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We present a novel method for high-performance GPU based rendering
of Catmull-Clark subdivision surfaces. Unlike previous methods, our algo-
rithm computes the true limit surface up to machine precision, and is capa-
ble of rendering surfaces that conform to the full RenderMan specification
for Catmull-Clark surfaces. Specifically, our algorithm can accommodate
base meshes consisting of arbitrary valence vertices and faces, and the sur-
face can contain any number and arrangement of semi-sharp creases and hi-
erarchically defined detail. We also present a variant of the algorithm which
guarantees watertight positions and normals, meaning that even displaced
surfaces can be rendered in a crack-free manner. Finally, we describe a view
dependent level-of-detail scheme which adapts to both the depth of subdivi-
sion and the patch tessellation density. Though considerably more general,
the performance of our algorithm is comparable to the best approximating
method, and is considerably faster than Stam’s exact method.
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1. INTRODUCTION

Catmull-Clark subdivision surfaces [Catmull and Clark 1978] have
been used extensively by the feature film industry for some time.
With the advent of hardware tessellation units on GPUs, they are
becoming increasingly attractive for use in games. Hardware tessel-
lation exploits the compact representation and data independence of
patch primitives to produce triangle data for immediate consump-
tion by the rasterization stage. This means that only the vertices of a
coarse model need to be animated; the GPU can amplify the coarse
geometry on-the-fly with very little memory bandwidth to produce
a dense tessellation of the surface. Subdivision surfaces seem ide-
ally suited to this paradigm. However, efficiently using tessellation
hardware to render Catmull-Clark subdivision surfaces has previ-
ously relied either on the construction of approximating patches
[Loop and Schaefer 2008; Myles et al. 2008; Ni et al. 2008; Loop
et al. 2009], or on the direct, but considerably slower Stam evalua-
tion algorithm [Stam 1998].

Since their introduction in 1978, Catmull-Clark surfaces have
been extended in a number of ways, including the treatment of
boundaries [Nasri 1987], infinitely sharp creases [Hoppe et al.
1994], semi-sharp creases [DeRose et al. 1998], and hierarchically
defined detail [Pixar Animation Studios 2005]. The introduction of
semi-sharp creases has proven to be particularly important as they
allow realistic edges to be defined while keeping memory foot-
prints small. For example, the rounded edges of the steel frame
of the Garbage Truck shown in Figure 9 were created with semi-
sharp creases, requiring only a few bytes of tag data per creased
edge. Achieving a similar shape without semi-sharp creases would
require a base mesh with significantly more vertices, faces, and
edges. Similarly, the use of hierarchical edits, as introduced by
Forsey and Bartels [1988] and as defined in the RenderMan speci-
fication, allows detail at various resolutions to be specified much
more efficiently than globally refining the mesh. An example is
shown in Figure 10(b) where the sandy terrain is modeled at one
scale, and the footprints are details that appear at a much finer scale.

To date there are no GPU algorithms for the real-time rendering
of Catmull-Clark surfaces possessing semi-sharp creases or hier-
archical detail. In this paper, we present the first such algorithm. It
uses a combination of GPU compute kernels and hardware tessella-
tion to adaptively patch Catmull-Clark surfaces. Moreover, the al-
gorithm is exact rather than approximating (by exact we mean that
the vertices of our patch tessellations lie exactly on the limit surface
up to machine precision), and we present a variant that is capable of
creating watertight tessellations. This variant additionally satisfies
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Fig. 1. Input base mesh (left), subdivision patch structure (center), and final model rendered with our method (right) c© Disney/Pixar

a much stronger condition: namely, that abutting patches meet with
bitwise identical positions and normals. With this stronger prop-
erty surfaces with normal displacements are also guaranteed to be
crack-free.

The algorithm is based on the idea of feature-adaptive subdivi-
sion. It has long been known that regular faces of a Catmull-Clark
base mesh (that is, quad faces whose vertices have exactly four
neighbors) generate a single bicubic patch in the limit of infinite
subdivision, and that regions around extraordinary vertices (ver-
tices having other than four neighbors) give rise to an infinite nest-
ing of bicubic patches that approach a well defined limit [Doo and
Sabin 1978]. A similar recursive nesting of bicubic patches also oc-
curs near other kinds of features such as semi- or infinitely sharp
creases, as well as near regions affected by hierarchical detail. Our
algorithm exploits this fact to subdivide the mesh only in the vicin-
ity of these features. At each stage of local subdivision, new bicu-
bic patches are generated that are directly rendered using hardware
tessellation. Since we only subdivide locally, our time and mem-
ory requirements are significantly less than the naive approach of
globally subdividing the entire base mesh each step.

In addition to being more accurate and general than previous al-
gorithms, the performance of our approach is competitive with an
optimized implementation of the fastest approximate scheme based
on Gregory Patches [Loop et al. 2009]. We also show that our ap-
proach is significantly faster than a GPU implementation of Stam’s
direct evaluation procedure (see Section 8). Furthermore, we also
demonstrate that iteratively refining a mesh is inherently memory
I/O bound, while our algorithm utilizes hardware tessellation in or-
der to avoid this limitation.

1.1 Algorithm Overview and Contributions

Feature adaptive rendering involves a CPU preprocessing step, as
well as a GPU runtime component. Input to our algorithm is a base
control mesh consisting of vertices and faces, along with optional
data consisting of semi-sharp crease edge tags and hierarchical de-
tails. In the CPU preprocessing stage, we use these data to construct
tables containing control mesh indices that drive our feature adap-
tive subdivision process. Since these subdivision tables implicitly
encode mesh connectivity, no auxiliary data structures are needed
for this purpose. A unique table is constructed for each level of sub-
division up to a prescribed maximum, as well as final patch control
point index buffers as described in Section 3.2. The base mesh,
subdivision tables, and patch index data are uploaded to the GPU,
one time only, for subsequent runtime processing. The output of
this phase depends only on the topology of the base mesh, crease
edges, and hierarchical detail – it is independent of the geometric
location of the control points.

For each frame rendered on the GPU, we use a two phase pro-
cess. In the first phase, we execute a series of GPU compute ker-
nels to perform data parallel Catmull-Clark subdivision of the base
mesh. The index patterns used by the compute kernels to gather
vertex data needed to perform each subdivision operation are en-
tirely encoded in the subdivision tables. This process is repeated
for each level of subdivision until a maximum depth is reached;
this phase is described in Section 3.3. In the second GPU phase,
we use the hardware tessellator unit to render the bicubic patches
corresponding to the regular regions of the various subdivision lev-
els computed in the first GPU phase (see Section 4). In Section 5,
we develop the special treatment necessary to avoid cracks between
adjacent patches, and in Section 7 we discuss how the flexibility of
our algorithmic framework can be used to implement view depen-
dent level-of-detail rendering. Since only base control point posi-
tions need to be updated on the GPU each frame, high frame rate
animation of complex models is achieved. In this paper we address
only the rendering of models once they have been animated. We do
not address techniques for creating compelling animation.

In summary, the main contributions of our paper are:

—The first table driven data-parallel subdivision method that sup-
ports local refinement; we refer to this as feature adaptive subdi-
vision.

—The first exact hardware tessellation algorithm of the true limit
surface, including arbitrary valence vertices and faces, semi-
sharp creases, and hierarchical details.

—A novel evaluation algorithm that guarantees bitwise identical
evaluation of positions and normals of adjacent patches.

—A view dependent level-of-detail method that adapts to both sub-
division level and patch density.

2. PREVIOUS WORK

The problem of GPU based rendering of Catmull-Clark surfaces
has received considerable attention in recent years. We separate
these approaches into three categories: global mesh refinement, di-
rect evaluation, and approximate patching.

Global mesh refinement implements subdivision according to its
standard definition. A base mesh is repeatedly (possibly adaptively)
refined until the mesh achieves a sufficient density and then the
resulting faces are rendered. The work of Bunnell [2005], Shiue
et al. [2005], and Patney and Owens [2009] belong to this cate-
gory. Global refinement schemes require significant memory I/O
to stream control mesh data to and from GPU multiprocessors and
global GPU memory (i.e., on- and off-chip). We demonstrate in
Section 8 that performing global refinement iteratively is severely
limited in performance as memory bandwidth becomes the bottle-
neck.
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By leveraging the eigenstructure of a subdivision matrix
Stam [1998] developed a method for directly evaluating subdivi-
sion surfaces at arbitrary parametric values. In order to apply this
approach, a control mesh must have isolated extraordinary vertices.
This means that two global refinement steps must be applied to an
arbitrary control mesh (only one for a quad mesh) as a preprocess.
Afterwards, Stam’s algorithm can be easily implemented on the
GPU using hardware tessellation. First, patch data must be trans-
formed into eigenspace, making subsequent watertight boundary
evaluation problematic. To do patch evaluation, one of three pos-
sible sets of precomputed eigenbasis functions must be evaluated.
While this is feasible, the complexity of the algorithm and signifi-
cant amount of computation limit performance, see Section 8. Fur-
thermore, extending this approach to the evaluation of semi-sharp
creases and hierarchical details remains a formidable challenge.

Another direct evaluation approach has been proposed by Bolz
and Schröder [2002] originally targeting the CPU. Their approach
exploits the fact that subdivision surfaces are linear functions of
control point positions, meaning that a basis function can be as-
sociated with each control point. These basis functions must to be
generated for all patch configurations. In order to keep basis func-
tion count within limits they require extraordinary vertices to be
isolated. They indicate that approximately 5300 tables for the basis
functions are required restricting vertex valence for interior patches
to 12. Evaluation of surface points and derivatives is therefore re-
duced to dot products of the table values with control point posi-
tions. Extending their method to accommodate semi-sharp creases
and hierarchical detail is problematic for several reasons. First,
since crease sharpnesses can take on fractional values, there are an
unbounded number of potential basis functions, meaning that the
tables must be precomputed in a mesh dependent fashion, and the
number of distinct tables can be very large. More fundamental is
the fact that hierarchical detail coefficients are represented in local
surface frames (cf. Forsey and Bartels [1988]), implying that the
surface is no longer linear in the control vertices, and hence basis
functions do not exist.

In anticipation of hardware tessellation, Loop and Schae-
fer [2008] noted the high cost of direct evaluation and the need
for pre-tessellator subdivision. They proposed an approximation to
a quads only Catmull-Clark limit surface based on bicubic Bézier
patches. Several variants along these lines have appeared with var-
ious improvements to the restrictions on mesh connectivity or un-
derlying surface algorithm. For instance, a quads only method was
described by Myles et al. [2008] and Ni et al. [2008], a method to
handle a mixture of triangles and quads was presented by Loop et
al. [2009], and Myles et al. [2008] offer a method to deal with pen-
tagonal patches as well as quads and triangles. Finally, the case of
infinitely sharp creases in the context of an approximate Catmull-
Clark subdivision on the GPU was handled by Kovacs et al. [2009].

It has been understood for decades that adaptive tessellation re-
quires a specific strategy for eliminating cracks [Catmull 1974] at
boundaries between distinct tessellation densities. Since a goal of
our work is to create adaptive, crack-free renderings, our method
is similar to that of Von Herzen and Barr [1987], where the no-
tion of restricted quadtrees was introduced. A quadtree is said to be
restricted if the subdivision levels of adjacent cells differs at most
by one. With this restriction it is relatively easy to avoid cracks;
fortunately the pattern of subdivision that naturally arises in our
algorithm ensures this condition.

3. CATMULL-CLARK SUBDIVISION

Catmull-Clark subdivision takes a coarse base mesh as input and
generates as output a new refined mesh containing more faces,
edges, and vertices. By repeating this process on the sequence of
new meshes, a smooth limit surface is obtained. The algorithm is
defined by a simple set of rules, called the smooth rules, which are
used to create new face points (fj), edge points (ej) and vertex
points (vj) as a weighted average of points of the previous level.
Special rules are used for handling features such as boundaries and
creases.

3.1 Subdivision Rules

The Catmull-Clark smooth subdivision rules for face, edge, and
vertex points, as labeled in Figure 2, are defined as:

—Faces rule: f i+1 is the centroid of the vertices surrounding the
face.

—Edge rule: ei+1
j = 1

4
(vi + eij + f i+1

j−1 + f i+1
j ),

—Vertex rule: vi+1 = n−2
n

vi + 1
n2

∑
j

eij +
1
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∑
j
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Fig. 2. Labeling of vertices of the base mesh around the vertex v0 of va-
lence n.

Following DeRose et al. [1998], a crease is defined by adding
sharpness tags to edges. Subdividing a sharp edge creates two child
edges, each of which are tagged with the sharpness value of the
parent minus one. A vertex vj containing exactly two crease edges
ej and ek is considered to be a crease vertex. The following sharp
rules are used for both boundaries and sharp edges (crease rules):

—ei+1
j = 1

2
(vi + eij)

—vi+1
j = 1

8
(eij + 6vi + eik)

If a vertex is adjacent to three or more sharp edges or located on
a corner then we derive it’s successor by vi+1 = vi (corner rule).

In order to deal with fractional smoothness and propagate sharp-
ness properly we use a slightly modified scheme of DeRose et
al. [1998] where e.s defines the sharpness of an edge:

—Face points are always the average of the surrounding points

—e with e.s = 0→ smooth rule
—e with e.s ≥ 1→ crease rule
—e with 0 ≤ e.s ≤ 1→ (1− e.s) · esmooth + e.s · ecrease

Now, we introduce the vertex sharpness v.s to handle vertices,
where v.s is the average of all incident edge sharpnesses and k is
the number of edges around a vertex v with e.s > 0:

—v with k < 2→ smooth rule
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—v with k > 2 ∧ v.s ≥ 1.0→ corner rule
—v with k > 2∧0 ≤ v.s ≤ 1→ (1−v.s) ·vsmooth +v.s ·vcorner
—v with k = 2 ∧ v.s ≥ 1.0→ crease rule
—v with k = 2∧ 0 ≤ v.s ≤ 1→ (1− v.s) · vsmooth + v.s · vcrease

Figure 3 shows the results when applying these rules on a pyra-
mid. The edges of the pyramid’s base plane are tagged as sharp.
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Fig. 3. One subdivision step applied on a pyramid where the edges of the
base plane are tagged sharp.

3.2 Data-Parallel Subdivision

While the subdivision rules of Section 3.1 are straightforward to
implement on a CPU, an efficient implementation on the GPU
is non-trivial since neighborhood information is required. Fortu-
nately, in most feature film and game applications the connectivity
and sharpness tags of a mesh are typically invariant during ani-
mation, so a precomputed table driven approach is feasible. These
tables are used at runtime to efficiently guide the subdivision com-
putations. Due to the data dependency of the subdivision rules, face
points must be computed first, followed by edge, and then vertex
points. We use three separate compute kernels, one for each point
type respectively. All kernels operate on a single vertex buffer, used
for all subdivision levels. We justify this strategy as it a) simplifies
our table construction, and b) optimizing this will have little impact
on frame rate. The vertices of the base mesh, which may be ani-
mated at runtime, occupy a section at the beginning of this buffer.
Starting from the base mesh, the subdivision kernels will compute
in parallel the refined mesh for the next subdivision level.

The tables for the face, edge and vertex kernel are defined as fol-
lows. The face kernel requires two buffers: one index buffer, whose
entries are the vertex buffer indices for each vertex of the face; a
second buffer stores the valence of the face along with an offset
into the index buffer for the first vertex of each face. Since a single
(non-boundary) edge always has two incident faces and vertices,
the edge kernel needs a buffer for the indices of these entities. In
order to apply the edge rules, we also store the edge sharpness val-
ues e.s. The data for the vertex kernel is similar to the face kernel.
We use an index buffer containing the indices of the incident edge
and vertex points. We also need a second buffer to store the vertex
valence, an index to predecessor of the vertex, the vertex sharpness
v.s, and an offset to the starting index in the first buffer. For deal-
ing with the case of a vertex on a crease, we must also store the
indices of the edges that specify the crease (crease idx0, idx1). Fig-
ure 4 shows the subdivision tables for the pyramid in Figure 3. For

meshes with boundary, the subdivision tables are adjusted accord-
ing to the respective rules.

Fig. 4. Subdivision tables for the pyramid of Figure 3: (a) is the vertex
buffer, (b) contains topology information, (c) are indices which point into
the vertex buffer and (d) provides the edge and vertex sharpness.

3.3 Feature Adaptive Subdivision

As mentioned in the introduction, it is well known that the limit
surface defined by Catmull-Clark subdivision can be described by
a collection of bicubic B-spline patches, where the set has infinitely
many patches around extraordinary vertices, as illustrated in Fig-
ure 5(left). Similarly, near creases as shown in Figure 5(right), the
number of limit patches grows as the crease sharpness increases.

Fig. 5. The arrangement of bicubic patches (blue) around an extraordinary
vertex (left), and near an infinitely sharp crease (right). Patches next to the
respective feature (green) are irregular.

Feature adaptive subdivision proceeds by identifying regular
faces at each stage of subdivision, rendering each of these directly
as bicubic B-splines using hardware tessellation. Irregular faces are
refined, and the process repeats at the next finer level. This strategy
uses the same compute kernels as outlined in Section 3.2, however,
the subdivision table creation is restricted to irregular faces. A face
is regular only if it is a quad with all regular vertices, if none of its
edges or vertices are tagged as sharp, and there are no hierarchical
edits that would influence the shape of the limit patch. In all other
cases the face is recognized as irregular, and subdivision tables are
generated for a minimal number of subfaces. As before, all of this
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analysis and table generation is done on the CPU at preprocessing
time.

Vertex and edge tagging is done at each level, depending on how
many times the area around an irregular face should be subdivided.
This might be the maximum desired subdivision depth around an
extraordinary vertex, or the sharpness of a semi-smooth edge. As
a result, each subdivision level will be a sequence of local control
meshes that converge to the feature of interest (see Figure 6).

Fig. 6. Our adaptive subdivision scheme applied on a grid with four ex-
traordinary vertices. Subdivision is only performed in areas next to extraor-
dinary vertices.

The memory required to globally subdivide a mesh to level k is
proportional to 4kF , where F is the number of faces in the orig-
inal mesh. Feature adaptive subdivision generally requires far less
memory as the size of the subdivision tables is proportional to the
total number of irregular faces at each subdivision level. The ex-
act storage requirements depend on the number and arrangement
of irregular faces, the sharpness of creases, and so on. However,
an asymptotic upper bound can be obtained by making the worst
case assumption that every irregular edge (an edge is irregular if
it is adjacent to an extraordinary vertex, if it is tagged as a crease,
or if a hierarchical edit influences the shape of one of the patches
adjacent to the edge) is subdivided into two irregular edges. If there
are e edge tags in the original mesh, the storage requirements for
subdividing k levels is proportional to 2ke. Since e is typically far
smaller than the total number of edges in the original mesh, and
since 2k grows far less quickly than 4k, we achieve a significant
reduction in memory use. Subdivision around extraordinary ver-
tices behaves even better, since the number of irregular faces grows
linearly with respect to the extraordinary vertex count (v) per sub-
division step (≈ 12kv). Actual memory requirements for various
models are given in Section 8.4.

4. PATCH CONSTRUCTION

Once the subdivision stage is complete, we use the hardware tessel-
lator to adaptively triangulate the resulting patches (see Direct3D
features [Microsoft Corporation 2009]). The number and location
of sample points on patch edges is determined by user provided tess
factors. For each subdivision level we define two kinds of patches:
full patches and transition patches.

4.1 Full Patches

Full patches (FPs) are patches that only share edges with patches
of the same subdivision level. Regular FPs are passed through the
hardware tessellation pipeline and rendered as bicubic B-splines.
We ensure by feature adaptive subdivision that irregular FPs are
only evaluated at patch corners. This means that for a given
tessfactor we must perform dlog2 tessfactore adaptive subdivi-
sion steps. Since current hardware supports a maximum tessfactor
of 64 (= 26), no more than 6 adaptive subdivision levels are re-
quired. In order to obtain the limit positions and tangents of patch
corners of irregular FPs we use a special vertex shader. Using this
approach, our surface representation is exact; we show in Section 8

that this is significantly faster than direct evaluation as proposed by
Stam [1998].

4.2 Transition Patches

Note that the arrangement of bicubic patches created by adaptive
subdivision ensures that adjacent patches correspond either to the
same subdivision level, or their subdivision levels differ by one.
Patches that are adjacent to a patch from the next subdivision level
are called transition patches (TPs). We additionally require that
TPs are always regular. We enforce this constraint during the sub-
division preprocess by marking for subdivision all irregular patches
that might become TPs. This constraint significantly simplifies the
algorithm at the expense of only a small number of additional
patches.

To obtain crack-free renderings, the hardware tessellator must
evaluate adjacent patches at corresponding domain locations along
shared boundaries. Setting the tess factors of shared edges to the
same value will ensure this. However, TPs by definition share edges
with neighboring patches at a different subdivision level. One so-
lution to this problem would be using compatible power of two
tess factors so that the tessellations will line up. However, allowing
only power of two tess factors is a severe limitation that reduces the
available flexibility provided by the tessellation unit.

In order to avoid this limitation, we split each TP into several
subpatches using a case analysis of the arrangement of the adjacent
patches. Since each patch boundary can either belong to the current
or to the next subdivision level, there are only 5 distinct cases as
shown in Figure 7.

Each subdomain corresponds to a logically separate subpatch,
though each shares the same bicubic control points with its TP sib-
lings. Evaluating a subpatch involves a linear remapping of canon-
ical patch coordinates (e.g., a triangular barycentric) to the corre-
sponding TP subdomain, followed by a tensor product evaluation
of the patch. This means that each subdomain type will be handled
by draw calls requiring different constant hull and domain shaders;
though we batch these according to subpatch type. However, since
the control points within a TP are shared for all subpatches, the ver-
tex and index buffers are the same. The overhead of multiple draw
calls with different shaders but the same buffers becomes negligible
for a larger number of patches.

By rendering TPs as several logically separate patches, we elimi-
nate all T-junctions in the patch structure of a surface. The TP struc-
ture around an extraordinary vertex is illustrated to the right. This
means that as long we assign consistent tess factors to shared edges,
in principle a crack-free rendered surface is obtained. In practice
however, due to behavior of floating point numerics, additional care
is required as discussed in Section 5.

The assignment of tess factors for patch edges should take into
account the subdivision level i that generated the patch. We discuss
various strategies for adapting the subdivision level and the assign-
ment of tess factors in Section 7.

5. WATERTIGHT EVALUATION

Adjacent patches sharing identical tess factors is a necessary but not
sufficient condition to guarantee watertight rendering. Since float-
ing point multiplication is neither associative nor distributive, eval-
uating adjacent patches at the same parameter of a shared boundary
may not produce bitwise identical results. These minor discrepan-
cies may result in visible cracks (holes) between adjacent patches,
particularly when patches belong to different subdivision levels.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



6 • M. Nießner et al.

(1) (2) (3) (4) (5)

Fig. 7. There are five possible constellations for TP. While TP are colored red, the current level of subdivision is colored blue and the next level is green. The
domain split of a TP into several subpatches allows full tessellation control on all edges, since shared edges always have the same length.

In this section, we present a method for the watertight evalua-
tion of the patches generated by our feature adaptive subdivision
approach. Moreover, we show that this method results in positions
and normals that are bitwise identical along shared boundaries. We
first describe a procedure for patches at the same subdivision level,
then we describe one for patches that belong to different levels.

5.1 Same Subdivision Level

Castaño et al. [2008] propose an approach for watertight evaluation
of Bézier patches that matches the order of computations performed
with respect to either side of a shared boundary. However, they do
not address the conversion to the Bézier basis, required for subdi-
vision surfaces; or how to deal with irregular patches. Furthermore,
their use of ownership assignments for normals at patch corners has
a large memory footprint.

In contrast, we exploit the B-spline basis where the same input
data is used for computing both positions and normals on either
side of a shared patch boundary. Our approach requires that float-
ing point addition and multiplication be commutative; fortunately,
enabling the IEEE floating point strictness as a flag for the HLSL
compiler will guarantee this.

We evaluate positions and derivatives of bicubic B-spline patches
by appealing to their tensor product form:

S(u, v) = N(u) · P ·N(v),
∂S
∂u

(u, v) = dN
du

(u) · P ·N(v),

∂S
∂v

(u, v) = N(u) · P · dN
dv

(v),

where N(t) = [N0(t), . . . ,N3(t)] are the univariate cubic B-
spline basis functions, and P = (Pi,j) is the 4 × 4 array of patch
control points. We perform the computation of S(u, v) using re-
peated evaluation of univariate B-spline curves as follows. We first
compute a point parameterized by u on each of the 4 curves de-
fined by the columns of P . That is, we compute the row vector
of 4 points S(u) = [s0(u), s1(u), s2(u), s3(u)] = N(u) · P ; we
then compute the surface point S(u, v) by univariate evaluation of
S(u) · N(v). Derivatives are computed similarly using univariate
evaluation. In the domain shader we check if u = 0 or u = 1 is
true, or if v = 0 or v = 1 is true, then the evaluation must be on a
domain boundary; if these are both true, then the evaluation must be
on a domain corner. These cases are handled separately as follows.

5.1.0.1 Domain Boundaries. In this case, two patches will
be evaluated independently at corresponding domain locations.
Since there is no globally consistent u, v parameterization for a
subdivision surface, there are a variety of cases to consider at a
boundary shared by two patches A and B. It could be, for instance,
that the boundary corresponds to uA = 1 and uB = 0, in which
case vA = vB along the boundary since both patches are right

handed. Watertightness in this case is particularly easy to obtain
since the v parameter values match on either side of the boundary.

The more challenging case is when the two patches have the
shared boundary parametrized in opposite directions, for instance
when vA = 1 − vB along the shared boundary. As mentioned
above, our surface evaluation method reduces to repeated evalua-
tion of B-spline curves. We therefore require that our method pro-
duces bitwise identical results when reversing the parametric di-
rection of a curve. To be more precise, consider a cubic B-spline
curve C(u) defined by control points X = [X0,X1,X2,X3]

T ;
that is C(u) := N(u) · X . Now consider the curve Cr(ur) that
is parametrized in the reverse direction: Cr(ur) := N(u) · Xr ,
where Xr := [X3,X2,X1,X0]

T . We require that our evaluation
method is reversal invariant in that it satisfies

C(u) = Cr(1− u) and
dC

du
(u) = −dCr

du
(1− u) (1)

where equality means bitwise identical results.
The first step is to evaluate the B-spline basis func-

tions so that N(u) = Nr(1 − u), where Nr(u) :=
[N3(u), N2(u), N1(u), N0(u)] and dN

du
(u) = − dNr

du
(1− u). The

following, relying only on commutativity of floating point addition,
is such a procedure that computes the homogeneous form of the ba-
sis functions and derivatives:

void EvalCubicBSpline(in float u,

out float N[4], out float NU[4]) {

float T = u;

float S = 1.0 - u;

N[0] = S*S*S;

N[1] = (4.0*S*S*S + T*T*T) + (12.0*S*T*S + 6.0*T*S*T);

N[2] = (4.0*T*T*T + S*S*S) + (12.0*T*S*T + 6.0*S*T*S);

N[3] = T*T*T;

NU[0] = -S*S;

NU[1] = -T*T - 4.0*T*S;

NU[2] = S*S + 4.0*S*T;

NU[3] = T*T;

}

Note that replacing u by 1 − u in EvalCubicBSpline inter-
changes the values of S and T , leading to the reversal of both basis
function values and derivatives. The inhomogeneous values of the
basis functions and derivatives are computed by dividing by con-
stant factors in a post division step that is the same on both sides of
the shared boundary.
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The final step is to perform the dot product of X and N(u) to
guarantee Equation 1. We do so as follows:

C(u) = (X0N0(u) +X2N2(u)) + (X1N1(u) +X3N3(u))

= (X0N3(1− u) +X2N1(1− u)) +

(X1N2(1− u) +X3N0(1− u))

= Cr(1− u)

A similar derivation establishes the necessary constraint on the
derivatives of C and Cr . Normal vectors are computed using the
usual cross product formula. Guaranteeing that they are bitwise
identical on either side of a shared boundary requires commutativ-
ity of both addition and multiplication. Again, these commutativity
requirements are satisfied when using IEEE floating point strict-
ness.

5.1.0.2 Domain Corners. In the domain corner case, bi-
reversal invariant evaluation is required. For the corner u = v = 0
we structure the computation as

S(0, 0) = [(P0,0 ·N0(0) ·N0(0) + P2,2 ·N2(0) ·N2(0)) +

(P2,0 ·N2(0) ·N0(0) + P0,2 ·N0(0) ·N2(0))] +

[(P1,0 ·N1(0) ·N0(0) + P1,2 ·N1(0) ·N2(0)) +

(P0,1 ·N0(0) ·N1(0) + P2,1 ·N2(0) ·N1(0))] +

P1,1 ·N1(0) ·N1(0).

The computation of partial derivatives as well as the values of S at
the other corners, is handled similarly.

For irregular patches, we handle watertightness using a special
vertex shader that computes the limit surface (see Section 4.1). By
definition there are only corner points. Points that are adjacent to
regular patches (those have a valence of 4) are evaluated bi-reversal
invariantly as described above. The remaining points are all extraor-
dinary vertices, having only irregular patches in common. Since
these are evaluated on a per vertex level, the results are shared so
no special treatment is required.

5.2 Between Subdivision Levels

Special care must be taken for patches, generated by different sub-
division levels, that also share a boundary. As before, evaluations
on either side of a boundary must use the same input control point
data. In order to insure this, we define patches that share evaluations
with a finer subdivision level as watertight critical patches (WCP).
Note that a WCP can be either a FP or a TP. Referring to Figure 7,
for a WCP that is also a TP it must be case 1 (domain boundary) or
case 2 (domain corner). In this situation, we augment the 16 control
points for the WCP with the 16 control points of its coarser level
parent patch. These 32 total control points can still be handled effi-
ciently by the tessellation unit. In the domain shader, if a point is on
a boundary between the current and the previous subdivision level,
the control points of the parent patch are used for computations.
The evaluation itself is done as proposed in Section 5.1.

We verified our watertightness procedure empirically by stream-
ing domain shader output to CPU memory and comparing the re-
sults of corresponding patch evaluations along shared boundaries.
These results confirm the computations are indeed bitwise identi-
cal.

Our approach to watertight evaluation necessarily involves code
branches that treat domain boundaries and corners differently than
domain interiors. Depending on tessellation densities, this can re-
sult in a slowdown of as much as 2x (see Section 8), due to the

SIMD nature of GPU code execution. In our implementations, we
treat watertight rendering as an optional time versus image quality
trade-off that may not be necessary for all applications, e.g., author-
ing versus game runtime.

6. EXAMPLES

In this section we present a number of examples to illustrate the
range of modeling features that can be accommodated with our al-
gorithm.

6.1 Extraordinary Vertices

The most common reason to use subdivision surfaces instead of
bicubic B-splines is to deal with extraordinary vertices. Like previ-
ous algorithms, our method is capable of rendering meshes contain-
ing extraordinary vertices, as shown in Figure 11, where different
colors denote different levels of adaptive subdivision. Notice how
subdivision is only used in the neighborhood of extraordinary ver-
tices, whereas regular regions are directly tessellated using bicubic
B-splines.

Subdivision around extraordinary vertices reduces the area and
thus the number of evaluations needed within irregular patches. By
dividing the tess factor by two after each subdivision level (see Sec-
tion 4.2), after dlog2 tessfactore subdivision levels the tess factor
will become 1.0. Using adaptive subdivision allows us to reduce
the evaluations within irregular patches until only the corners of
the patch domain need to be evaluated. The limit surface positions
and normals at domain corners are computed with a special ver-
tex shader that implements limit masks as described in Halstead et
al. [1993]. This way we achieve exact evaluation at all tessellation
points, even in regions around extraordinary vertices.

6.2 Semi-sharp Creases

The generalization of Catmull-Clark surfaces to capture creases,
both infinitely sharp and semi-sharp, has proven to be ex-
tremely useful in real-world applications such as geometric mod-
eling [Hoppe et al. 1994], feature film production [DeRose et al.
1998], and video games [Kovacs et al. 2009].

Previous algorithms have been capable of accurately rendering
infinitely sharp creases, but ours is the first that is capable of in-
teractively rendering semi-sharp creases. A simple example of a
model using semi-sharp creasing is shown in Figure 8, where dif-
ferent colors denote different levels of adaptive subdivision. Note
that Figure 8(c) uses a fractional sharpness crease. Sharpnesses and
fractional values are entirely encoded in precomputed subdivision
tables. At runtime the tables are used to fill the vertex buffer with
vertex positions for each adaptively subdivided patch at each level
of subdivision. These patches are then sent to the tessellation unit
for evaluation.

A more realistic example of the use of semi-sharp creases is
the Garbage Truck shown in Figure 9, which appeared in a recent
feature film. The base mesh consists of 5448 patches, and 3439
creased edges, with sharpnesses ranging from 1.0 to 3.0, includ-
ing some fractional sharpnesses of 1.5 and 2.3. Achieving the tight
radii of curvature without semi-sharp creases would significantly
increase the memory footprint of the model because the base mesh
would need to be significantly more dense in most regions. Another
example of semi-sharp creasing is the Car Body shown in Figure 1.
Semi-sharp creases were particularly helpful near the boundary of
the hood to achieve a tight radius of curvature there.
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(a) (b) (c)

Fig. 8. All images are derived from a cube used as the base mesh. (a) no
edges tagged; (b) front and backface edges have a sharpness of 3; (c) front
and backface edges have a fractional sharpness of 7.8. Each color represents
a distinct level of subdivision.

Fig. 9. Garbage Truck with semi-sharp creases. Adaptive subdivision lev-
els indicated by color (right). c© Disney/Pixar

6.3 Hierarchical Detail

Multiresolution modeling has received considerable attention in the
graphics community, and can be traced back at least to the early
work of Forsey and Bartels [1988]. When applied to subdivision
surfaces, the idea is to represent a shape using a relatively sparse
base mesh that captures the coarse features of the shape, together
with hierarchical edits that are applied during subdivision to de-
scribe variation at finer scales. The scheme used by RenderMan
is typical of these methods [Pixar Animation Studios 2005]. Each
vertex generated through subdivision is assigned a unique index.
A hierarchical edit consists of such an index together with a vec-
tor displacement. When the vertex with that index is created during
subdivision, its position is offset by the vector displacement prior
to subsequent subdivision. An example of this process is shown in
Figure 10(b), where the base mesh captures the overall shape of the
terrain, while the hierarchical edits are used to describe the foot-
prints which occur at much finer scales.

In our method, adaptive subdivision is used in regions that are
affected by hierarchical edits, and are encoded into subdivision ta-
bles as a precomputation on the CPU. During runtime, after each
subdivision level, hierarchical edits applicable to that level are used
to reposition vertices, then subdivision proceeds to finer levels.

Similar to hierarchical edits, T-splines [Sederberg et al. 2004] en-
able the representation of multiple resolutions of mesh data within
a compact framework. While we have not validated our algorithm
on T-spline meshes, we expect the feature adaptive principles un-
derlying our work to be complementary to the T-spline paradigm.

6.4 Displacement Mapping

Displacement mapping involves offsetting a surface point in the
normal direction by a scalar value stored in a texture map. In the
context of hardware tessellation, it is crucial that both the position
and normal of a surface on shared patch boundaries are bitwise
identical; otherwise, cracks may appear in surface. Fortunately,
a variant of our algorithm guarantees this, as illustrated in Fig-
ure 10(a).

(a) (b)

Fig. 10. Displacements (a) and hierarchical edits (b).

7. ADAPTIVE LEVEL OF DETAIL

The flexibility of our algorithmic framework can be used in a va-
riety of ways to achieve adaptive level-of-detail control. There are
two independent factors that can be used for LOD control in our
framework: tess factor assignment and the depth at which subdivi-
sion is terminated. We examine each of these separately, then make
specific recommendations for two important applications; namely,
the rendering of characters and terrain.

Tess factor assignment: An important benefit of using hardware
tessellation is the ability to vary the tessellation density of an object
at runtime. This means that both the cost of over-tessellation and
the poor image quality of under-tessellation can be avoided.

The hardware tessellator varies tessellation density of patches at
runtime through user provided edge and interior tess factors. Tess
factors are assigned in the Hull Shader Constant Function that is
executed once for each patch. Each instance of this function must
compute all the tess factors for the edges and interior of the patch.
Instances corresponding to adjacent patches must provide the same
tess factor for a shared edge to prevent cracks.

Since we have eliminated T-junctions from the patch structure of
a model, we are free to assign these tess factors arbitrarily to shared
patch edges (see Section 4). Tess factor assignment can either be
done locally on a per edge basis requiring tess factor computations
in the Hull Shader, or globally for an entire mesh. Local tess factors
can be assigned according to some local edge based metric. Doing
this based on screen space length, which approaches zero near sil-
houettes, can cause artifacts. More sophisticated approaches could
avoid this, but at higher cost. For our applications we have achieve
good results by simply using the viewing distance to edge mid-
points. Alternatively, we can assign tess factors globally so that all
patch edges of an object get the same value. The global tess fac-
tor could for example, be computed based on the distance from the
camera to the centroid of the object. Such a global tess factor as-
signment would result in patches from higher levels of subdivision
to appear more densely tessellated than those from lower subdivi-
sion levels. To avoid this, we assign the global tess factor to the
zeroth subdivision level, halving it for each level of subdivision,
resulting in a more uniform tessellation density. This strategy has
proven to be effective for objects with small spatial extent, such as
characters.

Adaptive subdivision level: Additional LOD management is
obtained by terminating feature adaptive subdivision after an adap-
tively determined maximum level. This level could be based on
an object’s camera distance, similar to global assignment of a tess
factor. This approach may result in irregular patches having a tess
factor greater than 1.0, which means that a surface approximation
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such as Loop et al. [2009] would be required. Nevertheless, this
might be reasonable for models containing very sharp creases. Such
a scheme would be particularly effective for objects with a large
spatial extent, such as terrains.

Given these two factors for adaptive LOD control, we recom-
mend the following alternatives for characters and terrains, respec-
tively.

Adaptive global tess factors with adaptive subdivision level:
A global view dependent tess factor is computed per object to de-
termine the maximum subdivision depth (i.e., dlog2 tessfactore).
This combination of adaptive tess factor assignment and adaptive
subdivision level is potentially the most reasonable LOD strategy
for character animation, since characters usually have a limited spa-
tial extent and thus costly per edge computations become unneces-
sary.

Adaptive local tess factors with adaptive subdivision level:
The maximum tess factor that could possibly be assigned to any
edge (based on the viewing distance) of a certain object is com-
puted taking the respective bounding geometry into account. Thus,
the most distant point on the bounding geometry determines the
maximum subdivision level. As a result it is possible to locally as-
sign tess factors on a per edge basis in the Hull Shader. If extraor-
dinary vertices have been isolated, then irregular patches will never
receive a tess factor greater than 1.0.

8. RESULTS

Our implementation uses DirectX 11 running under Windows 7.
We used Direct Compute for GPU subdivision and the Direct3D 11
graphics pipeline to access the hardware tessellator. All GPU code
was written in HLSL, and all timing measurements were made on a
NVIDIA GeForce GTX 480. Timings are provided in milliseconds
and account for all runtime overhead except for display of the GUI
widgets, text rendering, etc..

8.1 Comparison to Global Mesh Refinement

Table I. Timing using the Big Guy model for our scheme (feature
adaptive patching) compared against our global table driven

subdivision method and the previously published GPU subdivision
algorithm by Shiue et al.. Note that all timings include final

rendering, while we additionally break out draw time for our global
subdivision scheme.

Subdivision Level 0 1 2 3 4
Feature Adaptive Patching 0.10 0.20 0.34 0.81 2.30

Shiue Subdivision 0.62 7.26 13.97 21.42 34.93
Global Table Subdivision 0.06 0.18 0.79 3.07 12.05
Draw Time (Table Subd.) 0.04 0.06 0.37 1.45 5.78

In this section we show that our patch based feature adaptive ap-
proach is faster than repeated global refinement of a mesh on the
GPU. This is a direct result of the high compute to memory band-
width ratio of modern graphics processors; that is, fetching a value
from memory takes as much time as a large number of floating
point operations. This number is increasing with each new GPU
generation. Recall that a global refinement approach must stream
old and new mesh vertices to and from off-chip GPU memory.
This requires a small amount of computation, but a large amount
of memory I/O. By utilizing the hardware tessellator to process the

large number of regular patches that arise in Catmull-Clark subdivi-
sion, we avoid this bottleneck since patches are evaluated and ren-
dered on-chip requiring considerable computation but little mem-
ory I/O.

To demonstrate this point, we compare our scheme to two global
refinement algorithms implemented on the GPU. The first utilized
our table driven subdivision approach (see Section 3) to globally
refine a mesh for each subdivision level. The second algorithm is
a modern GPU implementation of the subdivision kernel proposed
by Shiue et al. [2005]. Shiue’s algorithm requires extraordinary ver-
tices to be isolated (that is, no edge can be adjacent to two extraor-
dinary vertices). We achieve this by statically pre-subdividing the
mesh on the CPU. Note that neither our feature adaptive patching
scheme nor our table driven subdivision has this limitation.

As shown in Table I our feature adaptive patching scheme out-
performs global subdivision for all but the first subdivision levels.
This can be easily explained because for the first subdivision lev-
els little refinement is required; while our feature adaptive patch-
ing must always setup patches even if evaluations are only done
at patch corners. However, beyond the first subdivision levels fea-
ture adaptive patching pays off since hardware tessellation requires
less memory I/O. As the subdivision level increases this differ-
ence quickly becomes large. For subdivisions levels beyond level
4 we cannot do the comparison since global subdivision runs out of
memory.

Furthermore, our feature adaptive patching scheme is faster than
Shiue’s algorithm for all subdivision levels and our table driven
subdivision outperforms Shiue’s algorithm in all cases (see Table I).
Our implementation of Shiue differs slightly from the original ap-
proach in that we use the compute shader in order to launch threads
instead of the pixel shader. This change was made to provide more
freedom to optimize thread allocation in order to achieve best per-
formance for Shiue’s algorithm on modern GPUs. Due to its funda-
mental design their depth-first approach requires both a significant
number of compute kernel invocations and draw calls. Redundant
computations within the subdivision kernel and between distinct
kernel calls further harm performance. This may have been a rea-
sonable design when launching blocks of threads had to be done by
the graphics pipeline using pixel shaders. In contrast to this depth-
first approach, today’s more generally programmable GPUs pre-
fer breadth-first algorithms such as our table driven subdivision.
Nevertheless, all GPU subdivision algorithms contain a significant
amount of memory I/O due to their iterative nature and independent
rendering of the resulting triangles. Our patching scheme, however,
utilizes the tessellation unit which minimizes memory I/O; once
patches are set up patch evaluations and final rendering is done on-
chip without additional memory transfer. This behavior is clearly
demonstrated in Table I where the draw time alone for global sub-
division is already larger than our entire feature adaptive subdivi-
sion scheme (including all kernel launches and patch renderings)
beyond subdivision level 2.

8.2 Comparison to Direct Evaluation and
Approximate Patching Algorithms

We have shown in the previous section that using hardware tessel-
lation allows rendering with a minimum of memory I/O, making
it faster than iterative mesh refinement. We now compare our fea-
ture adaptive algorithm and its water-tight variant (see Section 5)
against other patching schemes. Therefore, we consider Stam’s
direct evaluation algorithm [1998] and the approximate Gregory
patching scheme proposed by Loop et al. [2009]. Since Stam evalu-
ation requires isolated extraordinary vertices, in the following com-
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parison we first perform one level of global subdivision for all algo-
rithms. We use the Big Guy and Monster Frog models since they do
not possess semi-sharp creases or hierarchical detail. The respec-
tive images including the patch structure is illustrated in Figure 11
while the timing results are shown in Figure 12.

Fig. 11. Exact evaluation of subdivision surfaces using our adaptive
scheme applied on the Big Guy (left) and Monster Frog (right) model. Re-
spective timings are shown in Figure 12.
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Fig. 12. Comparison of our method (w/ and w/o watertightness) against
Stam evaluation (both exact) and the approximate Gregory scheme using
different tess factors applied to the Big Guy (left) and Monster Frog (right)
models.

Even though our algorithm is considerably more general than
Stam’s (because it can handle semi-sharp creases and hierarchical
edits), our method runs faster on all tess factors. Moreover, the per-
formance gap becomes larger as the tess factor increases due to
the relatively expensive domain shader evaluation used in Stam’s
algorithm. Also note that the difference is larger on the Monster
Frog model than for the Big Guy model. This is reasonable, since
the Monster Frog contains a higher percentage of irregular patches
than the Big Guy (764 of 1292 and 592 of 1450 irregular patches,
respectively).

Compared to Gregory patches, our method is exact (at evaluation
points) rather than approximating, more general, and is marginally

faster when using small tess factors (due to the more expensive con-
trol point computation of the Gregory scheme). For higher tess fac-
tors our method becomes slightly slower, but still achieves a com-
parable performance.

Our watertight evaluation method produces bit-wise identical re-
sults, but at the cost of reduced performance caused by the required
shader restructuring. The difference between normal and water-
tight rendering is especially noticeable when using smaller tess fac-
tors. This is due to the divergent code of the domain shader, and be-
comes less significant as the tess factor increases. Note that neither
Gregory patches nor Stam evaluation can guarantee watertightness.

8.3 Semi-sharp Creases and Hierarchical Edits

Models containing semi-sharp creases cannot be handled by pre-
vious algorithms. Performance measurements of our algorithm for
such models (the Car Body and the Garbage Truck) are given in
Table II. Note that even for high tess factors real-time frame rates
are achieved. Also note that employing the tessellator allows us to
generate and render nearly one billion triangles per second.

Table II. Performance of our method on the Car Body and
Garbage Truck models as a function of tess factor (TF).

Car Body Garbage Truck
TF Tris Time (ms) Tris Time (ms)
1 109,251 1.58 644,286 10.54
2 136,839 1.60 655,138 10.57
4 216,529 1.68 723,070 10.59
8 883,713 1.92 1,183,478 10.90
16 2,725,881 4.24 3,786,922 12.90
32 9,440,953 10.51 11,735,594 23.82
64 34,014,791 39.40 40,584,514 54.36

Our method is also the first capable of interactively rendering
models containing hierarchical detail. An example is shown in Fig-
ure 10(b) which depicts a sandy terrain consisting of very few faces
in the base mesh (a 12×19 grid), together with fine scale footprints
that are modeled using hierarchical detail. See the accompanying
video for an animated version of this example.

8.4 Memory Requirements

As mentioned in Section 3.3, memory on the GPU needs to be al-
located to store subdivision tables for each feature adaptive patch,
and the vertex buffer needs to be large enough to store patch ver-
tices at all levels of subdivision. The exact memory requirements
for various levels of subdivision for particular models are shown in
Figure 13. Modern GPUs are typically equipped with a gigabyte or
more of buffer memory, so the memory requirements of our algo-
rithm make it possible to simultaneously handle many such models.

9. CONCLUSION

We have presented a novel method of GPU based rendering of ar-
bitrary Catmull-Clark surfaces. In contrast to previous algorithms,
our method is exact and implements the full RenderMan speci-
fication of Catmull-Clark surfaces, including arbitrary base mesh
topology, semi-sharp creases, and hierarchically defined detail. We
also presented a variant of the algorithm that produces watertight
positions and normals, allowing for the crack-free rendering of dis-
placed surfaces. We demonstrated the method on feature film qual-
ity models, and showed that even for such complexity we are able
to generate nearly one billion triangles per second.
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Fig. 13. Memory requirements to store vertex buffers and subdivision ta-
bles as a function of the maximum subdivision level.

Though this paper has focused on feature film applications, we
believe our algorithm can be effectively used to increase the realism
and cinemagraphic experience in the next generation of games.
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