start0:end0;][start1:end1;][...]

Generates a blockset containing non-overlapping blocks that tile
the multi-dimensional array A. Each block is multi-dimensional
with size end0−start0×end1−start1× . . ..

A[start0:end0:stride0;][...]

Generalized form of regular blocking that generates blocksets
containing potentially overlapping blocks. The starting array off-
set, ending offset, and stride between blocks is specified for every
dimension of the source array.

Indexed Array Blocks

A[Idx[i]:Idx[j];Max]

Generates a set of irregularly-sized blocks from array A. Block
start and end indices are given by elements in the Idx array. Since
the size of the array is dynamic, a maximum block size must be
defined for the system to reason about space requirements.

A[Idx[start0;end0;]]

Generates a block by gathering elements from the source array A

using the indices provided Idx. The resulting block has all the el-
ements defined by Idx. If this syntax is used by a write argument,
a scatter operation will occur.

Sequoia Mapping Primitives

mappar(i=i0 to iM, j=j0 to jN ...) {...}
A multi-dimensional for-all loop containing only a subtask call in
the loop body. The task is mapped in parallel onto a collection of
blocks.

mapseq(i=i0 to iM, j=j0 to jN ...) {...}
A multi-dimensional loop containing only a subtask call in the
loop body. The task is mapped in sequentially onto a collection of
blocks.

mapreduce(i=i0 to iM, j=j0 to jN ...) {...}
Maps a task onto a collection of blocks, performing a reduction
on at least one argument to the task. To support parallel tree re-
ductions, an additional combiner subtask is required.

Table 4.1: Sequoia mapping and blocking primitives



Chapter 5

Portable Runtime System

5.1 Runtime Interface

Recall from Section 3.3 the rules of our abstract model. To allow for portability, we need

a uniform runtime API that allows us to define the functionality of a tree node. Remember

that a tree node consists of a control thread and one memory. A tree node can perform a set

of functions against itself and interact with its parent and children using a different set of

functions. For a concrete runtime API, we need to define our design requirements:

• Resource allocation: data allocation and naming and initialization of parallel re-

sources.

• Explicit bulk asynchronous communication: transfer lists and transfer commands.

• Parallel execution: launch tasks on children. We need to support asynchronous exe-

cution to allow different execution on different subsets of children.

54
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• Synchronization: make sure transfers and tasks complete. There are both asyn-

chronous task and transfer synchronization and sibling synchronization.

• Runtime isolation: runtimes cannot have direct knowledge of each other.

Starting from our abstraction primitive, the tree node, we can divide functionality based

on the mode of the tree node. When the node is acting as a parent, it can launch tasks

on children and wait for children to complete. When the node is acting as a child, it can

perform data communication with its parent and synchronize with siblings. The remaining

question is how to handle allocation of resources. We choose to perform resource and data

allocation when acting as a parent. We do this for simplicity (e.g. allocation is done in only

one mode instead of two) and for practical implementation reasons. We need to initialize

parallel resources, which obviously needs to be done via the parent. For data allocation, we

could perform allocation on the parent or the child. The problem with doing child centric

allocation is how data is allocated in the root memory, especially when dealing with virtual

memory levels. If we allocate with the parent, the issue is how data is allocated in the

child memory. However, in the later case, the terminal leaf task can define the arrays itself

statically or through standard memory allocation. Thus, all intermediate allocation can be

handled by the parent mode. Thus, we can define a runtime with two parts, a top runtime

that defines functionality that a node can access in parent mode, and a bottom runtime that

defines functionality that a node can access in child mode.

Each runtime straddles the transition between two memory levels. There is only one mem-

ory at the parent level, but the child level may have multiple memories; i.e., the memory

hierarchy is a tree, where the bottom level memories are children of the top level. An

illustration is provided in Figure 5.1.

A runtime in our system provides three main services for code (tasks) running within a

memory level: (1) initialization/setup of the machine, including communication resources
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Memory Level i
Child N

Memory Level i+1 

CPU Level i+1 

Memory Level i
Child 1

Runtime 

CPU Level i
Child 1

CPU Level i
Child N

Figure 5.1: A runtime straddles two memory levels.

and resources at all levels where tasks can be executed, (2) data transfers between memory

levels using asynchronous bulk transfers between arrays, and (3) task execution at specified

(child) levels of the machine.

The interfaces to the top and bottom runtimes have different capabilities and present a

different API to clients running at their respective memory levels. A listing of the C++

public interface of the top and bottom parts of a runtime is given in Figures 5.2 and 5.3.

We briefly explain each method in turn.

5.1.1 Top Interface

We begin with Figure 5.2, the API for the top side of the runtime. The top is responsible

for both the creation and destruction of runtimes. The constructor requires two arguments:

a table of tasks representing the functions that the top level can invoke in the the bottom

level of the runtime, and a count of the number of children of the top. At initialization,

all runtime resources, including execution resources, are created, and these resources are

destroyed at runtime shutdown.
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// create and free runtimes

Runtime(TaskTable table, int numChildren);

~Runtime();

// allocate and deallocate arrays

Array_t* AllocArray(Size_t elmtSize,

int dimensions,

Size_t* dim_sizes,

ArrayDesc_t descriptor,

int alignment);

void FreeArray(Array_t* array);

// register arrays and find/remove arrays using array descriptors

void AddArray(Array_t array);

Array_t GetArray(ArrayDesc_t descriptor);

void RemoveArray(ArrayDesc_t descriptor);

// launch and synchronize on tasks

TaskHandle_t CallChildTask(TaskID_t taskid,

ChildID_t start,

ChildID_t end);

void WaitTask(TaskHandle_t handle);

Figure 5.2: The runtime API Top Interface
.
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// look up array using array descriptor

Array_t GetArray(ArrayDesc_t descriptor);

// create, free, invoke, and synchronize on transfer lists

XferList* CreateXferList(Array_t* dst,

Array_t* src,

Size_t* dst_idx,

Size_t* src_idx,

Size_t* lengths,

int count);

void FreeXferList(XferList* list);

XferHandle_t Xfer(XferList* list);

void WaitXfer(XferHandle_t handle);

// get number of children in bottom level,

// get local processor id, and barrier

int GetSiblingCount();

int GetID();

void Barrier(ChildID_t start, ChildID_t stop);

Figure 5.3: The runtime API Bottom Interface.
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Our API emphasizes bulk transfer of data between memory levels, and, for this reason,

the runtimes directly support arrays. Arrays are allocated and freed via the runtimes

(AllocArray and FreeArray) and are registered with the system using the array’s ref-

erence (AddArray) and unregistered using the array’s descriptor (RemoveArray). An array

descriptor is a unique identifier supplied by the user when creating the array. Only arrays

allocated using the top of the runtime can be registered with the runtime. Registered arrays

are visible to the bottom of the runtime via the arrays’ descriptors (GetArray) and can only

be read or written using explicit block transfers.

As mentioned above, tasks are registered with the runtime via a task table when the runtime

is created. A request to run a task on multiple children can be performed in a single call to

CallChildTask. When task f is called, the runtime calling f is passed as an argument to

f , thereby allowing f to access the runtime’s resources, including registered arrays, trans-

fer functions, and synchronization with other children. Finally, there is a synchronization

function WaitTask enabling the top of the runtime to wait on the completion of a task

executing in the bottom of the runtime.

5.1.2 Bottom Interface

The API for the bottom of the runtime is shown in Figure 5.3. Data is transferred between

levels by creating a list of transfers between an array allocated using the top of the runtime

and an array at the bottom of the runtime (CreateXferList), and requesting that the given

transfer list be executed (Xfer). Transfers are non-blocking, asynchronous operations,

and the client must issue a wait on the transfer to guarantee the transfer has completed

(WaitXfer). Data transfers are initiated by the children using the bottom of the runtime.
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Synchronization is done via a barrier mechanism that can be performed on a subset of

the children (Barrier). This enables children to synchronize on data and tasks without

requiring returning control to the parent. Children can learn their own process id’s (GetID)

and the range of id’s of other children (GetSiblingCount). These functions were added to

enable the children to calculate their portion of data to access. These three API calls were

added to allow for greater optimizations and scheduling flexibility by the compiler.

These simple primitives map efficiently to our target machines, providing a mechanism

independent abstraction of memory levels. In a multi-level system, the multiple runtimes

have no direct knowledge of each other. Traversal of the memory levels, and hence run-

times, is done via task calls. The interface represents, in many respects, the lowest common

denominator of many current systems; we explore this further in the presentation of runtime

implementations in Section 5.2.

5.2 Runtime Implementations

We implemented our runtime interface for the following platforms: SMP, disk, Cell Broad-

band Engine, and a cluster of workstations. This section describes key aspects of mapping

the interface onto these machines.

5.2.1 SMP

The SMP runtime implements execution on shared-memory machines. A distinguishing

feature of shared-memory machines is that explicit communication is not required for cor-

rectness, and thus this runtime serves mainly to provide the API’s abstraction of parallel

execution resources and not the mechanisms to transfer data between memory levels.
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CPU CPU

Main Memory

SMP Runtime

Figure 5.4: Graphical representation of the SMP runtime

On initialization of the SMP runtime a top runtime instance and the specified number of bot-

tom runtimes are created. Each bottom runtime is initialized by creating a POSIX thread,

which waits on a task queue for task execution requests. On runtime shutdown, a shutdown

request is sent to each child thread; each child cleans up its resources and exits. The top

runtime performs a join on each of the children’s shutdowns, after which the top runtime

also cleans up its resources and exits.

CallChildTask is implemented by placing a task execution request on the specified child’s

queue along with a completion notification object. When the child completes the task, it

notifies the completion object to inform the parent. When a WaitTask is issued on the

parent runtime, the parent waits for a task completion signal before returning control to the

caller.

Memory is allocated at the top using standard malloc routines with alignment specified by

the compiler. Arrays are registered with the top of the runtime with AddArray and can be

looked up via an array descriptor from the bottom runtime instances. Calling GetArray

from the bottom returns an array object with a pointer to the actual allocated memory from

the top of the runtime. Since arrays can be globally accessible, the compiler can opt to
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Node Memory
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Figure 5.5: Graphical representation of the cluster runtime

directly use this array’s data pointers, or issue data transfers by creating XferLists with

CreateXferList and using Xfer’s, which are implemented as memcpy’s.

5.2.2 Cluster Runtime

The cluster runtime implements execution on distributed memory machines communicat-

ing via network interconnects. The aggregate of all node memories is the top (global)

level, which is implemented as a distributed shared-memory system, and the individual

node memories are the bottom (local) level, with each cluster node as one child of the top

level. Similar to the disk, the cluster’s aggregate memory space is logically above any pro-

cessor’s local memory, and the runtime API allows the local level to read/write portions of

the potentially distributed arrays. We implement the cluster runtime with a combination of

Pthreads and MPI-2 [MPIF, 1996].

On initialization of the runtime, node 0 is designated to execute the top level runtime func-

tions. All nodes initialize as bottom runtimes and wait for instructions from node 0. Two

threads are launched on every node: an execution thread to handle the runtime calls and
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the execution of specified tasks, and a communication thread to handle data transfers, syn-

chronization, and task call requests across the cluster.

Bottom runtime requests are serviced by the execution thread, which identifies and dis-

patches data transfer requests to the communication thread, which performs all MPI calls.

Centralizing all asynchronous transfers in the communication thread simplifies implemen-

tation of the execution thread and works around issues with multi-threading support in

several MPI implementations.

We provide a distributed shared-memory (DSM) implementation to manage memory across

the cluster. However, unlike conventional DSM implementations, we need not support fully

general memory or coherence. All access to memory from the bottom of the runtime must

be explicit and in bulk, and the parallel memory hierarchy programming model forbids

aliasing. The strict access rules on arrays give us great flexibility in strategies for allocating

arrays across the cluster. We use an interval tree [Cormen et al., 2001] per allocated array,

which allows specifying a distribution on a per array basis. Because of the copy-in, copy-

out semantics of access to arrays passed to tasks in the Sequoia programming model, we can

support complex data replication where distributions partially overlap. Unlike traditional

DSM implementations where data consistency and coherence must be maintained by the

DSM layer, the programming model asserts this property directly. For the purposes of this

dissertation, we use only simple block-cyclic data distributions as complex distributions

are not currently generated by the compiler.

We use MPI-2 single-sided communication to issue gets and puts on remote memory sys-

tems. If the memory region requested is local to the requesting node and the requested

memory region is contiguous, we can directly use the memory from the DSM layer by

simply updating the destination pointer, therefor reducing memory traffic. However, the

response of a data transfer in this case is not instantaneous since there is communication
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between the execution and communication threads as well as logic to check for this condi-

tion. If the data is not contiguous in memory on the local node, we must use memcpys to

construct a contiguous block of the requested data.

When the top of the runtime (node 0) launches a task execution on a remote node, node

0’s execution thread places a task call request on its command queue. The communication

thread monitors the command queue and sends the request to the specified node. The

target node’s communication thread receives the request and adds the request to the task

queue, where it is subsequently picked up and run by the remote node’s execution thread.

Similarly, to perform synchronization an execution thread places a barrier request in the

command queue and waits for a completion signal from the communication thread.

To implement a barrier, the communication thread sends a barrier request to the specified

node set and then monitors barrier calls from other nodes’ communication threads. Once all

nodes have sent a barrier message for the given barrier, the communication thread notifies

the execution thread, which returns control to the running task. One interesting note is that

during a barrier the communication thread must continue to act on requests for barriers

other than the barrier being waited on, as the compiler may generate barriers for different

subsets of nodes.

5.2.3 Cell

The Cell Broadband Engine comprises a PowerPC (PPE) core and eight SPEs. At initial-

ization, the top of the runtime is created on the PPE and an instance of the bottom of the

runtime is started on each of the SPEs. We use the IBM Cell SDK 2.1 and libspe2 for

command and control of SPE resources [IBM, 2007b].
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Figure 5.6: Graphical representation of the Cell runtime

Each SPE waits for commands to execute tasks via mailbox messages. For the PPE to

launch a task in a given SPE, it signals that SPE’s mailbox and the SPE loads the corre-

sponding code overlay of the task and begins execution—SPE’s have no instruction cache

and so code generated for the SPE must include explicit code overlays to be managed by the

runtime. Note that being able to move code through the system and support code overlays

is one of the reasons a task table is passed to the runtime at initialization.

The majority of the runtime interfaces for data transfer have a direct correspondence to

functions in the Cell SDK. Creating a XferList maps to the construction of a DMA list

for the mfc getl and mfc putl SDK functions which are executed on a call to Xfer.

XferWait waits on the tag used to issue the DMA. Allocation in a SPE is mapped to

offsets in a static array created by the compiler, guaranteeing the DMA requirement of 16

byte memory alignment. Synchronization between SPEs is performed through mailbox

signaling routines.

The PPE allocates memory via posix memalign to align arrays to the required DMA trans-

fer alignment. To run a task in each SPE, the PPE sends a message with a task ID corre-

sponding to the address of the task to load as an overlay. Overlays are created for each leaf



CHAPTER 5. PORTABLE RUNTIME SYSTEM 66

CPU

Disk

Disk Runtime

Main Memory

Figure 5.7: Graphical representation of the Disk runtime

task by the build process provided by the compiler and are registered with the runtime on

runtime initialization.

5.2.4 Disk

The disk runtime is interesting because the disk’s address space is logically above the main

processor’s. Specifically, the disk is the top of the runtime and the processor is the bottom

of the runtime, which can pull data from and push data to the parent’s (disk’s) address

space. Our runtime API allows a program to read/write portions of arrays from its address

space to files on disk. Arrays are allocated at the top using mkstemp to create a file handle

in temporary space. This file handle is mapped to the array descriptor for future reference.

Memory is actually allocated by issuing a lseek to the end of the file, using the requested

size as the seek value, and a sentinel is written to the file to verify that the memory could

be allocated on disk.

Data transfers to and from the disk are performed with the Linux Asynchronous I/O API.

The creation of a transfer list (XferList in Figure 5.3) constructs a list of aio cb structures

suitable for a transfer call using lio listio. Memory is transferred using lio listio
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Figure 5.8: Hierarchical representation of the composed Disk and PS3 runtimes

with the appropriate aio read or aio write calls. On a WaitXfer, the runtime checks

the return status of each request and issues an aio suspend to yield the processor until the

request completes.

CallChildTask causes the top to execute the function pointer and transfer control to the

task. The disk itself has no computational resources, and so the disk level must always be

the root of the memory hierarchy—it can never be a child where leaf tasks can be executed.

5.3 Multi-Level Machines With Composed Runtimes

Since the runtimes share a generic interface and have no direct knowledge of each other,

the compiler can generate code that initializes a runtime per pair of adjacent memory lev-

els in the machine. Which runtimes to select is machine dependent and is given by the

programmer in a separate specification of the machine architecture; the actual “plugging

together” of the runtimes is handled by the compiler as part of code generation.

Two key issues are how isolated runtimes can be initialized at multiple levels and how

communication can be overlapped with computation. In our system, both of these are
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Figure 5.10: Hierarchical representation of the composed Cluster and SMP runtimes

handled by appropriate runtime API calls generated by the compiler. Initializing multiple

runtimes is done by initializing the topmost runtime, then calling a task on all children that

initializes the next runtime level, and so on, until all runtimes are initialized. Shutdown is

handled similarly, with each runtime calling a task to shutdown any child runtimes, waiting,

and then shutting down itself. To overlap communication and computation, the compiler

generates code that initiates a data transfer at a parent level and requests task execution on

child levels. Thus, a level in the memory hierarchy can be fetching data while lower levels

can be performing computation.
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For this dissertation, we have chosen several system configurations to demonstrate compo-

sition of runtimes. Currently available Cell machines have a limited amount of memory,

512 MB per Cell on the IBM blades and 256 MB of memory on the Sony Playstation 3,

which uses a Cell processor with 6 SPEs available when running Linux. Given the high

performance of the processor, it is common to have problem sizes limited by available

memory. With the programming model, compiler, and runtimes presented here, we can

compose the Cell runtime and disk runtime to allow running out of core applications on the

Playstation 3 without modification to the user’s Sequoia code. We can compose the cluster

and Cell runtimes to leverage the higher throughput and aggregate memory of a cluster of

Playstation 3’s. Another common configuration is a cluster of SMPs. Instead of requiring

the programmer to write MPI and Pthreads/OpenMP code, the programmer uses the cluster

and SMP runtimes to run Sequoia code unmodified.



Chapter 6

Evaluation

We evaluate our system using several applications written in Sequoia (Table 6.1). We show

that using our runtime system, we can run unmodified Sequoia applications on a variety of

two-level systems (Section 6.3) as well as several multi-level configurations (Section 6.2)

with no source level modifications, only remapping and recompilation. Our evaluation

centers on how efficiently we can utilize each configuration’s bandwidth and compute re-

sources as well as the overheads incurred by our abstraction. We also compare the per-

formance of the applications running on our system against other best known implemen-

tations. Despite our uniform abstraction, we maximize bandwidth or compute resources

for most applications across our configurations and offer competitive performance against

other implementations.

70
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SAXPY BLAS L1 saxpy
SGEMV BLAS L2 sgemv
SGEMM BLAS L3 sgemm
CONV2D Convolution using a 9x9 filter with a large single-precision floating point input signal obeying non-periodic bound-

ary conditions.
FFT3D Discrete Fourier transform of a single-precision complex N3 dataset. Complex data is stored in struct-of-arrays

format.
GRAVITY An O(N2) N-body stellar dynamics simulation on 8192 particles for 100 time steps. We operate in single-precision

using Verlet update and the force calculation is acceleration without jerk [Fukushige et al., 2005].
HMMER Fuzzy protein string matching using Hidden Markov Model evaluation. The Sequoia implementation of this

algorithm is derived from the formulation of HMMER-search for graphics processors given in [Horn et al., 2005]
and is run on a fraction of the NCBI non-redundant database.

Table 6.1: Our application suite

6.1 Two-level Portability

For the two-level portability tests, we utilize the following concrete machine configura-

tions:

• The SMP runtime is mapped to an 8-way, 2.66 GHz Intel Pentium4 Xeon machine

with four dual-core processors and 8 GB of memory.

• The cluster runtime drives a cluster of 16 nodes, each with dual 2.4 GHz Intel Xeon

processors, 1 GB of memory, connected with Infiniband 4X SDR PCI-X HCAs. With

MVAPICH2 0.9.8 [Huang et al., 2006] using VAPI, we achieve ∼400 MB/s node

to node.1 We utilize only one processor per node for this two-level configuration for

direct comparison to previous work.

• The Cell runtime is run both on a single 3.2 GHz Cell processor with 8 SPEs and 1

GB of XDR memory in an IBM QS20 bladeserver [IBM, 2007a], as well as on the
1MVAPICH2 currently exhibits a data integrity issue on our configuration limiting maximum message

length to <16KB resulting in a 25% performance reduction over large transfers using MPI-1 calls in MVA-
PICH
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SMP Disk Cluster Cell PS3 Cluster of SMPs Disk + PS3 Cluster of PS3s
SAXPY 16M 384M 16M 16M 16M 16M 64M 16M
SGEMV 8Kx4K 16Kx16K 8Kx4K 8Kx4K 8Kx4K 8Kx4K 8Kx8K 8Kx4K
SGEMM 4Kx4K 16Kx16K 4Kx4K 4Kx4K 4Kx2K 8Kx8K 8Kx8K 4Kx4K
CONV2D 8Kx4K 16Kx16K 8Kx4K 8Kx4K 4Kx4K 8Kx4K 8Kx8K 8Kx4K
FFT3D 2563 5123 2563 2563 1283 2563 2563 2563

GRAVITY 8192 8192 8192 8192 8192 8192 8192 8192
HMMER 500 MB 500 MB 500 MB 500 MB 160 MB 500 MB 320 MB 500 MB

Table 6.2: Dataset sizes used for each application for each configuration

3.2 GHz Sony Playstation 3 (PS3) Cell processor with 6 SPEs and 256 MB of XDR

memory [Sony, 2007].

• The disk runtime is run on a 2.4 GHz Intel Pentium4 with an Intel 945P chipset, a

Hitachi 180GXP 7,200 RPM ATA/100 hard drive, and 1 GB of memory.

Application performance in effective GFLOPS is shown in Table 6.3. Information about

the dataset sizes used for each configuration are provided in Table 6.2. The time spent in

task execution, waiting on data transfer, and runtime overhead is shown in Figures 6.1-6.5.

We also show the time spent in kernel execution as percentage of the total execution and the

percentage of peak bandwidth achieved in Figures 6.6-6.10. In order to provide a baseline

performance metric to show the tuning level of our kernels, we provide results from a 2.4

GHz Intel Pentium4 Xeon machine with 1 GB of memory directly calling our computation

kernel implementations in Table 6.3. Our application kernels utilize the fastest implemen-

tations publicly available. For configurations using x86 processors, we use FFTW [Frigo,

1999] and the Intel MKL[Intel, 2005], and for configurations using one or more Cell pro-

cessors, we use the IBM SPE matrix [IBM, 2007b] library. All other leaf tasks are our own

best effort implementations, hand-coded in SSE or Cell SPE intrinsics.

Several tests, notably SAXPY and SGEMV, are limited by memory system performance on

all platforms but have high utilization of bandwidth resources. SAXPY is a pure streaming

bandwidth test and achieves ∼40 MB/s from our disk runtime, 3.7 GB/s from our SMP

machine, 19 GB/s from the Cell blade, and 17 GB/s on the PS3, all of which are very close
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Baseline SMP Disk Cluster Cell PS3
SAXPY 0.3 0.7 0.007 4.9 3.5 3.1
SGEMV 1.1 1.7 0.04 12 12 10
SGEMM 6.9 45 5.5 90 119 94
CONV2D 1.9 7.8 0.6 24 85 62
FFT3D 0.7 3.9 0.05 5.5 54 31
GRAVITY 4.8 40 3.7 68 97 71
HMMER 0.9 11 0.9 12 12 7.1

Table 6.3: Two-level Portability - Application performance (GFLOPS) on a 2.4 GHz P4
Xeon (Baseline), 8-way 2.6 6GHz Xeons (SMP), with arrays on a single parallel ATA drive
(Disk), a cluster of 16 2.4 GHz P4 Xeons connected with Infiniband (Cluster), a 3.2 GHz
Cell processor with 8 SPEs (Cell), and a Sony Playstation 3 with a 3.2 GHz Cell processor
and 6 available SPEs.
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Figure 6.1: Execution time breakdown for each benchmark when running on the SMP
runtime
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Figure 6.2: Execution time breakdown for each benchmark when running on the Disk
runtime
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Figure 6.3: Execution time breakdown for each benchmark when running on the Cluster
runtime
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Figure 6.4: Execution time breakdown for each benchmark when running with the Cell
runtime on the IBM QS20 (single Cell)
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Figure 6.5: Execution time breakdown for each benchmark when running with the Cell
runtime on the Sony Playstation 3
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to peak available bandwidth on these machines. The cluster provides an amplification effect

on bandwidth since there is no inter-node communication required for SAXPY, and we

achieve 27.3 GB/s aggregate across the cluster. SGEMV performance behaves similarly,

but compiler optimizations result in the x and y vectors being maintained at the level of the

processor and, as a result, less time is spent in overhead for data transfers. Since Xfers

are implicit in the SMP runtime, it has no direct measurement of memory transfer time,

and shows no idle time waiting on Xfers in Figure 6.1. However, these applications are

limited by memory system performance as can be seen in the bandwidth utilization graphs

in Figures 6.6-6.10.

FFT3D has complex access patterns. On Cell, we use a heavily optimized 3-transpose ver-

sion of the code similar to the implementation of Knight et al. [Knight et al., 2007]. On

the Cell blade, we run a 2563 FFT, and our performance is competitive with the large FFT

implementation for Cell from IBM [Chow et al., 2005], as well as the 3D FFT implemen-

tation of Knight et al. [Knight et al., 2007]. On the PS3, 1283 is the largest cubic 3D FFT

we can fit in-core with the 3-transpose implementation. With this smaller size, the cost of

a DMA, and therefore the time waiting on DMAs, increases. Our other implementations,

running on machines with x86 processors, utilize FFTW for a 2D FFT on XY planes fol-

lowed by a 1D FFT in Z to compute the 3D FFT. On the SMP system, we perform a 2563

FFT and get a memory system limited speedup of 4.7 on eight processors. As can be seen

from Figure 6.6, we achieve below peak memory bandwidth because of the memory access

pattern of FFT3D. We perform a 5123 FFT from disk, first bringing XY planes in-core and

performing XY 2D FFTs, followed by bringing XZ planes in-core and performing multiple

1D FFTs in Z. Despite reading the largest possible blocks of data at a time from disk, we

are bound by disk access performance, with most of the time waiting on memory trans-

fers occurring during the Z-direction FFTs. This read pattern causes us to achieve only

∼40% of the peak disk streaming bandwidth. For the cluster runtime, we distribute the XY
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Figure 6.6: Resource utilization on smp
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Figure 6.7: Resource utilization on disk

planes across the cluster, making XY 2D FFTs very fast. However, the FFTs in Z become

expensive, and we become limited by the cluster interconnect performance.

CONV2D with a 9x9 window tends to be bound by memory system performance on several

of our platforms. From disk, we once again achieve very close to the maximum read

performance available. On the cluster, we distribute the arrays across nodes and, thus, have

to read parts of the image from neighboring nodes and become limited by the interconnect

performance. For the Cell platforms, we are largely compute limited. However, since we

use software-pipelined transfers to the SPEs generated by the compiler to hide memory
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Figure 6.8: Resource utilization on cluster

SAXPY SGEMV SGEMM CONV2D FFT3D GRAVITY HMMER
0

100

R
es

ou
rc

e 
ut

ili
za

tio
n 

(%
)

DRAM Utilization: bandwidth (M1-M0) as percentage of attainable peak
Processor Utilization: percentage of time executing leaf task (M0)

Figure 6.9: Resource utilization on Cell
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Figure 6.10: Resource utilization on Sony Playstation 3
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Figure 6.11: SMP application scaling

latency, leading to smaller array blocks on which to compute, the overhead of the support

set for the convolution begins to become large and limits our performance.

SGEMM is sufficiently compute intensive that all platforms start to become bound by

task execution instead of memory system performance. On our 8-way SMP machine, we

achieve a speedup of 6 and observe 3.8 GB/s from the memory system, which is close to

peak memory performance. Our performance from disk for a 16K by 16K matrix multi-

ply is similar in performance to the in-core performance of a 4K by 4K matrix used for

our baseline results. Our cluster performance for a distributed 4K by 4K matrix multiply

achieves a speedup of 13. On Cell, we are largely computation bound, and the performance

scales with the number of SPEs as can be seen from the performance on the IBM blade vs.

the PS3.

HMMER and GRAVITY are compute bound on all platforms. The only noticeable time

spent in anything but compute for these applications is on the cluster runtime where GRAV-

ITY is idle waiting for memory transfers caused by fetching updated particle locations each
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Figure 6.12: Cluster application scaling
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Figure 6.13: Cell application scaling
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time-step, and on the PS3 with HMMER where we can only fit 160 MB of the NCBI non-

redundant database in memory (the sequences were chosen at random). All other platforms

run the same database subset used in Fatahalian et al. [Fatahalian et al., 2006] for results

parity, which, including the surrounding data structures, totals more than 500 MB. For disk,

we do not bring the database in-core. Instead, we load the database as needed from disk;

yet, performance closely matches that of the in-core version. The SMP exhibits super-

linear scaling because these processors have larger L2 caches (1 MB vs. 512 KB) than

our baseline machine. The cluster achieves a speedup of 13 on 16 nodes, or 83% of the

maximum achievable speedup, with much of the difference due to load imbalance between

nodes when processing different length sequences.

In general, for these applications and dataset sizes, the overhead of the runtime implemen-

tations is low. The disk and cluster runtimes are the most expensive. The disk runtime’s

overhead is due to the kernel calls required for asynchronous I/O. The cluster runtime’s

overhead is due to the DSM emulation and threading API calls. The overheads are mea-

sured as all critical path execution time other than waiting for memory transfers and leaf

task execution. Thus our overhead numbers account for runtime logic, including trans-

fer list creation and task calling/distribution, and time in barriers. The time spent issuing

memory transfers is included within the transfer wait times.

The consequences of our implementation decisions for our Cell and cluster runtimes can

be seen in the performance differences between our system and the custom Cell backend

from Knight et al. [Knight et al., 2007] and the high-level cluster runtime from Fatahalian

et al. [Fatahalian et al., 2006]. When scaling the performance results from Knight et al. to

account for clock rate differences between their 2.4 GHz Cell processor and our 3.2 GHz

Cell processor, we see that our runtime incurs slightly more overhead than their system.

For example, for SGEMM, scaling the previously reported numbers, they would achieve

128 GFLOPS, whereas we achieve 119 GFLOPS, a difference of 7%. For FFT, GRAVITY,
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and HMMER, our performance is 10%, 13%, and 10% lower, respectively, than previously

reported results. This overhead is the difference between our more general runtime and

their custom build environment which produces smaller code, thus allowing for slightly

larger resident working sets in the SPE, more optimization by the compiler by emitting

static bounds on loops, and other similar assistance for the IBM compiler tool-chain to

heavily optimize the generated code.

The differences between our cluster runtime implementation and that of Fatahalian et

al. [Fatahalian et al., 2006] is in their implementation, much of the work performed dy-

namically is now performed at compiler time. Since we have a much thinner layer, we have

less runtime logic overhead in general, and, for some applications, we achieve better perfor-

mance as the generated code has static loop bounds and alignment hints. SAXPY, SGEMV,

and GRAVITY are faster than the previous cluster runtime implementation mainly due to

to these improvements. FFT3D performance is lower on our implementation as compared

to their implementation due to the lower achievable bandwidth when using MPI-2 single-

sided communication through MVAPICH2, as noted above.

We can also explore the performance of our applications running in Sequoia against several

best-known implementations. The Intel MKL provides support for execution of SGEMM

on a cluster of workstations as well as an SMP system. Using the same system configura-

tions and dataset sizes, Intel Cluster MKL achieves 101 GFLOPS and on SMP Intel MKL

achieves 45 GFLOPS compared to our performance of 91 GFLOPS and 44 GFLOPS re-

spectively. We are within 10% of the Intel Cluster MKL performance and within 3% of

the SMP MKL performance. For FFT3D, FFTW 3.2 alpha 2 provides an optimized im-

plementation for a cluster of workstations and SMP machines, as well as an experimental

version for Cell. For the cluster and SMP, FFTW achieves 5.3 GFLOPS and 4.2 GFLOPS

respectively vs. 5.5 GFLOPS and 3.9 GFLOPS from our Sequoia implementations. We ac-

tually outperform the cluster version of FFTW and are less than 10% slower than the SMP
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version. In the case of SMP, we implement the 3D FFT as stated above as a 2D combined

with a 1D pass. When calling FFTW directly, we ask the library to perform a 3D FFT and

let FFTW search for the best implementation.

Although there are not matching implementations for HMMer and Gravity for our plat-

forms, we can compare performance against best known implementations tuned for spe-

cialized architectures. ClawHmmer [Horn et al., 2005] achieves 9.4 GFLOPS on an ATI

X1900XT. On Cell and SMP we surpass this performance, achieving 12 GFLOPS and 11

GFLOPS respectively. In the case of Gravity, we can compare our performance against

an implementation running on a custom accelerator designed specifically for this type of

calculation, the Grape-6A [Fukushige et al., 2005], which achieves 2 billion interactions/s.

Our Cell and PS3 implementations achieve 4 billion interactions/s and 3 billion interac-

tions/s, surpassing the performance of the specialized hardware. This demonstrates that

our Sequoia implementations running on our runtime system are very efficient at using

available machine resources.

6.2 Multi-level Portability

We compose runtimes to explore multi-level portability. By composing the cluster and

SMP runtimes, we can execute on a cluster of SMP nodes comprised of four 4-way Intel

3.16 GHz Pentium4 Xeon machines connected with GigE; we utilize two out of the four

processors in the node for our tests. Using MPICH2 [ANL, 2007], we achieve ∼80 MB/s

node-to-node for large transfers. By composing the disk and Cell runtimes, we can over-

come the memory limitations of the PS3 to run larger, out-of-core datasets from the 60

GB disk in the console. Further, we can combine the cluster and Cell runtimes to drive
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Cluster of SMPs Disk + PS3 Cluster of PS3s
SAXPY 1.9 0.004 5.3
SGEMV 4.4 0.014 15
SGEMM 48 3.7 30
CONV2D 4.8 0.48 19
FFT3D 1.1 0.05 0.36
GRAVITY 50 66 119
HMMER 14 8.3 13

Table 6.4: Multi-level Portability - Application performance (GFLOPS) on four 2-way,
3.16 GHz Intel Pentium 4 Xeons connected via GigE (Cluster of SMPs), a Sony Playstation
3 bringing data from disk (Disk + PS3), and two PS3’s connected via GigE (Cluster of
PS3s).

two PS3’s connected via GigE, achieving a higher peak FLOP rate and support for larger

datasets.

The raw GFLOPS rates for our applications are shown in Table 6.4. Figures 6.14-6.16

show a breakdown of the total execution time for each application on each configuration,

including the task execution time in the lowest level (M0), the overhead between the bottom

two levels (M1-M0), the time idle waiting on Xfer’s between the bottom levels (M1-M0),

overhead between the top two memory levels (M2-M1), and time idle waiting on Xfer’s

between the top levels (M2-M1). Memory system performance of the slowest memory sys-

tem dominates the memory limited applications, whereas the compute limited applications

are dominated by execution time in the bottom-most memory level. On all three config-

urations, SAXPY, SGEMV, CONV2D, and FFT3D become bound by the performance of

the memory system, while GRAVITY and HMMER, which are very math intensive, are

compute bound.

For SAXPY and SGEMV on the cluster of SMPs, we get a bandwidth amplification effect

similar to the cluster runtime from above. Since the data is local to the node, there are no

actual memory transfers, only the overhead of the runtime performing this optimization.

SAXPY and SGEMV also exhibit a larger overhead for M1-M0 which can be attributed

to larger scheduling differences and differing start and completion times of the executing
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Figure 6.14: Execution time breakdown for each benchmark when running on a Cluster of
SMPs
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Figure 6.15: Execution time breakdown for each benchmark when running on a Disk+Sony
Playstation 3
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Figure 6.16: Execution time breakdown for each benchmark when running on a Cluster of
Sony Playstation 3’s



CHAPTER 6. EVALUATION 85

tasks. CONV2D has the scaling behavior of the 8-way SMP from Section 6.3 but with the

bandwidth limitations of the GigE interconnect for transmission of support regions. FFT3D

becomes bound by the interconnect performance during the FFTs in the Z direction, similar

to the cluster results from Section 6.3. SGEMM using 8K by 8K matrices is compute

bound but we are able to hide most of the data transfer time. HMMER and GRAVITY are

insensitive to the memory performance of this configuration and scale comparably to the

8-way SMP system when clock rate differences are taken into account.

By composing the disk and Cell runtimes, we are able to overcome the memory size limi-

tations on the PS3 and handle larger datasets. However, attaching a high performance pro-

cessor to a 30 MB/s memory system has a large impact on application performance if the

compute to bandwidth ratio is not extremely high. Only HMMER and GRAVITY achieve

performance close to the in-core versions, with performance limited mainly by overheads

in the runtimes. We ran HMMER with a 500 MB portion of the NCBI non-redundant

database from disk. As with the disk configuration from Section 6.3 for GRAVITY, at each

timestep, the particles are read from and written to disk. For SGEMM, there is not enough

main memory currently available to allow us to work on large enough blocks in-core to hide

the transfer latency from disk and we currently spend 80% of our time waiting on disk. All

the other applications perform at the speed of the disk, but we are able to run much larger

instances than possible in-core.

We are also able to drive two PS3’s connected with GigE by combining the cluster and

Cell runtimes. HMMER and GRAVITY nearly double in performance across two PS3’s as

compared to the performance of a single PS3, and HMMER can run on a database twice

the size. The combined runtime overhead on GRAVITY is ∼8% of the total execution

time. For HMMER, we spend ∼15% of the execution time waiting on memory due to

the naive distribution of the protein sequences. SGEMM scalability is largely bound by

interconnect performance; with the limited available memory, we cannot hide the transfer
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SMP Disk Cluster Cluster Cluster Cell
Infiniband GigE PS3

TaskCall 38 37 52 210 270 100
Alloc 13 3940 12 72.2 110 2.3
XferList 0.9 1.2 1.7 1.7 5.1 0.02
Xfer 0.7 31 13 (local) 19 (local) 35 (local) 0.2

30 (remote) 179 (remote) 382 (remote)
Barrier 88 N/A 221 315 610 0.3

Table 6.5: Overhead time in microseconds for the performance critical code paths. For the
cluster runtimes, we include results for a transfer that involves data that is owned by the
node (local) as well as data owned by a remote node (remote).

of the B matrix with computation. FFT3D is limited to network interconnect performance

during the Z direction FFTs, similar to the other platforms. SAXPY and SGEMV are bound

by M1-M0 DMA performance between the SPE’s LS memory and node memory as well as

runtime overheads. CONV2D are largely limited by the GigE interconnect when moving

non-local portions of the image between nodes.

6.3 Runtime Overheads

In Table 6.5, we show the overhead of the critical parts of the runtime API for each runtime

implementation measured in microseconds. TaskCall is the time for CallChildTask to

execute an empty function on a single child and the immediate wait for the completion of

the task (WaitTask). For the cluster runtime, this is the time to execute a task on a remote

node. Alloc is the time it takes to allocate the smallest array possible for each runtime

(AllocArray), a 16 byte array for the Cell runtime and a 1 byte array for all others, add

the array to the system (AddArray), remove the array from the system (RemoveArray),

and release any resources created (FreeArray). XferList is the time to create list via

CreateXferList with a single entry to transfer the smallest array possible between the

parent and child and as well as the time to release any resources created (FreeXferList).

Xfer is the time to transfer the smallest array via a Xfer call and immediately wait for
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the transfer to complete (WaitXfer). For the cluster runtime which allocates a distributed

array, we provide values for the transfer time if the results are local to the node as well as

the cost of a remote access. For the disk runtime, all transfers occur from the file cache to

differentiate the runtime overhead from the disk access latency. Barrier measures the time

to complete a barrier across all children in the largest test configuration, i.e. 16 children for

the cluster.

In general, our overheads are low, but non-trivial, for different API calls. For the SMP run-

time, the largest overheads come from the cost of a task call and return, 38 microseconds,

and the cost of a barrier, 88 microseconds. In the case of a task call and return, the overhead

comes at the cost of creating a task execution request object and enqueuing it onto the task

queue of the specified child. The parent has to lock the child queue, enqueue the object,

and signal the waiting child thread. The child then has to wake up, recover the lock, run the

function, and then signal the parent for completion. This cost is on the order of 100,000 cy-

cles. A barrier requires similar locking and signaling, but there are eight processors vying

for the mutex instead of just two. This increases the overhead to close to 250,000 cycles.

For the disk runtime, there is a disproportionate cost of an allocation, 3,940 microseconds –

two orders of magnitude more expensive than other calls. This massive overhead, millions

of cycles, is caused by the cost of creating a file on disk. However, allocations in the root

of the hierarchy are rare for our applications and allocations are generally not in the critical

execution path in optimized programs. XferList creation is slightly more expensive than

on the SMP runtime because, instead of just storing pointers and offsets, we have to allocate

and fill in structs for the Async I/O API. Since data transfers in the disk runtime rely on

the Async I/O API in the Linux kernel, the cost of Xfer is much larger than most other

runtimes. We have to post the asynchronous transfer request to the kernel and then wait for

the transfer to complete and receive a signal from the kernel. It should be noted that we

have constructed the test to read from the file cache and not access the disk, just traverse
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all of the runtime and system calls. Since the disk runtime has a single child, barriers are

not applicable for this runtime.

For the cluster runtime, we present results for our implementation running on our differ-

ent base configurations, the 16 node Infiniband cluster, the 4 node Gigabit Ethernet x86

based cluster, and a 2 node Sony Playstation 3 cluster. As expected, the overheads on the

Infiniband cluster are much lower than on the other configurations using Gigabit Ether-

net. In fact, our Infiniband implementation provides 5.8 microsecond latency for single

byte messages and bandwidths of over 400 MB/s for large messages. The Gigabit Ethernet

cluster has a latency of 126 microseconds and the PS3 cluster has a latency of 198 mi-

croseconds. The measured overhead cost of data transfers listed in Table 6.5 includes these

network latencies. The differences in latencies are reflected in our overheads as we use

small messages for communicating with nodes for task execution, barriers, and transfers.

When requesting a data transfer, there are overheads for communicating between the com-

munication and execution threads to initiate and wait for transfers as well as overheads for

comparing the requested data against the interval tree to detect which node(s) we have to

communicate with. When data transfers involve remote nodes, we incur all the overheads

to setup and perform single sided communication (gets and puts) to other nodes. When data

transfers are local to a node (e.g. the local node owns the portion of the distribution data

transfers are being requested with) there are overheads in performing the pointer manipu-

lation to prevent data copies. Barriers are much more costly on our cluster implementation

than on others because our implementation relies on all nodes participating in the barrier

sending messages to the other nodes in the barrier, as well as the communication thread

and execution thread using mutexes to communicate. Barrier performance degrades as the

underlying communication latency increases from the Infiniband cluster to the Playstation

3 cluster.
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For the Cell implementation, calling a task on a child is orders of magnitude more costly

than others. The largest overhead factor is the loading of the task overlay into the SPE.

With SDK 2.1 and our overlay loading code, more than half of the overhead, 64 microsec-

onds, is spent loading the code and starting execution of the task. The next largest overhead

is comprised of the communication via mailboxing with the PPE for starting the task and

notification of completion, 33 microseconds. The rest of the overhead, around 3 microsec-

onds, is from the transfer of data from PPE to SPE required for execution such as pointers

to arrays in the array table and LS addresses of the other SPEs for signaling. The run-

time API calls involving transfer list creation and data transfers map very closely to calls

provided in the Cell SDK minimizing overheads.

As runtimes are composed for more complex machines, the overheads of each runtime com-

pose. For example, compare the overheads of the SMP runtime (Figure 6.1) and the cluster

runtime (Figure 6.3) against the composed cluster of SMPs configuration (Figure 6.14) for

different applications. The overheads in the composed machine are roughly the sum of the

overheads of the individual runtimes. As seen in Figure 6.16, there is a notable exception to

this behavior with SAXPY and SGEMV applications when running on the cluster of Sony

Playstation 3’s. The overheads of the Cell runtime are much larger when running with the

cluster runtime as compared to running alone. This is caused by an interaction of cluster

runtime with the memory system, causing the initiation of transfers between PPE and SPE,

barriers, and overlay loading to take longer than expected. This is viewed as a bug in the

implementation of the Cell SDK and MPICH-2 libraries we are using.



Chapter 7

Discussion

7.1 Machine Abstraction

We have shown that with our machine abstraction, we can efficiently map onto several

common machine configurations, notably the Cell processor, a cluster, and a SMP. Further-

more, we can run on composite machines comprised of these architectures. One unique

feature of this abstraction is that we can treat disk systems in the same manner as other

parts of the memory hierarchy providing a uniform abstraction which includes I/O devices.

Our abstraction allow us to capture the performance critical aspects of a machine: efficient

use of the memory hierarchy and parallel execution.

One of the requirements of our abstraction is that a machine must be mapped into a tree

hierarchy. While this matches some machines well, like those presented in this dissertation,

other architectures may not have an efficient representation as a tree of memories. A com-

mon configuration that is hard to map into a tree abstraction is a cluster with a distributed
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disk system. If we treat the distributed disk system as a virtual level representing the ag-

gregate disk system with a child for each disk, there is no way to treat the aggregate of the

cluster memory as a single memory module as this is not a tree structure, e.g. the aggre-

gate disk is a fan-out but the single aggregate cluster memory requires a fan-in. For such

a machine, we would have to limit the representation to the aggregate of the disk memory

and not model the aggregate of the cluster memory, potentially forgoing the ability to use

the high speed network interconnect for node to node communication, and limit commu-

nication to be through the distributed disk interconnect. However, in many configurations

like this, the disks are within each of the nodes or the distributed disk system uses the same

interconnect as node to node communication, making the node interconnect and the disk

interconnect are the same.

Complex interconnect topologies are also difficult to model using a tree based abstrac-

tion. Although we can naturally model tree based interconnection networks for mesh, ring,

torus, hypercube and other topologies, we have to either model the processors as having

equal communication distance, or only capture a portion of the interconnect capabilities.

For example, if we attempt to model a 1-D mesh network as a tree, we would split the pro-

cessors in left and right halves all the way down to pairs of processors. Although processor

N/2 and processor N/2+1 have a physical connection, that connection cannot be realized

in a tree abstraction.

7.2 Portable Runtime System

As we have shown in Chapter 6, our runtime system allows us to execute unmodified Se-

quoia applications on a variety of platforms achieving an unprecedented degree of machine



CHAPTER 7. DISCUSSION 92

portability. Our runtimes have low overheads, demonstrating that the machine abstrac-

tion and runtime interface allow for efficient implementations and allow applications to

maximize bandwidth and computational resource utilization of the machine. The runtime

interface is also simple with only 18 entry points, leading to rapid implementation. The

cluster and Cell runtime implementation were the most complex, but unoptimized imple-

mentations were up and running within a few man weeks. The SMP and disk runtime

implementations were only a few man days. Since the runtimes could be composed, there

was no development time when moving to more complex machines.

Since the runtime system is designed to closely match the machine abstraction we have cho-

sen, it does not export non-portable, but potentially useful, hardware features. An example

of this is that the runtime on the Cell processor does not expose sibling communication

even though the hardware is capable of supporting it and it can provide a much higher

performance communication mechanism (204.8 GB/s SPE to SPE transfers vs. 25.6 GB/s

for SPE to memory transfers). In the current system, to use this functionality, a runtime

would need to be added to abstract sibling to sibling communication through a virtual level.

The overhead for managing a virtual level can be costly, leading to efficiency problems for

applications requiring SPE to SPE communication for performance.

The design of the presented runtime does not currently export portable high-level prim-

itives, such as reduction or parallel prefix scan operations, that might be able to make

use of specialized hardware features. For example, some systems like Blue Gene/L have

custom reduction networks. If the runtime system presented some of these high-level oper-

ations as part of the interface, instead of relying on the compiler to generate code for these

operations, it would be possible to take advantage of specialized hardware or optimized

implementations available on each machine. However, adding higher level functionality is

a slippery slope and makes the interface more complex and more difficult to implement.
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The current runtime system cannot handle variable computational load dynamically. Cur-

rently, the runtime system schedules tasks as instructed by the caller. However, all the

runtimes are currently implemented using task queue structures. Instead of assigning tasks

explicitly on the children, the parent could instead enqueue tasks on a work queue and al-

low idle processors to schedule work. Another option would be to use task queues per child

and allow children to steal work from other children.

7.3 Sequoia

Sequoia introduces the notion of a hierarchical memory directly into the programming

model to increase both the performance and portability of applications. Sequoia programs

describe how data is moved and where it resides in a machine’s memory hierarchy along

with how computation is performed via tasks. Tasks are an abstraction for self-contained

units of communication, working set, and computation. Tasks isolate each computation in

its own local address space and express parallelism. To enable portability, Sequoia main-

tains a strict separation between algorithm description and machine specific optimization.

While Sequoia excels on regular applications or applications that can be easily regularized,

the Sequoia programming model can make it difficult to express several types of applica-

tions. Applications with irregular data access patterns can be difficult to express in Sequoia.

In a two-level machine, a child is capable of issuing read requests from the highest memory

level array, thus being able to read from any memory location. However, in a multi-level

machine, the leaf can only read from its parent, but its parent may only have a portion of the

entire data. Thus, the only practical way to run irregular computations that span multiple

physical address spaces is to regularize the application.
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Some applications are very difficult to regularize and achieve efficient execution. For ex-

ample, ray-tracing relies on the traversal of a spacial subdivision structure, often a kD-tree,

for efficiency. For primary rays, it is possible to perform a screen based subdivision and

calculate the required sub-tree for each ray in the scene, but these sub-trees may be of vari-

able size. Where things become difficult is in the behavior of secondary rays. A ray that

reflects of a surface may require very different parts of the acceleration structure that the

parent in a multi-level system may not have. In this case, the Sequoia model forces the

user to return to the parent, saving off required state, and performing computation on the

parent to figure out what data is required by its children, attempt to fetch the needed data

and then return execution to the child. If control must be returned all the way up to the root

of the hierarchy, the saved state required to restart all of the children may be quite large.

Applications like raytracing which assume global memory access would have to be refor-

mulated to execute efficiently in Sequoia. However, applications like this cannot run on

any architecture without shared memory support, and as shared memory machines provide

progressively less uniform memory access, these algorithms will need to be reformulated

to achieve efficient performance.

Applications requiring variable output are also difficult to express in Sequoia. Just like

applications which require irregular input must provide a maximum size and the runtime

will allocate for this worst case, variable output must also allocate for the largest possible

size. However, since writes to this array occur in parallel, without knowing ahead of time

how much data will be written, in the general case the user will end up with gaps in the final

output. As such, either the user must manage this behavior by tracking how much data was

written to each block in order to allow them to generate indexes with which to read the data

as input, or the user/runtime has to compact the data on the return of control to the parent.

Sequoia does not currently define the semantics of this behavior and currently performs no

compaction on the data.
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Mutable data structures are also difficult to express in Sequoia. The hierarchical nature of

Sequoia makes global data structure manipulation difficult. For example, consider insertion

into a balanced tree structure. A leaf task may insert an element into the tree that causes a

rotation about the root of the tree. This rotation will affect the data structure as viewed by

all hierarchy nodes. The only way to perform this update would be to return control all the

way up to the parent, but Sequoia provides no mechanism to inform all tasks complete and

return control to the parent. Furthermore, on some machines which do not have a control

processor at the root that can access the entire global memory, a disk system for example,

the user must provide a way to decompose their data access into arrays that can fit in the

child’s memory for execution.

Large applications can be difficult to manage in Sequoia because of the mapping and tuning

requirements. All the applications in this dissertation were mapped to and tuned for each

machine by hand. For large applications, this can be daunting, especially when it comes to

the interaction between producer/consumer pairs or space restrictions in the memory levels.

We have begun recent work into automatically mapping applications to a machine and per-

forming a search over tunables to improve performance and handle large applications [Ren

et al., 2008]. This auto-tuning framework fits nicely into the Sequoia model and makes the

mapping and tuning of large applications more approachable.

7.4 Future Work

There are also other systems for which it would be useful to develop an implementation of

our API. For example, GPUs use an explicit memory management system to move data and

computational kernels on and off the card. The BrookGPU system [Buck et al., 2004] has a

simple runtime interface which can be adapted to our interface. Having an implementation
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of our runtime for GPUs would, in combination with our existing runtimes, immediately

enable running on multiple GPUs in a machine, a cluster of nodes with GPUs, and other,

more complex compositions of GPU systems. However, it should be mentioned that gen-

erating efficient leaf tasks for GPUs is non-trivial; our runtime and system would aim to

solve data movement and execution of kernels on the GPUs, not the development of the

kernels themselves.

Scalability to very large machines, which we have not yet demonstrated, is future work.

Previous successful work on distributed shared memory implementations for large clusters

can be adapted to our runtime system. Dealing with load imbalance is also a problem for the

current implementation. However, since our runtimes use queues to control task execution,

adapting previous work on work-stealing techniques appears to be a promising solution,

but will require support from the compiler for dynamic scheduling of tasks by the runtime

and consideration of the impact of rescheduling tasks on locality as discussed in Blumofe

et al. [Blumofe et al., 1995] and explored further in Acar et al. [Acar et al., 2000]. Scaling

to machines with many more processors as well as even deeper memory hierarchies is the

next goal of this work.

Research into transactional memory has great promise to improve the behavior and cost

of synchronization and allowing for efficient manipulation of mutable data structures in

parallel [Herlihy and Moss, 1993; Shavit and Touitou, 1995; Harris et al., 2005; Carlstrom

et al., 2006]. It would be interesting to explore combining the efficient memory hierarchy

behavior of Sequoia with transactional memory. Since a task encompasses the data and

execution environment of a task, as simple way to combine the techniques is to wrap a task

in a transaction and re-execute the task if rollback is required. This would remove the need

for Sequoia to forbid write aliasing, allowing for more flexible application design, as well

as providing for hierarchical transactions. An unexplored but potentially interesting avenue

of research is the effect of adding support for transactions directly into the Sequoia model.
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This would potentially give programmers the full flexibility of transactions in a general

way that may be memory hierarchy aware but still allow for the efficient expression of

parallelism and communication through the memory hierarchy.



Chapter 8

Conclusion

This dissertation has presented a runtime system that allows programs written in Sequoia,

and more generally in the parallel memory hierarchy model, to be portable across a wide

variety of machines, including those with more than two levels of memory and with varying

data transfer and execution mechanisms. Utilizing our runtime abstraction, our applications

run on multiple platforms without source level modifications and maximize the utilization

of available bandwidth and computational resources on those platforms.

One of the most interesting features of our design is that virtualization of all memory levels

allows the user to use disk and distributed memory resources in the same way that they

use other memory systems. Out-of-core algorithms using disk fit naturally into our model,

allowing applications on memory constrained systems like the Sony Playstation 3 to run as

efficiently as possible. Programs can make use of the entire aggregate memory and compute

power of a distributed memory machine using the same mechanisms. And, despite the

explicit data transfers in the programming model, through a contract between the runtime

and compiler we also run efficiently on shared memory machines without any extra data

movement.
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All of our runtimes are implemented using widely used APIs and systems. Many systems,

like those underpinning the languages and runtime systems from Section 2.2, could be

adapted relatively easily to support our interface. Conversely, our interface and implemen-

tations are also easily adaptable for systems that use explicit memory transfers and control

of parallel resources. And, although we have presented the runtime as a compiler target, it

can also be used directly as a simple programming API.

8.1 Thesis Summary

First uniform interface for multi-level memory hierarchies We have described a uni-

form runtime interface that provides mechanism independence for communication

and thread management. This allows us to abstract SMPs, clusters, disk systems,

Cell blades, and a Sony Playstation 3 with the same interface. Furthermore, we can

abstract complex machines through composition of runtimes allowing for program

execution on a cluster of SMPs, a Sony Playstation 3 pulling data from disk, and a

cluster of Sony Playstation 3’s.

Simple runtime interface The runtime interface has only a few entry points that require

implementation for supporting the abstraction. Runtimes can choose to extend and

add features for data layout/distributions or more complex execution, but the base

interface is simple and much of the interface is easy to implement on many machines

using standard APIs.

Code portability By using the proposed runtime system, we have shown unmodified Se-

quoia programs running on multiple machines by just changing the runtime being

called. We have also shown that along with a compiler, we can compose runtimes
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and run the same Sequoia programs on machines with more complex memory hier-

archies.

8.2 Observations

There have been many lessons learned throughout this research project. Exploring al-

gorithm implementations across different architectures show common performance traits.

Performance oriented programming on all architectures primarily entails careful manage-

ment of communication through the machine and the exploitation of parallel computational

resources. Memory performance is becoming such a large performance bottleneck on large

machines that in practice, even if shared memory semantics are available on a machine,

performance oriented programmers abandon shared memory programming on large shared

memory machines because of the non-uniform memory access performance. Instead the

programmers are switching to distributed memory techniques and explicitly controlling

data layout and access. On clusters, programmers spend a large amount of time refactor-

ing their code and algorithms to minimize communication. The issue is that programmers

generally do not start with the idea of minimizing communication cost, and sometimes do-

ing so requires a different algorithm than originally chosen. Often back-porting code from

the Cell or cluster implementation will outperform the original code on a shared memory

machine because the programmer has been forced to focus on limiting communication.

The cost of synchronization and data transfers has become a dominant factor in the per-

formance of many algorithms. Many programming languages and models have focused on

expressing parallelism but have not concerned themselves with helping the programmer to

describe the transfer of data through the memory hierarchy. As the difference in bandwidth
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and latency between hierarchy levels continues to grow, the problem of efficiently manag-

ing data movement through the machine becomes paramount. On parallel systems, many

applications are limited not by computation but instead memory bandwidth. Since efficient

use of the memory system is of such great importance to performance, Sequoia was de-

signed to make the best use of the memory system as possible by forcing the programmer

to express how they are using data so that communication can be structured as efficiently as

possible. Moving forward, we hope that future languages continue to emphasize structured

communication as well as computation and explore ways to handle synchronization and

irregular applications.

It is important to note that we are beginning to shift towards consumer parallel computing

on a large scale. Both AMD and Intel are shipping quad core processors today and have

roadmaps showing processors with greater than 64 cores by 2015. GPUs are already start-

ing to be used for tasks other than graphics because of their processing capabilities, 0.5

TFLOPS in the current generation. Efficient GPGPU programs are massively data-parallel,

but newer architectures are gaining synchronization and communication capabilities. Game

consoles developers are already contending with parallel programming environments with

heterogeneous cores. It is unclear whether the future of parallel processing will be in ho-

mogeneous designs like Intel’s Larabee or in heterogeneous designs like AMD’s Fusion,

but the fundamental issue for programmers will be how to efficiently manage the mem-

ory hierarchy and parallel processing resources. However, each new parallel architecture

has come with its own programming environment. The overwhelming mix of architectures

and programming models make it difficult for a developer to produce and ship products

across a wide variety of platforms. Better programming models are needed that provide

abstractions that work across as many architectures as possible, reducing or eliminating

the porting effort that can swamp developers and limit application support to a subset of

consumer systems.
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It is my belief the largest fundamental problem in computer science is that the use common

data structures and the data access behavior of common algorithms are not well understood

in the face of parallelism. Many programmers start with heavily optimized sequential al-

gorithms and attempt to port them to parallel machines and are dismayed by the scaling

performance. Moreover, most programmers and computer scientists focus heavily on using

data structures which were designed without parallelism in mind. Most parallel data struc-

tures are built from sequential data structures and rely on fine-grain locking semantics to

provide correctness that do not scale well to large machines. Transactional memory looks

promising in this area, but this research area is still young and much of the effort as focused

on commonly used data structures and algorithms and there has not been much exploration

into new data structures and algorithms that maximize the benefits of transactional memory.

We hope that more research begins to go into new parallel algorithms and data structures

and that the computer science curriculum begins to require undergraduates take courses in

parallel programming (in any well established language) and parallel data structures.
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8.3 Last Words

In summary, the Sequoia environment including the language, compiler, and runtime sys-

tem provides a way to design and run applications that maximize the utilization of machine

resources while allowing for portability across many machine configurations. We have

shown that an interface can be designed to capture performance critical aspects of many

common architectures while abstracting the different architecture mechanisms with low

overhead. Our hope is that many of the ideas behind the system will influence other par-

allel programming languages and runtimes in the way they handle expressing the memory

hierarchy. Sequoia makes the programmer carefully think about how to decompose their

computation and data into tasks and think about how data is being used and manipulated

in their algorithms. If we continue on the current trend, architectures will gain ever deeper

and more complex memory hierarchies in order to bridge the gap between computational

performance and memory bandwidth, and we will gain ever increasing numbers of parallel

processing elements. For applications to increase performance, programmers will have to

(re)design algorithms that can make the best use of the memory hierarchy and scale with

increasing processor counts, and we need programming models and abstractions that assist

the programmer in this task.
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