
General Purpose Computation on
Graphics Processors (GPGPU)

Mike Houston, Stanford University

2Mike Houston - Stanford University Graphics Lab

A little about me

http://graphics.stanford.edu/~mhouston
Education:
– UC San Diego, Computer Science BS
– Stanford University, Computer Science MS
– Currently a PhD candidate at Stanford University

Research
– Parallel Rendering
– High performance computing
– Computation on graphics processors (GPGPU)

3Mike Houston - Stanford University Graphics Lab

What can you do on GPUs other than graphics?

Large matrix/vector operations (BLAS)
Protein Folding (Molecular Dynamics)
FFT (SETI, signal processing)
Ray Tracing
Physics Simulation [cloth, fluid, collision]
Sequence Matching (Hidden Markov Models)
Speech Recognition (Hidden Markov Models, Neural nets)
Databases
Sort/Search
Medical Imaging (image segmentation, processing)
And many, many more…

http://www.gpgpu.org

4Mike Houston - Stanford University Graphics Lab

Why use GPUs?

COTS
– In every machine

Performance
– Intel 3.0 GHz Pentium 4

• 12 GFLOPs peak (MAD)
• 5.96 GB/s to main memory

– ATI Radeon X1800XT
• 120 GFLOPs peak (fragment engine)
• 42 GB/s to video memory

5Mike Houston - Stanford University Graphics Lab

Task vs. Data parallelism

Task parallel
– Independent processes with little communication
– Easy to use

• “Free” on modern operating systems with SMP

Data parallel
– Lots of data on which the same computation is being executed
– No dependencies between data elements in each step in the

computation
– Can saturate many ALUs
– But often requires redesign of traditional algorithms

6Mike Houston - Stanford University Graphics Lab

CPU vs. GPU

CPU
– Really fast caches (great for data reuse)
– Fine branching granularity
– Lots of different processes/threads
– High performance on a single thread of execution

GPU
– Lots of math units
– Fast access to onboard memory
– Run a program on each fragment/vertex
– High throughput on parallel tasks

CPUs are great for task parallelism
GPUs are great for data parallelism

7Mike Houston - Stanford University Graphics Lab

The Importance of Data Parallelism for GPUs

GPUs are designed for highly parallel tasks like rendering
GPUs process independent vertices and fragments
– Temporary registers are zeroed
– No shared or static data
– No read-modify-write buffers
– In short, no communication between vertices or fragments

Data-parallel processing
– GPU architectures are ALU-heavy

• Multiple vertex & pixel pipelines
• Lots of compute power

– GPU memory systems are designed to stream data
• Linear access patterns can be prefetched
• Hide memory latency

Courtesy GPGPU.org

8Mike Houston - Stanford University Graphics Lab

GPGPU Terminology

9Mike Houston - Stanford University Graphics Lab

Arithmetic Intensity

Arithmetic intensity
– Math operations per word transferred
– Computation / bandwidth

Ideal apps to target GPGPU have:
– Large data sets
– High parallelism
– Minimal dependencies between data elements
– High arithmetic intensity
– Lots of work to do without CPU intervention

Courtesy GPGPU.org

10Mike Houston - Stanford University Graphics Lab

Data Streams & Kernels

Streams
– Collection of records requiring similar computation

• Vertex positions, Voxels, FEM cells, etc.
– Provide data parallelism

Kernels
– Functions applied to each element in stream

• transforms, PDE, …
– No dependencies between stream elements

• Encourage high Arithmetic Intensity

Courtesy GPGPU.org

11Mike Houston - Stanford University Graphics Lab

Scatter vs. Gather

Gather
– Indirect read from memory (x = a[i])
– Naturally maps to a texture fetch
– Used to access data structures and data streams

Scatter
– Indirect write to memory (a[i] = x)
– Difficult to emulate:

• Render to vertex array
• Sorting buffer

– Needed for building many data structures
– Usually done on the CPU

12Mike Houston - Stanford University Graphics Lab

Mapping algorithms to the GPU

13Mike Houston - Stanford University Graphics Lab

Mapping CPU algorithms to the GPU

Basics
– Stream/Arrays -> Textures
– Parallel loops -> Quads
– Loop body -> vertex + fragment program
– Output arrays -> render targets
– Memory read -> texture fetch
– Memory write -> framebuffer write

Controlling the parallel loop
– Rasterization = Kernel Invocation
– Texture Coordinates = Computational Domain
– Vertex Coordinates = Computational Range

Courtesy GPGPU.org

14Mike Houston - Stanford University Graphics Lab

Computational Resources

Programmable parallel processors
– Vertex & Fragment pipelines

Rasterizer
– Mostly useful for interpolating values (texture coordinates) and

per-vertex constants

Texture unit
– Read-only memory interface

Render to texture
– Write-only memory interface

Courtesy GPGPU.org

15Mike Houston - Stanford University Graphics Lab

Vertex Processors

Fully programmable (SIMD / MIMD)
Processes 4-vectors (RGBA / XYZW)
Capable of scatter but not gather
– Can change the location of current vertex
– Cannot read info from other vertices
– Can only read a small constant memory

Vertex Texture Fetch
– Random access memory for vertices
– Limited gather capabilities

• Can fetch from texture
• Cannot fetch from current vertex stream

Courtesy GPGPU.org

16Mike Houston - Stanford University Graphics Lab

Fragment Processors

Fully programmable (SIMD)
Processes 4-component vectors (RGBA / XYZW)
Random access memory read (textures)
Generally capable of gather but not scatter
– Indirect memory read (texture fetch), but no indirect memory write
– Output address fixed to a specific pixel

Typically more useful than vertex processor
– More fragment pipelines than vertex pipelines
– Direct output (fragment processor is at end of pipeline)
– Better memory read performance

For GPGPU, we mainly concentrate on using the fragment
processors
– Most of the flops
– Highest memory bandwidth

Courtesy GPGPU.org

17Mike Houston - Stanford University Graphics Lab

GPGPU example – Adding Vectors

float a[5*5];
float b[5*5];
float c[5*5];
//initialize vector a
//initialize vector b
for(int i=0; i<5*5; i++)
{

c[i] = a[i] + b[i];
}

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Place arrays into 2D textures
Convert loop body into a shader
Loop body = Render a quad

– Needs to cover all the pixels in the
output

– 1:1 mapping between pixels and texels
Readback framebuffer into result array

!!ARBfp1.0

TEMP R0;

TEMP R1;

TEX R0, fragment.position, texture[0], 2D;

TEX R1, fragment.position, texture[1], 2D;

ADD R0, R0, R1;

MOV fragment.color, R0;

18Mike Houston - Stanford University Graphics Lab

How this basically works – Adding vectors

Bind Input Textures

Bind Render Targets

Load Shader

Render Quad

Readback Buffer

Set Shader Params

!!ARBfp1.0

TEMP R0;

TEMP R1;

TEX R0, fragment.position, texture[0], 2D;

TEX R1, fragment.position, texture[1], 2D;

ADD R0, R0, R1;

MOV fragment.color, R0;

Vector A Vector B

Vector C

C = A+B

,

19Mike Houston - Stanford University Graphics Lab

Rolling your own GPGPU apps

Lots of information on GPGPU.org
For those with a strong graphics background:
– Do all the graphics setup yourself
– Write your kernels:

• Use high level languages
– Cg, HLSL, ASHLI

• Or, direct assembly
– ARB_fragment_program, ps20, ps2a, ps2b, ps30

High level languages and systems to make GPGPU
easier
– Brook (http://graphics.stanford.edu/projects/brookgpu/)
– Sh (http://libsh.org)

20Mike Houston - Stanford University Graphics Lab

BrookGPU

History
– Developed at Stanford University
– Goal: allow non-graphics users to use GPUs for computation
– Lots of GPGPU apps written in Brook

Design
– C based language with streaming extensions
– Compiles kernels to DX9 and OpenGL shading models
– Runtimes (DX9/OpenGL) handle all graphics commands

Performance
– 80-90% of hand tuned GPU application in many cases

21Mike Houston - Stanford University Graphics Lab

GPGPU and the ATI X1800

22Mike Houston - Stanford University Graphics Lab

GPGPU on the ATI X1800

IEEE 32-bit floating point
– Simplifies precision issues in applications

Long programs
– We can now handle larger applications
– 512 static instructions
– Effectively unlimited dynamic instructions

Branching and Looping
– No performance cliffs for dynamic branching and looping
– Fine branch granularity: ~16 fragments

Faster upload/download
– 50-100% increase in PCIe bandwidth over last generation

23Mike Houston - Stanford University Graphics Lab

GPGPU on the ATI X1800, cont.

Advanced memory controller
– Latency hiding for streaming reads and writes to memory

• With enough math ops you can hide all memory access!
– Large bandwidth improvement over previous generation

Scatter support (a[i] = x)
– Arbitrary number of float outputs from fragment processors
– Uncached reads and writes for register spilling

F-Buffer
– Support for linearizing datasets
– Store temporaries “in flight”

24Mike Houston - Stanford University Graphics Lab

GPGPU on the ATI X1800, cont.

Flexibility
– Unlimited texture reads
– Unlimited dependent texture reads
– 32 hardware registers per fragment

512MB memory support
– Larger datasets without going to system memory

25Mike Houston - Stanford University Graphics Lab

Performance basics for GPGPU – X1800XT
(from GPUBench)

Compute
– 83 GFLOPs (MAD)

Memory
– 42 GB/s cache bandwidth
– 21 GB/s streaming bandwidth
– 4 cycle latency for a float4 fetch (cache hit)
– 8 cycle latency for a float4 fetch (streaming)

Branch granularity – 16 fragments
Offload to GPU
– Download (GPU -> CPU): 900 MB/s
– Upload (CPU -> GPU): 1.4 GB/s

http://graphics.stanford.edu/projects/gpubench

26Mike Houston - Stanford University Graphics Lab

A few examples on the

ATI X1800XT

27Mike Houston - Stanford University Graphics Lab

BLAS

Basic Linear Algebra Subprograms
– High performance computing

• The basis for LINPACK benchmarks
• Heavily used in simulation

– Ubiquitous in many math packages
• MatLab™
• LAPACK

BLAS 1: scalar, vector, vector/vector operations
BLAS 2: matrix-vector operations
BLAS 3: matrix-matrix operations

28Mike Houston - Stanford University Graphics Lab

BLAS GPU Performance

saxpy (BLAS1) – single precision vector-scalar product
sgemv (BLAS2) – single precision matrix-vector product
sgemm (BLAS3) – single precision matrix-matrix product

Relative Performance

0
1
2
3
4
5
6
7
8
9

10
11
12

saxpy sgemv sgemm

3.0GHz P4
2.5GHz G5
Nvidia 7800GTX
ATI X1800XT

29Mike Houston - Stanford University Graphics Lab

HMMer – Protein sequence matching

Goal
– Find matching patterns between protein sequences
– Relationship between diseases and genetics
– Genetic relationships between species

Problem
– HUGE databases to search against
– Queries take lots of time to process

• Researches start searches and go home for the night
Core Algorithm (hmmsearch)
– Viterbi algorithm
– Compare a Hidden Markov Model against a large database of

protein sequences
Paper at IEEE Supercomputing 2005
– http://graphics.stanford.edu/papers/clawhmmer/

30Mike Houston - Stanford University Graphics Lab

HMMer – Performance

X1800XT

Relative Performance

31Mike Houston - Stanford University Graphics Lab

Protein Folding

GROMACS provides extremely high
performance compared to all other programs.
Lot of algorithmic optimizations:
– Own software routines to calculate the

inverse square root.
– Inner loops optimized to remove all

conditionals.
– Loops use SSE and 3DNow! multimedia

instructions for x86 processors
– For Power PC G4 and later processors:

Altivec instructions provided
Normally 3-10 times faster than any other
program.
Core algorithm in Folding@Home
http://www.gromacs.org

32Mike Houston - Stanford University Graphics Lab

GROMACS - Performance

Relative Performance

0 0.5 1 1.5 2 2.5 3 3.5 4

3.0GHz P4

2.5GHz G5

NVIDIA 7800GTX

ATI X1800XT

Force Kernel Only

Complete Application

33Mike Houston - Stanford University Graphics Lab

GROMACS – GPU Implementation

Written using Brook by non-graphics programmers
– Offloads force calculation to GPU (~80% of CPU time)
– Force calculation on X1800XT is ~3.5X a 3.0GHz P4
– Overall speed up on X1800XT is ~2.5X a 3.0GHz P4

Not yet optimized for X1800XT
– Using ps2b kernels, i.e. no looping
– Not making use of new scatter functionality

The revenge of Ahmdal’s law
– Force calculation no longer bottleneck (38% of runtime)
– Need to also accelerate data structure building (neighbor lists)

• MUCH easier with scatter support

This looks like a very promising application for GPUs
– Combine CPU and GPU processing for a folding monster!

34Mike Houston - Stanford University Graphics Lab

Making GPGPU easier

35Mike Houston - Stanford University Graphics Lab

What GPGPU needs from vendors

More information
– Shader ISA
– Latency information
– GPGPU Programming guide (floating point)

• How to order code for ALU efficiency
• The “real” cost of all instructions
• Expected latencies of different types of memory fetches

Direct access to the hardware
– GL/DX is not what we want to be using

• We don’t need state tracking
• Using graphics commands is odd for doing computation
• The graphics abstractions aren’t useful for us

– Better memory management
Fast transfer to and from GPU
– Non-blocking

Consistent graphics drivers
– Some optimizations for games hurt GPGPU performance

36Mike Houston - Stanford University Graphics Lab

What GPGPU needs from the community

Data Parallel programming languages
– Lots of academic research

“GCC” for GPUs
Parallel data structures
More applications
– What will make the average user care about GPGPU?
– What can we make data parallel and run fast?

37Mike Houston - Stanford University Graphics Lab

Thanks

The BrookGPU team – Ian Buck, Tim Foley, Jeremy
Sugerman, Daniel Horn, Kayvon Fatahalian
GROMACS – Vishal Vaidyanathan, Erich Elsen, Vijay
Pande, Eric Darve
HMMer – Daniel Horn, Eric Lindahl
Pat Hanrahan
Everyone at ATI Technologies

38Mike Houston - Stanford University Graphics Lab

Questions?

I’ll also be around after the talk
Email: mhouston@stanford.edu
Web: http://graphics.stanford.edu/~mhouston

For lots of great GPGPU information:
– GPGPU.org (http://www.gpgpu.org)

	General Purpose Computation on Graphics Processors (GPGPU)
	A little about me
	What can you do on GPUs other than graphics?
	Why use GPUs?
	Task vs. Data parallelism
	CPU vs. GPU
	The Importance of Data Parallelism for GPUs
	Arithmetic Intensity
	Data Streams & Kernels
	Scatter vs. Gather
	Mapping CPU algorithms to the GPU
	Computational Resources
	Vertex Processors
	Fragment Processors
	GPGPU example – Adding Vectors
	How this basically works – Adding vectors
	Rolling your own GPGPU apps
	BrookGPU
	GPGPU on the ATI X1800
	GPGPU on the ATI X1800, cont.
	GPGPU on the ATI X1800, cont.
	Performance basics for GPGPU – X1800XT (from GPUBench)
	BLAS
	BLAS GPU Performance
	HMMer – Protein sequence matching
	HMMer – Performance
	Protein Folding
	GROMACS - Performance
	GROMACS – GPU Implementation
	What GPGPU needs from vendors
	What GPGPU needs from the community
	Thanks
	Questions?

