
 1

Compression in the Graphics Pipeline

Mike Houston and Wei Koh

Computer Science Department
Stanford University

Abstract

This paper explores the subject of compression in
the graphics pipeline. While there are several
components of the pipeline that could stand to
benefit from compression, we chose to focus on the
Z-buffer and the framebuffer. We describe a
method of compression using pixel differencing and
Huffman coding along with a caching system
designed around tiles. We examine the effects of
tile size, pixel differencing schemes and variations
of Huffman coding on compression rates, and show
the tradeoffs between these parameters.

1 Introduction

As processors have gotten progressively faster,
memory bandwidth has been unable to keep up.
Some systems have turned to exotic forms of
memory subsystems like bank-interleaving and
custom designs like embedded DRAM to try to
overcome bandwidth issues. Things are somewhat
worse in the computer graphics industry because
processors are currently getting faster at a higher
rate than general purpose CPUs. It is becoming
clear that one of the major problems in building
faster graphics systems is that memory bandwidth is
holding back the GPU. Because of the pipeline
nature of graphics systems and the paralle lism
currently exploited in many systems, graphics
hardware presents a unique system that has many
different bandwidth issues and needs.

mhouston@graphics.stanford.edu kwkoh@cs.stanford.edu

Compression can be used in various stages of the
graphics pipeline to help with this problem of
limited bandwidth. We simulated a system that
involved caching, tiling, and compression of the Z-
buffer and framebuffer. By combining pixel
differencing with Huffman coding, we achieved
compression rates of up to 5:1.

1.1 Previous Work

Geometry: The newer NVIDIA boards have
claimed triangle rates upwards of 30 million
triangles per second. If the GPUs are fast enough,
but the memory does not have the bandwidth to
keep feeding the GPU, then why not use
compression to try to increase the effective
bandwidth? What if extensions or specialized
hardware could be used to compress models sent to
the graphics system? There has been some
interesting research done on geometry compression,
but none of the techniques are currently used in
commodity hardware. The work done by Deering
[1] and later continued by Chow [2] suggests
interesting techniques for lossy geometry
compression that yield good compression rates.
Chow’s compression schemes are now part of
Java3D, using software compression/
decompression.

Z-Compression: Both the new ATI and NVIDIA
boards both use some form of Z-compression to
increase the speed of their graphics systems. They
both claim about a 4:1 lossless compression ratio.
ATI claims that Z-compression and Fast-Z clears
can give them up to 20% performance increase in
rendering rate.

Texture Compression: There has been lots of
research in image compression in general, but few
suggested methods have been applied to OpenGL
systems. S3’s S3TC and 3dfx’s FXT1 are the only
ones in regular use. They are lossy compression
schemes and tend to create bad artifacts in certain

 2

situations. There is also an extension to 3D textures
proposed by NVIDIA that is based on the S3TC
scheme and has the same benefits and problems.
The performance increase in Quake3 with the use of
S3TC is of interesting note. The rendering rate
(frames per second) sees upwards of a 25%
performance jump with the use of compressed
textures. This can be somewhat attributed to the
fact that more of the textures can now reside on the
graphics card and do not have to be loaded from
main memory.

Framebuffer Compression: Not much research
seems to have been done in this area.

2 Choice of Compression Scheme

Lossy/Lossless While lossy compression schemes
have the potential to yield very high compression
rates, they also have the potential to create
unwanted artifacts. This is especially true with the
Z-buffer, as even a small deviation from the actual
value can result in the wrong object being
displayed. Thus, we have decided to limit our
choice of compression scheme to only lossless
schemes.

Encode/Decode Speed When dealing with
compression of the Z-buffer and framebuffer, it is
important that we look at both the encoding as well
as the decoding speed of the algorithm. Some
algorithms, such as vector quantization, are
relatively fast at decoding, but rather slow at
encoding. We wanted an algorithm that performs
well in both directions.

Tables/Codebooks Some compression algorithms
require that a table or codebook be transmitted with
the data for it to be decoded on the other end. Since
we are operating on a tiling system, with tiles of
size 4x4, 8x8, or 16x16, it is very possible that the
size of the table or codebook would negate any
gains in the compression of the data. We decided to
only consider compression schemes that did not
involve the transmission of a table or codebook.

3 Huffman Coding

The basic idea behind Huffman coding is that
symbols that occur more frequently should be
represented by shorter codewords than symbols that
occur less frequently. In an ideal case, you would
know the probabilities of all the symbols in a given
data set that you wish to compress. This is usually
done by first scanning the entire data set and
building a table of probabilities for each symbol
encountered. This table is then used to construct a
new table containing all the symbols of the data set
and their corresponding codewords. A common
way of representing this table of codewords is by
building a binary tree where external nodes
represent the symbols of the data set. The Huffman
code for any symbol can be constructed by
traversing the tree from the root node to the leaf
node. Each time a traversal is made to the left
child, a '0' is added to the code, while a '1' is added
for a traversal to the right. This Huffman tree is
then passed to the decoder so that it can uncompress
the encoded data.

As previously mentioned, due to the small size of
our tiles, we want to avoid algorithms that have to
transmit tables or codebooks along with the
compressed data. Also, having to scan the data in
two passes: once for collecting the statistics, and the
second for encoding the data, would incur a
significant performance hit. To avoid these
problems, we decided to pursue two alternate
Huffman coding schemes: Huffman coding using a
fixed codebook, and adaptive Huffman coding.

3.1 Fixed Codebook Huffman Coding

A simple way of not having to preprocess the data
set is by using a fixed codebook that both the
encoder and decoder units have access to at all
times. This makes the procedure a one-pass
process, and removes the need for the encoder to
transmit the codebook to the decoder. The
drawback is that the codebook will have to be
general and will not be optimized for each data set,
and so compression rates will not be as good as
with an optimized codebook. It will also be a
challenge to generate a general codebook that
would yield decent results over a wide range of
input data.

 3

3.2 Adaptive Huffman Coding

In adaptive Huffman coding, the codebook is built
and continually updated as the data is being
encoded. The same happens in the decode stage.
The decoder will build an identical codebook as it
reads in the compressed data and uncompresses it.
A binary code tree is used, similar to that described
above. In addition to just storing the symbols at the
leaves of the tree, an adaptive Huffman code tree
also stores weights at each node, which correspond
to the number of times that particular node has been
traversed. Leaf nodes store the number of times
each symbol has been encountered, while interior
nodes store the sum of its two children. As more
and more nodes are added, the weights are used to
restructure the tree such that symbols that occur
more frequently will have shorter codes than those
that occur less frequently.

Adaptive Huffman coding utilizes a Not Yet
Transmitted (NYT) node to specify that the symbol
in the compressed stream has not yet been
transmitted. Both the encoder and decoder will
start with a tree that contains a single NYT node.
When a new symbol is encountered, the encoder
will transmit the NYT code, along with the
uncompressed, or fixed code for that symbol. It
then adds the new symbol to the table, and the next
time it encounters that symbol, it can simply use the
current code for that symbol and update the weights
for the affected nodes. The decoding process is
very similar. If it reads the code for the NYT node,
it knows that the following code will be in its
uncompressed, or fixed state. It then adds that
symbol to the tree, and when it sees that code for
that symbol in the future, it knows how to decode it.

3.3 DPCM and DDPCM

Since image pixels are often heavily correlated with
neighboring pixels, an effective technique to
improve the compressibility of the input data is to
store pixel differences across the data, instead of
storing each pixel value individually. For example,
a smoothly changing set of pixels such as {0 1 2…
255} would not compress will with just a simple
Huffman coding scheme. However, if we instead
store pixel differences across neighboring pixels,
the data becomes a series of ‘1’s, which will be
highly compressible with Huffman coding. This

differencing scheme forms the basis for differential
pulse code modulation (DPCM). In its basic form,
pixels are differenced across the rows of the image,
and when the end of the row is reached, it is
continued at the next row in one single pass. A
variation on this technique would be to first take
differences across the rows, then to take the
differences along the columns, starting at the top
and moving down an image. This technique is
known as differential DPCM, or DDPCM.

4 Tiling and Caching

Rather than compressing and decompressing the
entire framebuffer each time a pixel is written or
read, our proposed system will divide the
framebuffer into equally sized square tiles. To
further minimize the need to read from and write to
the framebuffer, our system will incorporate a small
cache for storing these tiles of uncompressed data.
When a pixel is read from the framebuffer, our
system will check if the tile that contains that pixel
is currently stored in the cache. If so, it simply
reads the value from the cache. If not, it loads the
compressed version of the tile containing that pixel
from the framebuffer, decompresses it, and stores it
in the cache. We decided to use a random
replacement policy in the cache due to its
simplicity, and also due to the fact that more exotic
replacement schemes would be more costly to
compute, and only increase our hit rate by an
insignificant amount.

5 Testing Setup

To test the effectiveness of the proposed
compression scheme, we used GLSim, an
instrumented implementation of OpenGL written by
Ian Buck and Kekoa Proudfoot, and GLTrace, a
tracing package written by Proudfoot.

We used MacDonald’s adaptive Huffman encoding
library [6], implemented DPCM and DDPCM, and
incorporated them into GLSim. We added a cache
simulator into GLSim to that simulates the caching
and tiling system described above and outputs a log
of total accesses, cache hits and cache misses.
We tested cache sizes of 1, 2, 4, 8, 16, and 32kB,
and tile sizes of 4x4, 8x8, and 16x16. We also used
adaptive as well as fixed codebook Huffman
coding, and using those in conjunction with DPCM,

 4

DDPCM, and with the original image data (without
taking any differences). We used 4 different GL
traces to test the compression system: Atlantis,
Quake 4, QuickTime VR, and a custom trace that
writes to various parts of the framebuffer in a
random fashion. To test the fixed codebook
Huffman coding, we generated tables that were
created by “learning” on the Atlantis, Quake 4 and
QuickTime VR traces. We also generated separate
tables for use with DPCM, DDPCM, without either
differencing schemes, and with the 3 tile sizes we
were testing with.

6 Results

6.1 Compression Ratios

Table 1 compares the compression ratios for
different combinations of fixed/adaptive Huffman
coding schemes, coupled with no
differencing/DPCM/DDPCM, and tile sizes of 4x4,
8x8 and 16x16 for the color buffer. Compression
ratios were calculated by averaging together the
ratios for Atlantis, Quake 4, QTVR and a random
access fill.

F
ix

e
d
, n

o
n
e

F
ix

e
d

,
D

P
C

M

F
ix

e
d

,
D

D
P

C
M

A
d
a
p
tiv

e
, n

o
n
e

A
d

a
p

tiv
e

,
D

P
C

M

A
d

a
p

tiv
e

,
D

D
P

C
M

0
0.5

1
1.5

2

2.5

3

3.5

4

4.5

5

C
o

m
p

re
s

s
io

n
 R

a
ti

o
s

Color Buffer Compression Comparison

4x4

8x8

16x16

Tile Size

Table 1: Color Buffer Compression Ratios using an average of Atlantis, Quake 4, QTVR, and a random fill.

 5

As you can see, compression ratios increase with
larger tile sizes, and with adaptive Huffman as
compared to fixed codebook Huffman. DPCM
definitely improves the compressibility of the data,
but DDPCM further improves it only some of the
time. The lowest compression ratio was 2.13:1,

using a fixed codebook, no differencing, and a tile
size of 4x4. The best compression ratio found was
4.57:1, using adaptive Huffman, DPCM and a tile
size of 16x16.

 Depth Buffer Color Buffer
Tile Size 4x4 8x8 16x16 4x4 8x8 16x16

Huffman DPCM/DDPCM? Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max
Fixed None 2.22 1.49 2.71 2.32 1.58 2.68 3.63 0.94 4.05 2.24 1.60 2.45 2.36 1.93 2.49 3.54 2.50 3.71
Adaptive None 2.46 1.40 3.21 3.33 1.06 4.34 4.37 1.23 5.46 2.45 1.16 2.89 3.27 1.18 3.89 4.12 2.75 4.90
Fixed DPCM 2.52 1.17 3.25 2.80 0.95 3.39 4.75 0.74 5.75 2.69 1.27 3.16 2.97 1.21 3.32 5.20 3.29 5.76
Adaptive DPCM 2.64 1.28 3.57 3.67 1.22 4.82 4.88 1.42 5.91 2.90 1.18 3.47 4.05 1.31 4.80 5.25 3.05 5.91
Fixed DDPCM 2.28 1.08 3.08 2.72 0.90 3.36 4.66 0.73 5.74 2.37 1.20 2.87 2.84 1.10 3.26 5.04 3.08 5.73
Adaptive DDPCM 2.34 1.26 3.35 3.48 1.23 4.70 4.78 1.37 5.87 2.51 1.22 3.22 3.78 1.30 4.65 5.10 3.02 5.85

Table 3: Compression ratios for the Atlantis trace

F
ix

e
d

,
n

o
n

e

F
ix

e
d

,
D

P
C

M

F
ix

e
d

,
D

D
P

C
M

A
d

a
p

ti
ve

,
n

o
n

e

A
d

a
p

ti
v
e

,
D

P
C

M

A
d

a
p

ti
v
e

,
D

D
P

C
M

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
o

m
p

re
s

s
io

n
 R

a
ti

o
s

Depth Buffer Compression Comparison

4x4

8x8

16x16

Tile Size

Table 2: Depth Buffer Compression Ratios using an average of Atlantis, Quake 4, QTVR, and a random fill.

 6

Table 2 shows the results of our depth buffer
testing. Compression ratios ranged from 2.05:1
(fixed codebook Huffman, no differencing, 4x4 tile
size) to 4.65:1 (adaptive Huffman, DDPCM, 16x16
tile size). DPCM was always an improvement over
no differencing, and DDPCM was a further
improvement for tile sizes of 8x8 and 16x16.

A further breakdown of compression ratios can be
seen in Table 3, which shows the results of running
the Atlantis trace through various combinations of
tile sizes (4x4, 8x8 and 16x16), fixed
codebook/adaptive Huffman, and DPCM/DDPCM/
no differencing. Again, compression ratios are
higher for adaptive Huffman when compared to
fixed codebook Huffman, and increase as tile size
increases. DPCM also increases compression ratios
over not using any pixel differencing, but DDPCM
does not seem to bring about any further increases
in compression over DPCM. Results from testing
with Quake 4 and QTVR were similar, with the
exception that DDPCM did slightly better than
DPCM about half the time, and slightly worse the
other half

The results from our cache testing, as seen in Table
3, show that even a small amount of cache yields
pretty decent hit rates. The trick is to balance the
right amount of cache with the right tile size. While
using a larger tile size increases the compressibility
of the data, it also increases the amount of data that
gets transferred with each cache miss. Table 3
shows the results of running the QTVR trace
through various combinations of cache sizes (1, 2,
4, 8, 16 and 32KB) and tile sizes (4x4, 8x8 and
16x16). The break-even value is the compression
ratio at which we break even on the bandwidth as
compared to not using any compression.

As you can see, with a cache size of 8KB or less,
going from a tile size of 8x8 to 16x16 requires a
significantly higher compression ratio to break
even. Since we get pretty decent hit rates with a
cache size of 8KB and a reasonable break-even
point for an 8x8 tile size, we can plug in our
measured compression ratios for QTVR to calculate
our savings in bandwidth. For fixed codebook
Huffman, our best compression ratios for an 8x8
tile size are 2.83:1 for the depth buffer, using
DDPCM, and 2.34:1 for the color buffer, using

Cache Tile Depth Cache Color Cache
Size
(KB) Size Hit Miss Break Even Hit Miss Break Even

1 4 0.9002 0.0998 1.5975 0.9001 0.0999 1.5981

1 8 0.9522 0.0478 3.0569 0.9523 0.0477 3.0540

1 16 0.8894 0.1106 28.3256 0.8894 0.1106 28.3256

2 4 0.9093 0.0907 1.4506 0.9093 0.0907 1.4518

2 8 0.9640 0.0360 2.3039 0.9640 0.0360 2.3062

2 16 0.8900 0.1100 28.1544 0.8900 0.1100 28.1623

4 4 0.9188 0.0812 1.2999 0.9187 0.0813 1.3003

4 8 0.9705 0.0295 1.8867 0.9705 0.0295 1.8888

4 16 0.9837 0.0163 4.1702 0.9837 0.0163 4.1679

8 4 0.9266 0.0734 1.1745 0.9266 0.0734 1.1736

8 8 0.9769 0.0231 1.4796 0.9768 0.0232 1.4832

8 16 0.9890 0.0110 2.8278 0.9889 0.0111 2.8349

16 4 0.9314 0.0686 1.0969 0.9314 0.0686 1.0974

16 8 0.9805 0.0195 1.2471 0.9805 0.0195 1.2458

16 16 0.9929 0.0071 1.8071 0.9929 0.0071 1.8148

32 4 0.9340 0.0660 1.0553 0.9340 0.0660 1.0557

32 8 0.9823 0.0177 1.1334 0.9823 0.0177 1.1332

32 16 0.9945 0.0055 1.4124 0.9945 0.0055 1.4121

Table 4: Tradeoff between cache size and tile size for QTVR trace

 7

DPCM. This results in a net reduction in bandwidth
of 48% and 37% respectively. If adaptive Huffman
is used, our maximum compression ratios are 3.44:1
for the depth buffer, using DDPCM, and 2.82:1 for
the color buffer, using DPCM. These ratios yield a
net reduction in bandwidth of 57% and 47%
respectively.

7 Future Work and Considerations

7.1 Fixed codebook generation

Fixed codebooks would offer the simplest hardware
implementation, but a learning system would have
to be designed to gather data from many
applications. It may be that designing a codebook
to work with all applications would create a
codebook that does not yield very good
performance for any single application. Maybe a
learning system could be designed to use several
codebooks, and the hardware designed such that the
best codebook is chosen based on the performance
of the codebook used for the last rendered frame.
DPCM and DDPCM seem to help a great deal with
fixed codebooks since these systems are very good
at evening out noise. As long as the data is not
extremely noisy, these methods will generally
generate lots of small values and many fewer large
values. This means that the codebook can be
designed to use shorter codewords for smaller
values and larger codewords for larger values.

7.2 Other compression systems

There is a great deal of promise in the compression
rates offered by other schemes. We did not include
some of these systems based on the complexity of
their implementations. However, if they can yield
high enough compression rates to make up for their
complexity, they might be able to get even higher
bandwidth gains than the Huffman systems we
chose to explore.

7.3 Detecting Low Compression Rates

One of the problems with any lossless compression
system is that you can actually expand the data. In
the case of our system, this can happen if the fixed
table contains shorter codewords for low values, but
the data contains mostly large values. A hardware
design is needed that can detect that the compressed

version is larger and can choose to send the original
to the framebuffer. This would be a requirement for
the hardware to work correctly, else depending on
the alignment strategy used, it is likely that any data
expansion will cause data in the framebuffer to be
overwritten. This method would also potentially
improve the average compression ratio if the
method used occasionally causes data expansion.

7.4 Smarter Caches

The randomly drawn small polygons are a
disastrous case for our system. The only way to
prevent a large performance hit would be to not use
compression if the miss rate takes us below the
break even point for some conservatively calculated
average compression ratio. It would be interesting
to investigate the possible implementation of
hardware the can detect such a situation and
examine the consequences of such a design.

7.5 Texture Compression

Can a similar system to ours also be used in the
texture stages of the pipeline? It would be
interesting to see what the compression ratio and
cache statistics would be if a system such as ours
was applied to the texture memory. The
framebuffer required both a fast encode and decode
system, but textures are largely only read access.
Although our method would most likely improve
performance, it is more likely that methods that
offer high compression rates with slow encodes and
fast decodes would offer even better performance
than our system. However, if something like our
system was being used in hardware, it may only be
a small addition to allow the same system to
function with the texture units. Most likely, the
best compression rates would be had with an
algorithm, which provides high compression rates,
inexpensive decode, and possibly expensive
encoding.

8 Conclusion

As the performance increases in graphics processors
continues to outpace the increases in the speed and
bandwidth capabilities of memory systems, the use
of compression will become more and more
compelling. By using our system, it is possible for
applications that are bound by the bandwidth to the

 8

framebuffer to potentially see a substantial increase
in rendering performance. Even with very small
caches, only containing a few tiles, it is still
possible to yield a noticeable gain in performance.
Since current graphics cards are currently using Z-
compression and the numbers claimed by those
manufacturers are similar to the numbers received
by our methods and tests, we suggest that it would
be possible to use similar hardware to that currently
being used to also compress the color buffer. Based
on our results, using a cache size of 8kB and a tile
size of 8x8, it is possible to achieve close to a 50%
improvement in bandwidth. If the bandwidth is
holding the processor back, compression will give
more room for the processor to run.

References

[1] DEERING, M. Geometry Compression. Computer

Graphics (Proc. SIGRAPH), pages 101-108, August
1993.

[2] CHOW, M. M. Optimized Geometry Compression

for Real-time Rendering, (Proc. IEEE
VISUALIZATION '97), pages 347-354, 559.

[3] Texture Compression, from the Matrox website:

http://www.matrox.com/mga/dev_relations/
chip_tech/media/pdf/texture_compression.pdf

[4] BEERS, A.C., AGRAWALA, M., CHADDHA, N.

Rendering from Compressed Textures, Computer
Graphics (Proc. SIGGRAPH '96).

[5] SAYOOD, K. Introduction to Data Compression,

Second Edition. Academic Press, 2000.

[6] Josh MacDonald. Adaptive Huffman Encoding

Library. http://www.xcf.berkeley.edu/~ali/K0D/
Algorithms/huff/

