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A little about me

http://graphics.stanford.edu/~mhouston
Education:
– UC San Diego, Computer Science BS
– Stanford University, Computer Science MS
– Currently a PhD candidate at Stanford University

Research
– Parallel Rendering
– High performance computing
– Computation on graphics processors (GPGPU)
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What can you do on GPUs other than graphics?

Large matrix/vector operations (BLAS)
Protein Folding (Molecular Dynamics)
FFT (SETI, signal processing)
Ray Tracing
Physics Simulation [cloth, fluid, collision]
Sequence Matching (Hidden Markov Models)
Speech Recognition (Hidden Markov Models, Neural nets)
Databases
Sort/Search
Medical Imaging (image segmentation, processing)
And many, many more…

http://www.gpgpu.org
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Why use GPUs?

COTS
– In every machine

Performance
– Intel 3.0 GHz Pentium 4

• 12 GFLOPs peak (MAD)
• 5.96 GB/s to main memory

– ATI Radeon X1800XT
• 120 GFLOPs peak (fragment engine)
• 42 GB/s to video memory



5Mike Houston - Stanford University Graphics Lab

Task vs. Data parallelism

Task parallel
– Independent processes with little communication
– Easy to use

• “Free” on modern operating systems with SMP

Data parallel
– Lots of data on which the same computation is being executed
– No dependencies between data elements in each step in the 

computation
– Can saturate many ALUs
– But often requires redesign of traditional algorithms
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CPU vs. GPU

CPU
– Really fast caches (great for data reuse)
– Fine branching granularity
– Lots of different processes/threads
– High performance on a single thread of execution

GPU
– Lots of math units
– Fast access to onboard memory
– Run a program on each fragment/vertex
– High throughput on parallel tasks

CPUs are great for task parallelism
GPUs are great for data parallelism
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The Importance of Data Parallelism for GPUs

GPUs are designed for highly parallel tasks like rendering
GPUs process independent vertices and fragments
– Temporary registers are zeroed
– No shared or static data
– No read-modify-write buffers
– In short, no communication between vertices or fragments

Data-parallel processing
– GPU architectures are ALU-heavy

• Multiple vertex & pixel pipelines
• Lots of compute power

– GPU memory systems are designed to stream data
• Linear access patterns can be prefetched
• Hide memory latency

Courtesy GPGPU.org
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GPGPU Terminology
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Arithmetic Intensity

Arithmetic intensity
– Math operations per word transferred
– Computation / bandwidth

Ideal apps to target GPGPU have:
– Large data sets
– High parallelism
– Minimal dependencies between data elements
– High arithmetic intensity
– Lots of work to do without CPU intervention

Courtesy GPGPU.org
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Data Streams & Kernels

Streams
– Collection of records requiring similar computation

• Vertex positions, Voxels, FEM cells, etc.
– Provide data parallelism

Kernels
– Functions applied to each element in stream

• transforms, PDE, …
– No dependencies between stream elements

• Encourage high Arithmetic Intensity

Courtesy GPGPU.org
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Scatter vs. Gather

Gather
– Indirect read from memory ( x = a[i] )
– Naturally maps to a texture fetch
– Used to access data structures and data streams

Scatter
– Indirect write to memory ( a[i] = x )
– Difficult to emulate:

• Render to vertex array
• Sorting buffer

– Needed for building many data structures
– Usually done on the CPU
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Mapping algorithms to the GPU
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Mapping CPU algorithms to the GPU

Basics
– Stream/Arrays -> Textures
– Parallel loops -> Quads
– Loop body -> vertex + fragment program
– Output arrays -> render targets
– Memory read -> texture fetch
– Memory write -> framebuffer write

Controlling the parallel loop
– Rasterization = Kernel Invocation
– Texture Coordinates = Computational Domain
– Vertex Coordinates = Computational Range

Courtesy GPGPU.org
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Computational Resources

Programmable parallel processors
– Vertex & Fragment pipelines

Rasterizer
– Mostly useful for interpolating values (texture coordinates) and

per-vertex constants

Texture unit
– Read-only memory interface

Render to texture
– Write-only memory interface

Courtesy GPGPU.org
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Vertex Processors

Fully programmable (SIMD / MIMD)
Processes 4-vectors (RGBA / XYZW)
Capable of scatter but not gather
– Can change the location of current vertex
– Cannot read info from other vertices
– Can only read a small constant memory

Vertex Texture Fetch
– Random access memory for vertices
– Limited gather capabilities

• Can fetch from texture
• Cannot fetch from current vertex stream

Courtesy GPGPU.org
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Fragment Processors

Fully programmable (SIMD)
Processes 4-component vectors (RGBA / XYZW)
Random access memory read (textures)
Generally capable of gather but not scatter
– Indirect memory read (texture fetch), but no indirect memory write
– Output address fixed to a specific pixel

Typically more useful than vertex processor
– More fragment pipelines than vertex pipelines
– Direct output (fragment processor is at end of pipeline)
– Better memory read performance

For GPGPU, we mainly concentrate on using the fragment 
processors
– Most of the flops
– Highest memory bandwidth

Courtesy GPGPU.org
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GPGPU example – Adding Vectors 

float a[5*5];
float b[5*5];
float c[5*5];
//initialize vector a
//initialize vector b
for(int i=0; i<5*5; i++)
{

c[i] = a[i] + b[i];
}

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Place arrays into 2D textures
Convert loop body into a shader
Loop body = Render a quad

– Needs to cover all the pixels in the 
output

– 1:1 mapping between pixels and texels
Readback framebuffer into result array

!!ARBfp1.0

TEMP R0;

TEMP R1;

TEX R0, fragment.position, texture[0], 2D;

TEX R1, fragment.position, texture[1], 2D;

ADD R0, R0, R1;

MOV fragment.color, R0;
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How this basically works – Adding vectors

Bind Input Textures

Bind Render Targets

Load Shader

Render Quad

Readback Buffer

Set Shader Params

!!ARBfp1.0

TEMP R0;

TEMP R1;

TEX R0, fragment.position, texture[0], 2D;

TEX R1, fragment.position, texture[1], 2D;

ADD R0, R0, R1;

MOV fragment.color, R0;

Vector A Vector B

Vector C

C = A+B

,



19Mike Houston - Stanford University Graphics Lab

Rolling your own GPGPU apps

Lots of information on GPGPU.org
For those with a strong graphics background:
– Do all the graphics setup yourself
– Write your kernels:

• Use high level languages 
– Cg, HLSL, ASHLI

• Or, direct assembly
– ARB_fragment_program, ps20, ps2a, ps2b, ps30

High level languages and systems to make GPGPU 
easier
– Brook (http://graphics.stanford.edu/projects/brookgpu/)
– Sh (http://libsh.org)
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BrookGPU

History
– Developed at Stanford University
– Goal: allow non-graphics users to use GPUs for computation
– Lots of GPGPU apps written in Brook

Design
– C based language with streaming extensions
– Compiles kernels to DX9 and OpenGL shading models
– Runtimes (DX9/OpenGL) handle all graphics commands

Performance
– 80-90% of hand tuned GPU application in many cases
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GPGPU and the ATI X1800
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GPGPU on the ATI X1800

IEEE 32-bit floating point
– Simplifies precision issues in applications

Long programs
– We can now handle larger applications
– 512 static instructions
– Effectively unlimited dynamic instructions

Branching and Looping
– No performance cliffs for dynamic branching and looping
– Fine branch granularity: ~16 fragments

Faster upload/download
– 50-100% increase in PCIe bandwidth over last generation
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GPGPU on the ATI X1800, cont.

Advanced memory controller
– Latency hiding for streaming reads and writes to memory

• With enough math ops you can hide all memory access!
– Large bandwidth improvement over previous generation

Scatter support (a[i] = x)
– Arbitrary number of float outputs from fragment processors
– Uncached reads and writes for register spilling

F-Buffer
– Support for linearizing datasets
– Store temporaries “in flight”
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GPGPU on the ATI X1800, cont.

Flexibility
– Unlimited texture reads
– Unlimited dependent texture reads
– 32 hardware registers per fragment

512MB memory support
– Larger datasets without going to system memory
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Performance basics for GPGPU – X1800XT 
(from GPUBench)

Compute
– 83 GFLOPs (MAD)

Memory
– 42 GB/s cache bandwidth
– 21 GB/s streaming bandwidth
– 4 cycle latency for a float4 fetch (cache hit)
– 8 cycle latency for a float4 fetch (streaming)

Branch granularity – 16 fragments
Offload to GPU
– Download (GPU -> CPU): 900 MB/s 
– Upload     (CPU -> GPU): 1.4 GB/s

http://graphics.stanford.edu/projects/gpubench
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A few examples on the 

ATI X1800XT
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BLAS

Basic Linear Algebra Subprograms
– High performance computing

• The basis for LINPACK benchmarks
• Heavily used in simulation

– Ubiquitous in many math packages
• MatLab™
• LAPACK

BLAS 1: scalar, vector, vector/vector operations
BLAS 2: matrix-vector operations 
BLAS 3: matrix-matrix operations
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BLAS GPU Performance

saxpy (BLAS1) – single precision vector-scalar product
sgemv (BLAS2) – single precision matrix-vector product
sgemm (BLAS3) – single precision matrix-matrix product

Relative Performance

0
1
2
3
4
5
6
7
8
9

10
11
12

saxpy sgemv sgemm

3.0GHz P4
2.5GHz G5
Nvidia 7800GTX
ATI X1800XT
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HMMer – Protein sequence matching

Goal
– Find matching patterns between protein sequences
– Relationship between diseases and genetics
– Genetic relationships between species

Problem
– HUGE databases to search against
– Queries take lots of time to process

• Researches start searches and go home for the night
Core Algorithm (hmmsearch)
– Viterbi algorithm
– Compare a Hidden Markov Model against a large database of 

protein sequences
Paper at IEEE Supercomputing 2005
– http://graphics.stanford.edu/papers/clawhmmer/
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HMMer – Performance

X1800XT

Relative Performance
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Protein Folding

GROMACS provides extremely high 
performance compared to all other programs.
Lot of algorithmic optimizations:
– Own software routines to calculate the 

inverse square root.
– Inner loops optimized to remove all 

conditionals.
– Loops use SSE and 3DNow! multimedia 

instructions for x86 processors
– For Power PC G4 and later processors: 

Altivec instructions provided
Normally 3-10 times faster than any other 
program.
Core algorithm in Folding@Home
http://www.gromacs.org
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GROMACS - Performance

Relative Performance

0 0.5 1 1.5 2 2.5 3 3.5 4

3.0GHz P4

2.5GHz G5

NVIDIA 7800GTX

ATI X1800XT

Force Kernel Only

Complete Application
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GROMACS – GPU Implementation

Written using Brook by non-graphics programmers
– Offloads force calculation to GPU (~80% of CPU time)
– Force calculation on X1800XT is ~3.5X a 3.0GHz P4
– Overall speed up on X1800XT is ~2.5X a 3.0GHz P4

Not yet optimized for X1800XT
– Using ps2b kernels, i.e. no looping
– Not making use of new scatter functionality

The revenge of Ahmdal’s law
– Force calculation no longer bottleneck (38% of runtime)
– Need to also accelerate data structure building (neighbor lists)

• MUCH easier with scatter support

This looks like a very promising application for GPUs
– Combine CPU and GPU processing for a folding monster!
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Making GPGPU easier
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What GPGPU needs from vendors

More information
– Shader ISA
– Latency information
– GPGPU Programming guide (floating point)

• How to order code for ALU efficiency
• The “real” cost of all instructions
• Expected latencies of different types of memory fetches

Direct access to the hardware
– GL/DX is not what we want to be using

• We don’t need state tracking
• Using graphics commands is odd for doing computation
• The graphics abstractions aren’t useful for us

– Better memory management
Fast transfer to and from GPU
– Non-blocking

Consistent graphics drivers
– Some optimizations for games hurt GPGPU performance
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What GPGPU needs from the community

Data Parallel programming languages
– Lots of academic research

“GCC” for GPUs
Parallel data structures
More applications
– What will make the average user care about GPGPU?
– What can we make data parallel and run fast?
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Thanks

The BrookGPU team – Ian Buck, Tim Foley, Jeremy 
Sugerman, Daniel Horn, Kayvon Fatahalian
GROMACS – Vishal Vaidyanathan, Erich Elsen, Vijay 
Pande, Eric Darve
HMMer – Daniel Horn, Eric Lindahl
Pat Hanrahan
Everyone at ATI Technologies
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Questions?

I’ll also be around after the talk
Email: mhouston@stanford.edu
Web: http://graphics.stanford.edu/~mhouston

For lots of great GPGPU information:
– GPGPU.org (http://www.gpgpu.org)
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