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Abstract 
 
This paper explores the subject of compression in 
the graphics pipeline.  While there are several 
components of the pipeline that could stand to 
benefit from compression, we chose to focus on the 
Z-buffer and the framebuffer.  We describe a 
method of compression using pixel differencing and 
Huffman coding along with a caching system 
designed around tiles.  We examine the effects of 
tile size, pixel differencing schemes and variations 
of Huffman coding on compression rates, and show 
the tradeoffs between these parameters. 
 
 
1 Introduction 
 
As processors have gotten progressively faster, 
memory bandwidth has been unable to keep up.  
Some systems have turned to exotic forms of 
memory subsystems like bank-interleaving and 
custom designs like embedded DRAM to try to 
overcome bandwidth issues.  Things are somewhat 
worse in the computer graphics industry because 
processors are currently getting faster at a higher 
rate than general purpose CPUs.  It is becoming 
clear that one of the major problems in building 
faster graphics systems is that memory bandwidth is 
holding back the GPU.  Because of the pipeline 
nature of graphics systems and the paralle lism 
currently exploited in many systems, graphics 
hardware presents a unique system that has many 
different bandwidth issues and needs. 
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Compression can be used in various stages of the 
graphics pipeline to help with this problem of 
limited bandwidth.  We simulated a system that 
involved caching, tiling, and compression of the Z-
buffer and framebuffer.  By combining pixel 
differencing with Huffman coding, we achieved 
compression rates of up to 5:1. 
 
1.1 Previous Work 
 
Geometry:  The newer NVIDIA boards have 
claimed triangle rates upwards of 30 million 
triangles per second.  If the GPUs are fast enough, 
but the memory does not have the bandwidth to 
keep feeding the GPU, then why not use 
compression to try to increase the effective 
bandwidth?  What if extensions or specialized 
hardware could be used to compress models sent to 
the graphics system?  There has been some 
interesting research done on geometry compression, 
but none of the techniques are currently used in 
commodity hardware.  The work done by Deering 
[1] and later continued by Chow [2] suggests 
interesting techniques for lossy geometry 
compression that yield good compression rates.  
Chow’s compression schemes are now part of 
Java3D, using software compression/ 
decompression.  
 
Z-Compression:  Both the new ATI and NVIDIA 
boards both use some form of Z-compression to 
increase the speed of their graphics systems.  They 
both claim about a 4:1 lossless compression ratio.  
ATI claims that Z-compression and Fast-Z clears 
can give them up to 20% performance increase in 
rendering rate.  
 
Texture Compression:  There has been lots of 
research in image compression in general, but few 
suggested methods have been applied to OpenGL 
systems.  S3’s S3TC and 3dfx’s FXT1 are the only 
ones in regular use.  They are lossy compression 
schemes and tend to create bad artifacts in certain 
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situations.  There is also an extension to 3D textures 
proposed by NVIDIA that is based on the S3TC 
scheme and has the same benefits and problems.  
The performance increase in Quake3 with the use of 
S3TC is of interesting note.  The rendering rate 
(frames per second) sees upwards of a 25% 
performance jump with the use of compressed 
textures.  This can be somewhat attributed to the 
fact that more of the textures can now reside on the 
graphics card and do not have to be loaded from 
main memory.  
 
Framebuffer Compression:  Not much research 
seems to have been done in this area. 
 
 
2 Choice of Compression Scheme  
 
Lossy/Lossless  While lossy compression schemes 
have the potential to yield very high compression 
rates, they also have the potential to create 
unwanted artifacts.  This is especially true with the 
Z-buffer, as even a small deviation from the actual 
value can result in the wrong object being 
displayed.  Thus, we have decided to limit our 
choice of compression scheme to only lossless 
schemes. 
 
Encode/Decode Speed  When dealing with 
compression of the Z-buffer and framebuffer, it is 
important that we look at both the encoding as well 
as the decoding speed of the algorithm.  Some 
algorithms, such as vector quantization, are 
relatively fast at decoding, but rather slow at 
encoding.  We wanted an algorithm that performs 
well in both directions. 
 
Tables/Codebooks  Some compression algorithms 
require that a table or codebook be transmitted with 
the data for it to be decoded on the other end.  Since 
we are operating on a tiling system, with tiles of 
size 4x4, 8x8, or 16x16, it is very possible that the 
size of the table or codebook would negate any 
gains in the compression of the data.  We decided to 
only consider compression schemes that did not 
involve the transmission of a table or codebook. 
 
 
 
 

3 Huffman Coding 
 
The basic idea behind Huffman coding is that 
symbols that occur more frequently should be 
represented by shorter codewords than symbols that 
occur less frequently.  In an ideal case, you would 
know the probabilities of all the symbols in a given 
data set that you wish to compress.  This is usually 
done by first scanning the entire data set and 
building a table of probabilities for each symbol 
encountered.  This table is then used to construct a 
new table containing all the symbols of the data set 
and their corresponding codewords.  A common 
way of representing this table of codewords is by 
building a binary tree where external nodes 
represent the symbols of the data set.  The Huffman 
code for any symbol can be constructed by 
traversing the tree from the root node to the leaf 
node.  Each time a traversal is made to the left 
child, a '0' is added to the code, while a '1' is added 
for a traversal to the right.  This Huffman tree is 
then passed to the decoder so that it can uncompress 
the encoded data. 
 
As previously mentioned, due to the small size of 
our tiles, we want to avoid algorithms that have to 
transmit tables or codebooks along with the 
compressed data.  Also, having to scan the data in 
two passes: once for collecting the statistics, and the 
second for encoding the data, would incur a 
significant performance hit.  To avoid these 
problems, we decided to pursue two alternate 
Huffman coding schemes:  Huffman coding using a 
fixed codebook, and adaptive Huffman coding. 
  
3.1 Fixed Codebook Huffman Coding 
 
A simple way of not having to preprocess the data 
set is by using a fixed codebook that both the 
encoder and decoder units have access to at all 
times.  This makes the procedure a one-pass 
process, and removes the need for the encoder to 
transmit the codebook to the decoder.  The 
drawback is that the codebook will have to be 
general and will not be optimized for each data set, 
and so compression rates will not be as good as 
with an optimized codebook.  It will also be a 
challenge to generate a general codebook that 
would yield decent results over a wide range of 
input data. 
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3.2 Adaptive Huffman Coding 
 
In adaptive Huffman coding, the codebook is built 
and continually updated as the data is being 
encoded.  The same happens in the decode stage.  
The decoder will build an identical codebook as it 
reads in the compressed data and uncompresses it.  
A binary code tree is used, similar to that described 
above.  In addition to just storing the symbols at the 
leaves of the tree, an adaptive Huffman code tree 
also stores weights at each node, which correspond 
to the number of times that particular node has been 
traversed.  Leaf nodes store the number of times 
each symbol has been encountered, while interior 
nodes store the sum of its two children.  As more 
and more nodes are added, the weights are used to 
restructure the tree such that symbols that occur 
more frequently will have shorter codes than those 
that occur less frequently. 
 
Adaptive Huffman coding utilizes a Not Yet 
Transmitted (NYT) node to specify that the symbol 
in the compressed stream has not yet been 
transmitted.  Both the encoder and decoder will 
start with a tree that contains a single NYT node.  
When a new symbol is encountered, the encoder 
will transmit the NYT code, along with the 
uncompressed, or fixed code for that symbol.  It 
then adds the new symbol to the table, and the next 
time it encounters that symbol, it can simply use the 
current code for that symbol and update the weights 
for the affected nodes.  The decoding process is 
very similar.  If it reads the code for the NYT node, 
it knows that the following code will be in its 
uncompressed, or fixed state.  It then adds that 
symbol to the tree, and when it sees that code for 
that symbol in the future, it knows how to decode it. 
 
3.3 DPCM and DDPCM 
 
Since image pixels are often heavily correlated with 
neighboring pixels, an effective technique to 
improve the compressibility of the input data is to 
store pixel differences across the data, instead of 
storing each pixel value individually.  For example, 
a smoothly changing set of pixels such as {0 1 2… 
255} would not compress will with just a simple 
Huffman coding scheme.  However, if we instead 
store pixel differences across neighboring pixels, 
the data becomes a series of ‘1’s, which will be 
highly compressible with Huffman coding.  This 

differencing scheme forms the basis for differential 
pulse code modulation (DPCM).  In its basic form, 
pixels are differenced across the rows of the image, 
and when the end of the row is reached, it is 
continued at the next row in one single pass.  A 
variation on this technique would be to first take 
differences across the rows, then to take the 
differences along the columns, starting at the top 
and moving down an image.  This technique is 
known as differential DPCM, or DDPCM. 
 
4 Tiling and Caching 
 
Rather than compressing and decompressing the 
entire framebuffer each time a pixel is written or 
read, our proposed system will divide the 
framebuffer into equally sized square tiles.  To 
further minimize the need to read from and write to 
the framebuffer, our system will incorporate a small 
cache for storing these tiles of uncompressed data.  
When a pixel is read from the framebuffer, our 
system will check if the tile that contains that pixel 
is currently stored in the cache.  If so, it simply 
reads the value from the cache.  If not, it loads the 
compressed version of the tile containing that pixel 
from the framebuffer, decompresses it, and stores it 
in the cache.  We decided to use a random 
replacement policy in the cache due to its 
simplicity, and also due to the fact that more exotic 
replacement schemes would be more costly to 
compute, and only increase our hit rate by an 
insignificant amount. 
 
5 Testing Setup 
 
To test the effectiveness of the proposed 
compression scheme, we used GLSim, an 
instrumented implementation of OpenGL written by 
Ian Buck and Kekoa Proudfoot, and GLTrace, a 
tracing package written by Proudfoot. 
 
We used MacDonald’s adaptive Huffman encoding 
library [6], implemented DPCM and DDPCM, and 
incorporated them into GLSim.  We added a cache 
simulator into GLSim to that simulates the caching 
and tiling system described above and outputs a log 
of total accesses, cache hits and cache misses. 
We tested cache sizes of 1, 2, 4, 8, 16, and 32kB, 
and tile sizes of 4x4, 8x8, and 16x16.  We also used 
adaptive as well as fixed codebook Huffman 
coding, and using those in conjunction with DPCM, 
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DDPCM, and with the original image data (without 
taking any differences).  We used 4 different GL 
traces to test the compression system:  Atlantis, 
Quake 4, QuickTime VR, and a custom trace that 
writes to various parts of the framebuffer in a 
random fashion.  To test the fixed codebook 
Huffman coding, we generated tables that were 
created by “learning” on the Atlantis, Quake 4 and 
QuickTime VR traces.  We also generated separate 
tables for use with DPCM, DDPCM, without either 
differencing schemes, and with the 3 tile sizes we 
were testing with. 

 

6 Results 
 
6.1 Compression Ratios  
 
Table 1 compares the compression ratios for 
different combinations of fixed/adaptive Huffman 
coding schemes, coupled with no 
differencing/DPCM/DDPCM, and tile sizes of 4x4, 
8x8 and 16x16 for the color buffer.  Compression 
ratios were calculated by averaging together the 
ratios for Atlantis, Quake 4, QTVR and a random 
access fill. 
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Table 1:  Color Buffer Compression Ratios using an average of Atlantis, Quake 4, QTVR, and a random fill.
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As you can see, compression ratios increase with 
larger tile sizes, and with adaptive Huffman as 
compared to fixed codebook Huffman.  DPCM 
definitely improves the compressibility of the data, 
but DDPCM further improves it only some of the 
time.  The lowest compression ratio was 2.13:1, 

using a fixed codebook, no differencing, and a tile 
size of 4x4.  The best compression ratio found was 
4.57:1, using adaptive Huffman, DPCM and a tile 
size of 16x16. 
 

          Depth   Buffer             Color   Buffer       
Tile Size   4x4     8x8     16x16     4x4     8x8     16x16   

Huffman DPCM/DDPCM? Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max 
Fixed None 2.22 1.49 2.71 2.32 1.58 2.68 3.63 0.94 4.05 2.24 1.60 2.45 2.36 1.93 2.49 3.54 2.50 3.71
Adaptive None 2.46 1.40 3.21 3.33 1.06 4.34 4.37 1.23 5.46 2.45 1.16 2.89 3.27 1.18 3.89 4.12 2.75 4.90
Fixed DPCM 2.52 1.17 3.25 2.80 0.95 3.39 4.75 0.74 5.75 2.69 1.27 3.16 2.97 1.21 3.32 5.20 3.29 5.76
Adaptive DPCM 2.64 1.28 3.57 3.67 1.22 4.82 4.88 1.42 5.91 2.90 1.18 3.47 4.05 1.31 4.80 5.25 3.05 5.91
Fixed DDPCM 2.28 1.08 3.08 2.72 0.90 3.36 4.66 0.73 5.74 2.37 1.20 2.87 2.84 1.10 3.26 5.04 3.08 5.73
Adaptive DDPCM 2.34 1.26 3.35 3.48 1.23 4.70 4.78 1.37 5.87 2.51 1.22 3.22 3.78 1.30 4.65 5.10 3.02 5.85

Table 3:  Compression ratios for the Atlantis trace 
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Table 2:  Depth Buffer Compression Ratios using an average of Atlantis, Quake 4, QTVR, and a random fill.
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Table 2 shows the results of our depth buffer 
testing.  Compression ratios ranged from 2.05:1 
(fixed codebook Huffman, no differencing, 4x4 tile 
size) to 4.65:1 (adaptive Huffman, DDPCM, 16x16 
tile size).  DPCM was always an improvement over 
no differencing, and DDPCM was a further 
improvement for tile sizes of 8x8 and 16x16. 
 
A further breakdown of compression ratios can be 
seen in Table 3, which shows the results of running 
the Atlantis trace through various combinations of 
tile sizes (4x4, 8x8 and 16x16), fixed 
codebook/adaptive Huffman, and DPCM/DDPCM/ 
no differencing.  Again, compression ratios are 
higher for adaptive Huffman when compared to 
fixed codebook Huffman, and increase as tile size 
increases.  DPCM also increases compression ratios 
over not using any pixel differencing, but DDPCM 
does not seem to bring about any further increases 
in compression over DPCM.  Results from testing 
with Quake 4 and QTVR were similar, with the 
exception that DDPCM did slightly better than 
DPCM about half the time, and slightly worse the 
other half 
 

The results from our cache testing, as seen in Table 
3, show that even a small amount of cache yields 
pretty decent hit rates.  The trick is to balance the 
right amount of cache with the right tile size.  While 
using a larger tile size increases the compressibility 
of the data, it also increases the amount of data that 
gets transferred with each cache miss.  Table 3 
shows the results of running the QTVR trace 
through various combinations of cache sizes (1, 2, 
4, 8, 16 and 32KB) and tile sizes (4x4, 8x8 and 
16x16).  The break-even value is the compression 
ratio at which we break even on the bandwidth as 
compared to not using any compression. 
 
As you can see, with a cache size of 8KB or less, 
going from a tile size of 8x8 to 16x16 requires a 
significantly higher compression ratio to break 
even.  Since we get pretty decent hit rates with a 
cache size of 8KB and a reasonable break-even 
point for an 8x8 tile size, we can plug in our 
measured compression ratios for QTVR to calculate 
our savings in bandwidth.  For fixed codebook 
Huffman, our best compression ratios for an 8x8 
tile size are 2.83:1 for the depth buffer, using 
DDPCM, and 2.34:1 for the color buffer, using 

Cache Tile Depth Cache Color Cache 
Size 
(KB) Size Hit Miss Break Even Hit Miss Break Even 

1 4 0.9002 0.0998 1.5975 0.9001 0.0999 1.5981

1 8 0.9522 0.0478 3.0569 0.9523 0.0477 3.0540

1 16 0.8894 0.1106 28.3256 0.8894 0.1106 28.3256

2 4 0.9093 0.0907 1.4506 0.9093 0.0907 1.4518

2 8 0.9640 0.0360 2.3039 0.9640 0.0360 2.3062

2 16 0.8900 0.1100 28.1544 0.8900 0.1100 28.1623

4 4 0.9188 0.0812 1.2999 0.9187 0.0813 1.3003

4 8 0.9705 0.0295 1.8867 0.9705 0.0295 1.8888

4 16 0.9837 0.0163 4.1702 0.9837 0.0163 4.1679

8 4 0.9266 0.0734 1.1745 0.9266 0.0734 1.1736

8 8 0.9769 0.0231 1.4796 0.9768 0.0232 1.4832

8 16 0.9890 0.0110 2.8278 0.9889 0.0111 2.8349

16 4 0.9314 0.0686 1.0969 0.9314 0.0686 1.0974

16 8 0.9805 0.0195 1.2471 0.9805 0.0195 1.2458

16 16 0.9929 0.0071 1.8071 0.9929 0.0071 1.8148

32 4 0.9340 0.0660 1.0553 0.9340 0.0660 1.0557

32 8 0.9823 0.0177 1.1334 0.9823 0.0177 1.1332

32 16 0.9945 0.0055 1.4124 0.9945 0.0055 1.4121

Table 4: Tradeoff between cache size and tile size for QTVR trace 
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DPCM.  This results in a net reduction in bandwidth 
of 48% and 37% respectively.  If adaptive Huffman 
is used, our maximum compression ratios are 3.44:1 
for the depth buffer, using DDPCM, and 2.82:1 for 
the color buffer, using DPCM.  These ratios yield a 
net reduction in bandwidth of 57% and 47% 
respectively. 
 
7  Future Work and Considerations  
 
7.1  Fixed codebook generation 
 
Fixed codebooks would offer the simplest hardware 
implementation, but a learning system would have 
to be designed to gather data from many 
applications.  It may be that designing a codebook 
to work with all applications would create a 
codebook that does not yield very good 
performance for any single application.  Maybe a 
learning system could be designed to use several 
codebooks, and the hardware designed such that the 
best codebook is chosen based on the performance 
of the codebook used for the last rendered frame.  
DPCM and DDPCM seem to help a great deal with 
fixed codebooks since these systems are very good 
at evening out noise.  As long as the data is not 
extremely noisy, these methods will generally 
generate lots of small values and many fewer large 
values.  This means that the codebook can be 
designed to use shorter codewords for smaller 
values and larger codewords for larger values. 
 
7.2  Other compression systems  
 
There is a great deal of promise in the compression 
rates offered by other schemes.  We did not include 
some of these systems based on the complexity of 
their implementations.  However, if they can yield 
high enough compression rates to make up for their 
complexity, they might be able to get even higher 
bandwidth gains than the Huffman systems we 
chose to explore. 
 
7.3  Detecting Low Compression Rates 
 
One of the problems with any lossless compression 
system is that you can actually expand the data.  In 
the case of our system, this can happen if the fixed 
table contains shorter codewords for low values, but 
the data contains mostly large values.  A hardware 
design is needed that can detect that the compressed 

version is larger and can choose to send the original 
to the framebuffer.  This would be a requirement for 
the hardware to work correctly, else depending on 
the alignment strategy used, it is likely that any data 
expansion will cause data in the framebuffer to be 
overwritten.  This method would also potentially 
improve the average compression ratio if the 
method used occasionally causes data expansion. 
 
7.4  Smarter Caches 
 
The randomly drawn small polygons are a 
disastrous case for our system.  The only way to 
prevent a large performance hit would be to not use 
compression if the miss rate takes us below the 
break even point for some conservatively calculated 
average compression ratio.  It would be interesting 
to investigate the possible implementation of 
hardware the can detect such a situation and 
examine the consequences of such a design. 
 
7.5  Texture Compression 
 
Can a similar system to ours also be used in the 
texture stages of the pipeline?  It would be 
interesting to see what the compression ratio and 
cache statistics would be if a system such as ours 
was applied to the texture memory.  The 
framebuffer required both a fast encode and decode 
system, but textures are largely only read access.  
Although our method would most likely improve 
performance, it is more likely that methods that 
offer high compression rates with slow encodes and 
fast decodes would offer even better performance 
than our system.  However, if something like our 
system was being used in hardware, it may only be 
a small addition to allow the same system to 
function with the texture units.  Most likely, the 
best compression rates would be had with an 
algorithm, which provides high compression rates, 
inexpensive decode, and possibly expensive 
encoding. 
 
8 Conclusion 
 
As the performance increases in graphics processors 
continues to outpace the increases in the speed and 
bandwidth capabilities of memory systems, the use 
of compression will become more and more 
compelling.  By using our system, it is possible for 
applications that are bound by the bandwidth to the 
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framebuffer to potentially see a substantial increase 
in rendering performance.  Even with very small 
caches, only containing a few tiles, it is still 
possible to yield a noticeable gain in performance.  
Since current graphics cards are currently using Z-
compression and the numbers claimed by those 
manufacturers are similar to the numbers received 
by our methods and tests, we suggest that it would 
be possible to use similar hardware to that currently 
being used to also compress the color buffer.  Based 
on our results, using a cache size of 8kB and a tile 
size of 8x8, it is possible to achieve close to a 50% 
improvement in bandwidth.  If the bandwidth is 
holding the processor back, compression will give 
more room for the processor to run.   
 
References 
 
[1] DEERING, M.  Geometry Compression.  Computer 

Graphics (Proc. SIGRAPH), pages 101-108, August 
1993.  

 
[2]  CHOW, M. M.  Optimized Geometry Compression 

for Real-time Rendering, (Proc. IEEE 
VISUALIZATION '97), pages 347-354, 559. 

 
[3] Texture Compression, from the Matrox website:  

http://www.matrox.com/mga/dev_relations/ 
chip_tech/media/pdf/texture_compression.pdf 

 
[4] BEERS, A.C., AGRAWALA, M., CHADDHA, N.  

Rendering from Compressed Textures, Computer 
Graphics (Proc. SIGGRAPH '96). 

 
[5] SAYOOD, K.  Introduction to Data Compression, 

Second Edition.  Academic Press, 2000. 
 
[6] Josh MacDonald.  Adaptive Huffman Encoding 

Library.  http://www.xcf.berkeley.edu/~ali/K0D/ 
Algorithms/huff/ 

 


