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TU Vienna

Evolute

Zhonggui Chen
TU Vienna

Zhejiang University

Niloy J. Mitra
IIT Delhi

Alla Sheffer
UBC

Helmut Pottmann
TU Vienna

Figure 1: Top left: Reconstruction of a car model based on a felt design by Gregory Epps. Close-ups of the hood and the rear wheelhouse are
shown on the left. The fold lines are highlighted on the car’s development. Top right and bottom: Architectural design. All shown surfaces
can be isometrically unfolded into the plane without cutting along edges and can thus be texture mapped without any seams or distortions.

Abstract
Fascinating and elegant shapes may be folded from a single planar
sheet of material without stretching, tearing or cutting, if one incor-
porates curved folds into the design. We present an optimization-
based computational framework for design and digital reconstruc-
tion of surfaces which can be produced by curved folding. Our
work not only contributes to applications in architecture and indus-
trial design, but it also provides a new way to study the complex
and largely unexplored phenomena arising in curved folding.
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1 Introduction

Developable surfaces appear naturally when spatial objects are
formed from planar sheets of material without stretching or tear-
ing. Paper models such as origami art are prominent exam-
ples. The striking elegance of models folded from paper, such
as those by David Huffman [Wertheim 2004], arises particularly
from creases known as curved folds. Such folds can be gener-
ated from a single planar sheet. Early investigations of curved
folds are due to Huffman [1976]. More recently, computational
geometers became interested in folding problems and computa-
tional origami [Demaine and O’Rourke 2007]. Their work concen-
trates on piecewise linear structures; according to [Demaine and
O’Rourke 2007], ‘little is known’ in the curved case. While indus-
trial designers have started to explore the technique of curved fold-
ing (www.curvedfolding.com), current geometric modeling sys-
tems still lack any support for such a design process (in fact, most
CAD systems are lacking a proper treatment of developable sur-
faces). As a result, Frank O. Gehry, who favors developable shapes
for many of his architectural designs (cf. [Shelden 2002]), has ini-
tiated the development of a CAD module for developable surfaces
by his technology company. To the best of our knowledge, curved
folding is not present in that module either.

Motivated by the potential and interest in the use of curved fold-
ing for various geometric design purposes, we investigate this topic
from the perspective of geometric modeling.

Related work. Developable surfaces are well studied in differen-
tial geometry [do Carmo 1976]. They are surfaces which can be un-
folded into the plane while preserving the length of all curves on the



Figure 2: The car model of Figure 1 and its development (top
right). The patch decomposition into torsal ruled surfaces is shown
using the following color scheme: planes are shown in yellow,
cylinders in green, cones in red, and tangent surfaces in blue. Sam-
ple rulings are shown on some patches of the windshield and the
side window. Such a segmentation is essential for NURBS surface
fitting and manufacturing.

surface. Developable surfaces are composed of planar patches and
patches of ruled surfaces with the special property that all points
of a ruling have the same tangent plane. Such torsal ruled surfaces
consist of pieces of cylinders, cones, and tangent surfaces, i.e., their
rulings are either parallel, pass through a common point, or are tan-
gent to a curve (curve of regression), respectively. Whereas a torsal
ruled surface has only one continuous family of rulings, general
smooth developable surfaces are usually a much more complicated
combination of patches. The presence of planar parts is the main
source of this huge variety of possibilities. The level of difficulty is
further increased if one admits creases, i.e., curved folds (see Fig-
ure 2).

In geometric design, various ways of treating developability have
been pursued: as a constraint in tensor product B-spline surfaces
of degree (n, 1) [Chu and Sequin 2002; Aumann 2004], aiming
only at approximate developability [Pérez and Suárez 2007], view-
ing the surfaces as sets of their tangent planes [Pottmann and Wall-
ner 2001], subdividing strips of planar quads [Liu et al. 2006], or
computing with triangle meshes and a local convexity constraint
[Frey 2004; Wang and Tang 2004; Subag and Elber 2006; Wang
2008]. Bo and Wang [2007] model paper strips as rectifying devel-
opables of one of their geodesics. Digital reconstruction of torsal
ruled surfaces employing a plane-geometric approach is the topic
of [Peternell 2004].

Mesh parametrization and segmentation using developable surfaces
has been investigated in [Julius et al. 2005] and [Yamauchi et al.
2005]. Rose et al. [2007] show how to compute developable sur-
faces from boundary curves, and present a strategy for selecting an
optimal solution. Several algorithms have been proposed for the
construction of papercraft models [Mitani and Suzuki 2004; Mas-
sarwi et al. 2006; Shatz et al. 2006] using folds along line seg-
ments. In all these papers, triangle meshes are used to represent
developable surfaces.

Only a few contributions deal with the difficult analysis and compu-
tation of creases in developable surfaces. Most of them concentrate

on conical creases [Kergosien et al. 1994; Cerda et al. 1999; Frey
2004]. Starting from conical folds, Cerda et al. [2004] investigated
gravity-induced draping of naturally thin flat sheets.

Contributions and overview. We present an optimization-based
computational framework for the design and reconstruction of gen-
eral developable surfaces with a strong focus on curved folding ap-
plications. Our main contributions are as follows:

•We employ quad meshes with planar faces as a discrete differen-
tial geometric representation of developable surfaces, and for this
representation introduce new ways of computing curvatures and
bending energy. Moreover, we discuss curved folds from the dis-
crete perspective (Section 2).

• In Section 3, we introduce the core of our work, a novel opti-
mization algorithm which allows us to compute developable sur-
faces with curved folds that are isometric to a given planar sheet,
while at the same time achieving additional objectives such as ap-
proximation of given geometric data, aesthetics, and minimization
of bending energy.

• Section 4 presents various ways in which the basic optimization
algorithm can be used for design. Even simple applications lead to
new results, such as modeling developable strips of minimal bend-
ing energy.

• Another main contribution of our work is digital reconstruction
of objects exhibiting developable surfaces with curved folds. Algo-
rithms for preprocessing the input data in order to make the algo-
rithm of Section 3 applicable to digital reconstruction are discussed
in Section 5.

• Combining digital reconstruction, optimization and recently in-
troduced algorithms for computing in shape space [Kilian et al.
2007] we have a rich toolbox for geometry processing with curved
folds. This is demonstrated by means of a few application scenarios
in Section 6. Finally, we summarize our main results, and address
directions for future research within the largely unexplored area of
curved folding.

2 Discrete developable surfaces

Developable surfaces. As our basic representation of devel-
opable surfaces we employ quad-dominant meshes with planar
faces, which is also the representation of choice for discrete dif-
ferential geometry [Sauer 1970; Bobenko and Suris 2005].

A strip of planar quadrilaterals (Figure 3, left) is a discrete model
of a torsal ruled surface. Such a ‘PQ strip’ can be trivially un-
folded into the plane without distortions. The edges where succes-
sive quads join together give us the discrete rulings. In general they
form the edge lines of the regression polyline r0, r1, . . . ; in special
cases the discrete rulings are parallel, or pass through a fixed point.
A refinement process which maintains planarity of quads generates,
in the limit, a torsal ruled surface Σ (Figure 3, right). Its rulings are
the limits of the discrete rulings, which in general are tangent to the
regression curve r(t), and in special cases are parallel (cylinder), or
pass through a fixed point (cone).

The representation of developable surfaces as PQ strips provides
various advantages over triangle meshes: (i) developability is guar-
anteed by planarity of faces and the development is easily obtained,
(ii) subdivision applied to PQ strips provides a simple and compu-
tationally efficient multi-scale approach [Liu et al. 2006], (iii) the
regression curve – which is singular on the surface and thus needs
to be controlled – is present in a discrete form, and (iv) the curvature
behavior can be easily estimated as shown next.



Curvatures and bending energy. The rulings on a smooth de-
velopable surface constitute one family of principal curvature lines
corresponding to vanishing principal curvature. The second family
is given by the orthogonal trajectories of the rulings which inte-
grate the directions of non-vanishing principal curvatures κ2. We
are interested in a discrete definition of κ2, and the related bending
energy Ebend =

R
κ2

2dA.

The rulings on a PQ strip are given by the edge lines Ri := piqi

(cf. Figure 4a). As a discrete principal curvature line we take a poly-
line C with vertices ci ∈ Ri whose edges cici+1 are orthogonal to
the inner bisectors Si ofRi andRi+1. In other words, each edge of
C intersects consecutive rulings at the same angle (this definition is
also motivated by an analogous definition in the context of circular
meshes [Bobenko and Suris 2005]). We want to attach a surface
normal vector ni to the edge midpoint mi = (ci + ci+1)/2, and
take the normal vector of the plane Pi spanned by edges Ri, Ri+1

for that purpose. The unit vectors {ni} form the Gaussian image
of C and thus it is natural to define the principal curvature κ2 at ci

via:

κ2(ci) :=
‖ni − ni−1‖

‖ci −mi−1‖+ ‖ci −mi‖
= Ni/Li. (1)

This definition has the advantage that the denominator Li can be
computed in the planar development of the strip, while only the
numerator Ni := ‖ni − ni−1‖ requires the embedding in space.
Note that the curvature κ2 always has a positive sign, in contrast to
usual definitions. As we used it in its squared form only, this does
not matter.

Using the notation of Figure 4 the discrete bending energy Ei =R
κ2

2dA of a region bounded by two discrete principal curvature
lines C, C̄ at distance h := ‖c̄i − ci‖ and two bisectors Si−1Si

(depicted by the brown highlight in Figure 4a) is given as

Ei = wi‖ni − ni−1‖2. (2)

The weight wi associated with the ruling Ri is given by

wi = h(ln L̄i − lnLi)/(L̄i − Li), (3)

where Li is the denominator of Equation (1). As L̄i → Li, in the
limit, we get wi = h/Li. Thus the bending energy of a general PQ
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Figure 3: A PQ strip (left) is a discrete model of a developable sur-
face Σ (right). The intersections of edges piqi of adjacent planar
quads generate the regression polyline ri. In the limit of a refine-
ment process, this regression polyline becomes the regression curve
r(t). Polylines C, whose edges cici+1 intersect inner bisectors of
consecutive discrete rulings at right angles, are discrete versions
of principal curvature lines, and serve for the definition of discrete
curvatures. The unit normals to planar quads Pi are denoted by ni.
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Figure 4: (a) The rulings of a PQ strip are given by the edge
lines Ri := piqi. The inner bisector of RiRi+1 is denoted by
Si. Edges cici+1 of the polyline C intersect Si orthogonally. If
mi is the mid-point of cici+1, and ni is the normal to the plane
Pi := RiRi+1, then the principal curvature at ci is naturally de-
fined by Equation (1). (b) To avoid infinite curvatures at cone ver-
tices, computation takes place on a slightly shrunken strip. (c) The
total bending energy of a region (brown) bounded by Si−1Si and
two principal curvature lines CC̄ is given by Equations (2), (3).

strip can be simply approximated by a sum of energies Ei of the
type (2). Note that we cannot directly apply known formulae for
discrete bending energies [Desbrun et al. 2005] since those assume
that all edge lengths tend to zero if one passes to the limit. This is
not the case for the rulings in our approach.

Curved folds. In the smooth setting, the following fact about
curved folds is well known (see e.g. [Huffman 1976]): At each
point of a fold curve c, the osculating plane of c is a bisecting
plane of the tangent planes on either side of the fold. This fol-
lows immediately from the identical geodesic curvatures of the fold
curve c with respect to the two adjacent developable surfaces S1

and S2. Hence, given the surface on one side of a fold curve, we
can compute (part of) the other as the envelope of planes, obtained
by reflecting the tangent planes about the osculating planes of c.
This is discussed in some detail in [Pottmann and Wallner 2001],
but one finds only that part of S2 whose rulings meet c. Thus, the
approach is not sufficient for most of our tasks where, in addition,
multiple folds may appear, and the locations of such fold curves
only become known in the process of optimization. In contrast to
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Figure 5: Two PQ strips
meeting at a discrete
curved fold. For a given
PQ strip D1, the discrete
ruling of the adjacent strip
D2 in a point pi lies on a
quadratic cone ∆i.

the smooth setting, in the discrete
case there are more degrees of
freedom in choosing the surface
S2 as described next.

As a discrete model M of a gen-
eral developable surface we use a
quad-dominant mesh with planar
faces, where the sum of inner an-
gles at each vertex is equal to 2π.
This means that we have a bijec-
tive mapping to a planar mesh of
the same combinatorics such that
corresponding faces are isomet-
ric.

Suppose a curved fold appears as
a common polygon P of two PQ
strips D1, D2 on the model M .
Given the strip D1 on one side of



P , we ask about the degrees of freedom in choosing the adjacent
strip D2. Clearly, we have to choose the discrete rulings in D2 so
that each vertex pi ∈ P exhibits the angle sum 2π. Let e− :=
(pi−1 − pi)/‖pi−1 − pi‖ and e+ := (pi+1 − pi)/‖pi+1 − pi‖.
Let the angle sum of D1 at pi be γi = αi + βi (see Figure 5).
Then, the discrete ruling vector x on D2 must form the angle sum
^(e−,x) + ^(x, e+) = 2π − γi. With c := cos γi, this reads:

(c2−1)x2 +(x ·e−)2 +(x ·e+)2−2c(x ·e−)(x ·e+) = 0. (4)

Hence, the rulings have to lie on a quadratic cone ∆i. Note that
the ruling of D1 also lies on this cone since its straight extension
satisfies our requirement, though it does not describe a surface with
a curved fold but a smooth extension. To obtain D2, we may take
one ruling on the cone ∆i and compute further rulings at vertices
pj by keeping planarity of consecutive rulings. However, most of
these solutions will not be suitable since they do not discretize a
smooth surface. One has to take rulings which yield ‘small’ direc-
tional changes when passing from one cone to the next one. This
necessitates an optimization approach as described next.

3 The basic optimization algorithm

The basic optimization algorithm simultaneously optimizes a dis-
crete developable surface M and its planar development P . To
maintain isometry between corresponding faces of M and P , we
originally letM be a quad-dominant soup of planar polygonsM i in
space. These polygons are isometric to the corresponding faces P i

in the planar mesh P , see Figures 6 and 7. During the optimization,
the polygon soup M will become a mesh via a registration proce-
dure which bears some similarity to that used in the PRIMO mesh
deformation tool [Botsch et al. 2006]. However, our optimization
requires more sophistication since we have to simultaneously opti-
mize the development P while satisfying various other constraints.

Optimization starts with an initial set of pairs (M i, P i) of isometric
planar polygons (primarily quads in our setting). The faces P i form
a planar mesh P , while in space the corresponding polygons M i

are assumed to roughly represent a developable shape D. They are
not yet precisely aligned along edges. Thus M is not a mesh but
a polygon soup. Later, in Sections 4 and 5, we describe how to
compute initial positions P i for different applications.

The unknowns. We introduce a Cartesian coordinate system in
the plane of P , with origin o and basis vectors e1, e2. Each face P i

of P is congruent to the respective faceM i in space. For each such
face, the image of (o; e1, e2) under the isometric transformation
P i 7→ M i is a Cartesian frame (oi, ei

1, e
i
2) in the plane of the

face M i. If (px, py) are the coordinates of a vertex p of P i, then
the corresponding vertex m of M i is m = oi + pxe

i
1 + pye

i
2.

During the optimization, the frames (oi, ei
1, e

i
2) undergo a spatial

motion, and the coordinates (px, py) can also vary since we allow
the polygons P i to change.

We linearize the spatial motion of any face M i using an instanta-
neous velocity vector field: The velocity of a point x can be repre-
sented as v(x) := c̄i + ci×x, where c̄i, ci are vectors in 3-space.
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Figure 6: Basic setup for the optimization when a reference surface
D is used. Faces with the same color are congruent.
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Figure 7: Top left: Initial polygon soup M . Top right: Develop-
ment P . Bottom left: M after subdivision and optimization. Bottom
right: M after three rounds of subdivision and optimization.

Figure 8: Stability of the proposed optimization strategy. After ar-
tificial perturbation of faces (left), 10 rounds of optimization yield
an almost aligned polygon soup (right). The stability of the pro-
cedure allows us to use rough estimates of ruling directions and
planar development to initialize the algorithm

Thus a vertex m+ of the displaced quad face is given by:

m+ = m + c̄i + ci × oi + px(ci × ei
1) + py(ci × ei

2).

The new vertex position is linear in the unknown parameters
c̄i, ci ∈ R3 of the velocity field, and also linear in the unknown
coordinates px, py . We optimize over both the velocity parameters
and the coordinates. The products pxc

i and pyc
i result in non-

linear terms if we insist on simultaneously optimizing them. To
avoid nonlinear optimization, we alternately optimize for displace-
ments c̄i, ci and for vertex coordinates px, py . Since our objective
function is quadratic in both types of unknowns this amounts to
alternately solving two sparse systems of linear equations.

Applying displacements corresponding to c, c̄ destroys the exact
isometric relation between corresponding faces Pi and Mi. It is
therefore necessary to further modify the vertices of M i. This can
either be done by rigid registration of the face P i to the estimated
vertex locations mj

+ as proposed by Botsch et al. [2006], or by
using a helical motion as described in [Pottmann et al. 2006] – we
use the former approach.

The objective function. Our objective function is designed to
simultaneously ensure that M becomes a mesh, fits the input data,
and satisfies the aesthetic requirements of the application.



If a vertex p in the planar mesh P is shared by k faces, then p cor-
responds to k different vertices m1, . . . ,mk of the corresponding
k faces in M . Since these vertices should agree in the final mesh,
we use a vertex agreement term of the form:

Fvert :=
X

(mi
+ −mj

+)2,

where the sum extends over all
`

k
2

´
combinations per vertex p ∈ P ,

and over all vertices in P .

For M to approximate an underlying data surface D, we include a
fitting term Ffit which is quadratic in the vertex coordinates m. Let
mc denote the closest point in D to m, and let nc denote the unit
normal at mc to the underlying surface. We use a linear combina-
tion of the squared distance (m−mc)2 and the squared distance to
the tangent plane [(m −mc) · nc]2 as the data fitting term. When
fitting curves, especially near boundaries, we use tangent lines in-
stead of tangent planes.

Finally, we need a fairness term Ffair. For each pair of adjacent
quads M i and M j of the PQ strip, we use the discrete bending en-
ergy of the corresponding developable surface wij(ni

+ − nj
+)2, as

given by Equations (2) and (3), as the fairness term. The normal of
a quad M i of M is given by ni = ei

1 × ei
2. Under small displace-

ments, this normal linearly varies as ni
+ = ni + ci × ni. Given

a polyline (p1, . . .pn) representing a fold line, i.e., a crease or a
segment of a boundary curve, the contribution to Ffair is a sum of
squared second differences

P
(pi−1−2pi+pi+1)2. Fairness terms

are also applied to the respective polylines in the planar domain P .

The fairness term Ffair alone is not always sufficient to maintain
convex quads, and to prevent flips in the planar mesh P , espe-
cially when the quads become thin after several steps of subdivi-
sion. Hence we add another term Fconv to enforce convexity. We
assume that the orientation of each face of P coincides with the
orientation of the plane induced by the frame (o; e1, e2). A corner
(pi−1,pi,pi+1) of a planar polygon is convex if and only if the
oriented area of the triangle ∆(pi−1,pi,pi+1) is positive. This
term also prevents flipping of faces.

The algorithm. Combining all individual terms, our basic opti-
mization problem reads,

minimize F = Fvert + λFfit + µFfair

subject to Fconv ≥ 0.
(5)

We alternately minimize the objective function over new positions
of vertices in P , and displacements of faces in space, i.e., velocity
vectors for the corresponding face planes. Observe that the weights
wij of Ffair, which only depend on the planar mesh P , remain fixed
when optimizing for displacements of faces in space and the side
condition Fconv is also not needed. Hence, the spatial sub-problem

E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1 E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2

Figure 9: Basic setup for bending energy minimization. We start
with a regular grid (left). After prescribing point locations and
tangent planes at the boundary the basic optimization is applied.
(Right) The result after one round of optimization.

Figure 10: Results of bending energy minimization for different
boundary conditions. Given user constraints, the final models are
obtained by alternately optimizing and subdividing.

amounts to solving a sparse linear system, and subsequent applica-
tion of the corresponding rigid body motion per face. Optimizing
the development P is more involved since the weights wij change
in a non linear way as the geometry of P changes. Additionally
we have a quadratic term Fconv to maintain convexity as a side con-
straint. With the meshes scaled to fit inside a unit cube, we found
λ = 1 and µ = 10−4 to be good values to start the optimization.

Given an initial mesh P and a polygon soup M that roughly ap-
proximates a developable shape, we alternately optimize for P and
M . The optimization terminates when the vertex agreement term
falls below a given threshold. For the next refinement level, we sub-
divide the current mesh P , and map the new faces to space using
the rigid transformation associated with the faces of P at the cur-
rent level. The refinement process splits each quad of P to form
two new ones. Splitting is performed along the edges that do not
correspond to ruling directions (see Figure 3, right). The process is
repeated until desired accuracy is reached.

4 Applications to surface design

In this section we employ the basic optimization algorithm to the
design of objects with curved folds.

Developable surfaces with minimal bending energy. As a
simple application of our framework, without any relation to curved
folding yet, we allow the user to take a planar strip of paper and at-
tach it to some points and/or lines in space. The resulting shape is
computed using a bending energy minimization, as popularly done
for spline curves and double curved surfaces. Our approach extends
the paper modeling tool of Bo and Wang [2007].

Since ruling directions are unknown, we initialize optimization
from a soup of congruent quadrilaterals as shown in Figure 9. The
user can prescribe new locations for the boundary edgesE1 andE2

as well as the tangent planes at these edges, i.e., the planes of the
outermost quads. We obtain the resulting shape by minimizing

F = Fvert + µFfair. (6)

Figure 10 shows several results obtained using our modeling tool.
In all cases, the final maximal vertex disagreement is lower than
10−4 (with the models scaled to fit a unit box).
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Figure 11: Modeling curved creases. (Left) Crease curves are
specified by the user on a developable surface. (Right) The resulting
shape obtained with the curved folds along the prescribed curves.

Bending in the presence of a curved fold. If a smooth devel-
opable surface along with the location of a future fold curve on it
is specified, the shape of the folded developable is uniquely deter-
mined (up to those parts whose rulings do not intersect the fold
curve). This is because tangent planes on the two sides of the fold
are bisected by the osculating planes of the curve (cf. Section 2).
However, no such uniqueness property exists for the discrete case
(see Figure 11). By marking the location of a fold on a PQ strip
with new vertices p1,p2, . . . on the edges, we segment the orig-
inal strip into two strips, D1 and D2. There are, in theory, many
possible strips D∗

2 such that D1, D∗
2 form a curved fold. We use

our optimization framework to filter out a good solution. Moreover,
minimization of bending energy and fairness terms allows us to also
compute parts of the surface whose rulings do not intersect the fold
curve.

For each marked vertex pi, we approximate the discrete osculating
plane of the polyline p1,p2, . . . by the plane spanned by the edges
pi+1pi and pipi−1 (see Figure 5). We also attach an osculating
plane to each edge, namely the bisector of the osculating plane at
its end points. In order to construct the face of D∗

2 adjacent to the
edge pipi+1, the plane of corresponding face in D1 is reflected
about the osculating plane associated with that edge. By intersect-
ing neighboring mirrored planes we estimate the rulings of D∗

2 . To
ensure a vertex angle sum of 2π, we project these estimated rul-
ings onto their respective cones ∆i, given by Equation (4). From
these projected rulings, we generate a mesh, which may contain
non-planar faces at this stage. This mesh is then used to initialize
our optimization, and also as the reference surface for the term Ffit.
A typical modeling result obtained using this process is shown in
Figure 11.

5 Approximation algorithm

Designing an object with curved folds when starting from scratch
is not easy. Such a task can be daunting even for experienced users,
specially in presence of multiple curved folds. However, it is much
easier and intuitive for a designer to build a rough shape using pa-
per or similar materials. The model can then be scanned and ap-
proximated using our approach. Subsequently, the user can edit or
tweak the digital model using the proposed deformation tools (see
Figure 14). During this process we also obtain a precise segmenta-
tion of the model into planes, cylinders, cones, and tangent surfaces
(see e.g. Figure 2). Such a classification is useful for NURBS fitting
and manufacturing. Therefore we address the following problem:
Given scanned data D representing an almost developable surface,
fit the data with an exactly developable surface which may exhibit
(multiple) curved folds.

In order to initialize the optimization framework described in Sec-
tion 3, we require the following: (1) A planar development P of
the input data D, (2) estimates of the ruling directions on D, (3) a
quad-dominant decomposition of P and (4) a corresponding poly-
gon soup M which lies close to D in space.

Planar development of D. Using the constrained deformation
tool by Kilian et al. [2007], we derive an as-isometric-as-possible
mapping κ between the data mesh D and a plane, thus obtain-
ing an approximate development of D. This general tool han-
dles near-isometric deformations under constraints – in our case,
the constraint is that the image points must have zero z coordi-
nate. Such a procedure, unlike parameterization approaches [Shef-
fer et al. 2006], provides us with a sequence of intermediate meshes
betweenD and its planar development. This additional information
is useful for tracking persistent ridge lines or curves during unfold-
ing which are used to initialize curved fold locations.

Estimating ruling directions on D. We first estimate approxi-
mate ruling directions on the given data mesh D as follows:

Stage A: At each vertex p, we compute a geodesic circle Gp as
the set of points which are at constant geodesic distance rp from
p. The radius rp is chosen as 0.8 times the minimum distance
from p to the mesh boundaries and all feature lines. We use ridge
lines [Ohtake et al. 2004] as initial guess for curved folds, and mark
them as feature lines. Points with radii smaller than a threshold are
ignored. We compute a score for points q ∈ Gp, as:

σ(q) := np · nq + ν‖p− q‖/rp,

where ν ∈ [0, 1] and np,nq denote the unit normal vectors at p,q,
respectively. In our experiments we use ν = 0.1. Typically there
are two strong maxima along diametrically opposite points on the
geodesic circle; these points lie on a ruling. However, in nearly
planar regions, the variation in the value of σ(q) being small, we
cannot detect a stable ruling direction. We explicitly mark such
regions as planar (see Figure 12). Later we refine the boundaries
of such planar regions using neighboring ruling information.

Stage B: In this step we extend the rulings. We use the following
fact: For a torsal ruled surface, the surface normal remains constant
along each ruling. Hence we extend the estimated ruling through a

(A)

(B)+(C)

final

p

Gp

Figure 12: Estimating ruling directions. In stage A, we guess rul-
ing directions using geodesic circles, and also identify candidate
planar regions. In stages B and C, the initial guesses at rulings are
extended, and the entire ruling collection is thinned out. Bottom
right: The final estimated rulings and the regions which have been
established as planar (in yellow).



point p until the surface normals in the end points deviate from the
normal np in p more than a pre-defined threshold. Rulings are also
terminated if they come close to feature lines or boundaries. For
purposes of later pruning, we assign the negative mean deviation of
surface normals along the ruling from np as a measure of quality
to each extended ruling.

Stage C: The set of rulings obtained so far is thinned out while
retaining rulings with high quality measure. We use a greedy ap-
proach: The ruling with highest quality measure is retained, and the
ones intersecting a narrow band around it are removed. Here it is
important to find the right measure of proximity of rulings, because
the surface may exhibit conical parts where rulings intersect at a
common vertex. Thus our band is shorter than the ruling and cen-
tered in its midpoint (in Figure 12 (B+C) these bands are marked
in red and slightly widened for better visibility). All other rulings
which intersect this band are considered ‘close’ and are removed.

We continue the process of pruning until we get a set of (roughly)
evenly spaced rulings on the surface. Regions marked as planar are
confirmed to be planar if they are bounded by three or more rulings
or boundary edges.

Quad dominant decomposition of P . After estimating and
pruning the rulings, we now deal with initializing the planar de-
velopment P of D.

We use the development mapping κ to map the estimated ruling di-
rections from the surface D to the plane. From this set of mapped
rulings, we generate a coarse quad-dominant mesh P . Note that
here a correct connectivity is much more important than the ac-
tual coordinates of the vertices. Subsequent optimization retains
the connectivity of the initial mesh while updating the vertex posi-
tions.

The available input data for mesh generation are the estimated rul-
ings mapped to the plane, the boundary of the planar mesh κ(D),
and the location of ridge lines in the original surface, which are
used as candidate curved fold locations (see Figure 13, left). First,
all end points of rulings are snapped to the closest boundary or
ridge line — or, if the latter are too far away, are clustered in a
point. Additionally short ridge lines are contracted to a single cone
point (see Figure 13, center). Depending on the snapping target,
we roughly classify an endpoint as boundary point, fold point, or
cone point, respectively. In our examples, we frequently encoun-
tered combinations of two of these (e.g. a curved fold might extend
to the boundary). The extension of rulings to boundary and ridge
lines might introduce intersections close to ruling end points. Such
intersections are resolved by swapping the corresponding end point
vertex coordinates. We get a preliminary mesh by connecting rul-
ing end points as they are traversed along the boundary and ridge
lines, generating mostly long quadrilateral faces.

Figure 13: Initial mesh layout. Left: A given collection of rulings
(blue), ridge lines (brown), and mesh boundaries (gray). Center:
Ruling endpoints are snapped and classified as boundary points
(gray), fold points (blue) and cone points (brown). Right: By in-
serting and deleting rulings, a valid mesh connectivity without T-
junctions is obtained. The planar parts of the original shape are
marked in yellow.

The resulting mesh is next modified by deleting or inserting rulings
based on the following observations: (i) From any point on a fold,
two rulings must emanate to prevent any T-junctions on the fold.
(ii) Planar regions must be bounded either by rulings or a boundary
curve. (iii) Boundary corner points should be included to preserve
the shape of the base mesh. (iv) Faces adjacent to cone points might
have more than four vertices. To ensure an optimal approximation
of these regions, such faces need to be split into triangles or quads
for our subdivision stage to apply. If a face holds more than a single
cone point and the connecting lines lie entirely in the face, rulings
are inserted connecting the cone points. If necessary, the faces orig-
inating from this step are further split by inserting rulings emanat-
ing from cone points. Finally, we obtain a quad dominant planar
mesh P (see Figure 13, right).

Initialization of the polygon soup M . Initialization of our op-
timization procedure is complete when a polygon soup M , corre-
sponding to the development P and close to the original shape D,
is found. We find a face M i of M corresponding to a face P i of P
by applying κ−1 to the vertices of P i. Since the resulting vertices,
in general, do not form a planar polygon which is isometric to P i,
we register a copy of P i to these mapped vertices to initialize M i.

Now we can apply the optimization alogrithm of Section 3 and ob-
tain a mesh which approximates the given data D and has the op-
timized version of P as its precise development. In order to effi-
ciently achieve high approximation quality, we start with a coarse
approximation which is subsequently refined (by splitting quads in
ruling direction) and optimized again. Results are shown in Figures
1, 2, 7, 14 and 16.

6 Further applications and discussion

As illustrated by Figure 14, surface reconstruction can nicely be
combined with deformation tools such as [Kilian et al. 2007]. We
first compute a digital reconstruction of a physical model and then
vary its shape by an as-isometric-as possible deformation. The de-
formation will introduce deviations from a true developable surface,
but it turns out that our reconstruction works very well on such de-
formed data sets. Note that even precisely isometric deformations
in general do not preserve rulings and therefore rulings have to be
re-estimated. In the example of Figure 14 it turned out that the op-
timization worked well with the initialization for the reconstruction
of the physical model. In other cases, one may have to re-initialize
for intermediate positions in a deformation sequence.

We emphasize here that the design and reconstruction of objects
with curved folds is not simply solvable by a parameterization
method. Parameterization will not yield any information about the
precise location of folds, rulings and types of ruled patches, nor will
it modify a data set to become precisely developable.

The nature of curved folds. Digital reconstruction of physical
paper models yields a segmentation into torsal ruled patches. This
provides insight into the typical behavior of a developable surface
near curved folds. Some frequently occurring situations are de-
picted in Figure 2. In this way, our work can further contribute
both to the theory of curved folding and to applications, e.g., to the
development of interactive CAD tools for modeling objects with
curved folds.

Architectural freeform structures. Developable surfaces are
prominently visible in architectural design [Shelden 2002; Glaeser
and Gruber 2007; Pottmann et al. 2007]. In particular, Frank O.
Gehry has been using these surfaces quite extensively. The pres-
ence of rulings simplifies the actual construction. Panelization, e.g.



Figure 14: A bending sequence which exhibits a curved fold. The left hand mesh is the result of approximating a 3D scan of a paper model.
The other shapes have been computed by combining our reconstruction algorithm with an as-isometric-as possible shape modification of the
reference surface, i.e., the reference data set in Ffit has changed, but the remaining data for optimization are taken from the left hand mesh.

by metal tiles, is easy due to developability. The aesthetic contin-
uation of a tiling over a general sharp edge is a difficult problem.
However, at a curved fold the tile continuation is optimal (cf. Fig-
ures 1 and 15) and the design of the tiling can be done in the devel-
opment. Note that our segmentation into torsal ruled patches is of
high importance for manufacturing such architectural structures.

Industrial design. The shapes shown in our paper hopefully pro-
vide a first impression of the wide applicability of curved folding
in industrial design. Such applications may require a high qual-
ity NURBS representation which is very easy to compute from our
segmentation into torsal ruled patches. The exact locations of rul-
ings (which cannot be seen in the triangle mesh of a 3D scan of
a physical model) are important for manufacturing as well. More-
over, due to the fairness measures in our optimization framework
we obtain aesthetically pleasing digital models while maintaining
the hard constraint of a precise planar development.

Limitations. We performed a large number of experiments on
data sets obtained by scanning models built from fabric or materi-
als with a similar stretching behavior. It turned out that these mod-
els hardly behave like developable surfaces, particularly in regions
with drastic folds. Hence, we must leave the task of (roughly) ap-
proximating such data by a single developable surface with curved
folds to future research. The fully automatic generation of the ini-
tial planar mesh P worked well for all considered models. The only
exception was the car model, a significantly more complex model,
where we interactively modified a few ruling directions to ensure a
suitable mesh for the adaptive subdivision we employ.

Implementation and run times. In our current implementation
we use CHOLMOD [Davis and Hage 2001] to solve a sparse linear
system and the KNITRO optimization package for constrained non-
linear optimization. Average runtimes for the models of Figure 16

Figure 15: Architectural design that features rulings as part of the
support structure.

are 160 seconds for ruling extraction (on 50K reference mesh), 20
seconds mesh layout and 140 seconds for optimization. The objec-
tive function was reduced to order of 10−4. In particular the vertex
agreement term is less than 10−4. The fitting weight λ was reduced
by a factor of 0.1 after each step of subdivision to favor fair solution
surfaces instead of best approximating ones.

Conclusion and Future research. We presented a computa-
tional framework for the design and digital reconstruction of de-
velopable surfaces with curved folds. Our work contributes to the
discrete differential geometry of developable surfaces, to the dis-
crete geometry of curved folds, and to the geometric optimization
of surfaces with curved folds. Moreover, we illustrated the potential
of our developments on a number of examples motivated by appli-
cations in architecture, industrial design and manufacturing. Given
the limited amount of prior research in this area, there is still a lot
of work to be done. Open problems include the reconstruction of
models where a high approximation error has to be admitted such as
scanned fabric, a careful analysis and classification of typical ruled
patch arrangements at curved folds, and the development of novel
interactive modeling tools for curved folding.
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