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Figure 1: Starting from a noisy scan, our algorithm recovers the
primitive faces along with their global mutual relations, when are
then used to produce a final model (all lengths in mm).

Abstract

Given a noisy and incomplete point set, we introduce a method that
simultaneously recovers a set of locally fitted primitives along with
their global mutual relations. We operate under the assumption that
the data corresponds to a man-made engineering object consisting
of basic primitives, possibly repeated and globally aligned under
common relations. We introduce an algorithm to directly couple the
local and global aspects of the problem. The local fit of the model is
determined by how well the inferred model agrees to the observed
data, while the global relations are iteratively learned and enforced
through a constrained optimization. Starting with a set of initial
RANSAC based locally fitted primitives, relations across the prim-
itives such as orientation, placement, and equality are progressively
learned and conformed to. In each stage, a set of feasible relations
are extracted among the candidate relations, and then aligned to,
while best fitting to the input data. The global coupling corrects the
primitives obtained in the local RANSAC stage, and brings them to
precise global alignment. We test the robustness of our algorithm on
a range of synthesized and scanned data, with varying amounts of
noise, outliers, and non-uniform sampling, and validate the results
against ground truth, where available.

Keywords: 3D scanning, RANSAC, global relations, data fitting,
symmetry relations.

1 Introduction

Mechanical parts mostly consist of simple primitives arranged to-
gether while adhering to precise global inter-part relations that nat-
urally arise from design and fabrication considerations. Common
design tools facilitate realizations involving regular arrangements
and snapping to existing parts; analogously, functional require-
ments, fabrication constraints, and restricted budget considerations
favor objects with relations among distant parts forming repeated
subcomponents. Such relations not only manifest as orthogonal
or parallel faces, but also as precise equality of attributes across
primitives, both neighboring and distant, resulting in aligned place-
ments, equality among subtended angles and encompassed lengths.
Thus, seemingly complex man-made objects may have low infor-
mation content consisting of primitive parts conforming to global
relations (see Figure 2). In noisy, possibly incomplete, scanned data
such relations, which are critical to the functionality of the original
objects, are easily subdued and lost. Precise recovery of such re-
lations remains challenging for low fidelity scans, especially with
increased popularity of cheap, yet imprecise, acquisition devices
such as Handyscan 3D R© or Microsoft Kinect R©.
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Figure 2: Man-made objects commonly consist of primitive faces
conforming to various global relations.

A popular strategy in reverse engineering involves locally fit-
ting primitives like planes, cylinders, cones using state-of-the-art
RANSAC based methods [Schnabel et al. 2009]. Such a local
approach, by itself, can be unreliable, especially in regions of bi-
ased noise or incomplete data leading to globally inconsistent re-
constructions, and hence form poor proxies for the corresponding
mechanical parts. We argue that unlike local relations, global ones
are less easily disturbed. Further, such relations being non-local
span a wider extent of the object, and thus are more robust to local
inconsistencies. In this paper, we present a framework to learn and
conform to global relations (see Figures 1 and 4).

Existing approaches typically make use of smoothness priors to
process incomplete and noisy data. Alternately, Gal et al. [2007]
use local priors to fit primitive shapes like boxes, cylinders, cones
to the scanned data. While the strategy can produce sharp features
using those inherited from the primitive shapes, the method being
local fails to conform to global relations, which constitute essential
characteristics of mechanical parts. Further, such approaches typi-
cally necessitate committing to a partitioning of the input early on,
posing an additional challenge.

In this paper, we use global relations for recovering exact relations
and constraints from imperfect acquisitions of man-made engineer-
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Figure 3: Our algorithm transforms the noisy input point data (left) to the final reconstructed model (right) through several iterations of
RANSAC fitting and constrained optimization. The optimization achieves global alignment in three sequential stages, with each enforcing
a different class of global relations (orientation, placement, or equality), while always accounting for the underlying data, and respecting
relations conformed to in the previous stages. The final result is visualized with the fitted planes clipped by neighboring ones.

ing parts, possibly with structured noise, or misaligned scan parts.
The challenge is to robustly infer potential relationship structures,
possibly across distant parts, and refine them based on the input.
Our algorithm directly couples the local and global aspects of the
problem. The local fit of the model is determined by how well
the inferred model agrees to the observed data, while the global
relations are iteratively learned, and enforced via a constrained
optimization. We favor alignment-relations involving orientation,
placement, and equality across the primitives. The recovered global
priors boost the local primitive fitting to a noise-resilient global
primitive fitting (see Figure 12).

Primitives extracted by local RANSAC are unstable specially in
regions of limited support. A naive sequential alignment to domi-
nant primitives is insufficient as such an approach ignores the inter-
relations across the relations themselves (see Figure 4). We take a
global approach to constrain and optimize the local RANSAC based
primitives. The problem is challenging since we simultaneously
learn and infer valid relations among uncertain global constraints,
while avoiding conflicts. We show that balancing between the data
driven fitting error and the regularization effects of the inferred
relationship structure, allows us to capture both local and global in-
formation directly from incomplete and noisy scans. In each stage,
we extract a set of valid relations and use a nonlinear data error
optimizer minimizing subject to the inferred constraints to simulta-
neously align all the primitives. Our algorithm works from coarse to
fine scale, wherein relations from the coarse scale help position the
unstable primitives extracted in the fine scale. We demonstrate the
robustness of our algorithm on a variety of synthetic and scanned
models subject to a wide range of data contaminations.

2 Related Work

Surface reconstruction from a scanned, unstructured point cloud
is a difficult and ill-posed problem (see also [Dey 2007]). Usual
strategies require high quality input data, restrict the problem space
by focusing on specific object classes, or use prior knowledge about
the scanned objects.

The pioneering work of Hoppe et al. [1992] computes a signed dis-
tance field to the underlying surface using local tangent plane con-
struction, and extracts an isosurface from the distance field using
the marching cubes algorithm. Over the years, other implicit for-
mulations have been proposed, including radial basis function [Carr
et al. 2001], Moving Least Squares (MLS) [Alexa et al. 2003], thin
plate splines [Brown and Rusinkiewicz 2004], Poisson reconstruc-

tion [Kazhdan et al. 2006], and recently global stochastic signing of
distance functions [Mullen et al. 2010]. These methods employ a
smoothness prior to regularize the solution by favoring smooth re-
constructions. Such an assumption is unsuited in many man-made
and CAD objects, which often are piecewise smooth and contain
characteristic sharp features.

Alternate strategies have been proposed to recover sharp fea-
tures. Methods that rely on an explicit representation of sharp fea-
tures [Guennebaud and Gross 2007] classify the input samples into
piecewise linear components to indirectly model sharp features. A
more challenging task is to detect and reconstruct the sharp features
present in noisy point clouds [Fleishman et al. 2005; Lipman et al.
2007; Oztireli et al. 2009]. These methods are typically local and
ignore global characteristics of the subject.

Man-made objects are often composed of an assembly of basic
primitive shapes congregated using global relations such as regu-
larity and intra-symmetry relations. This is particularly true for
architectural, CAD and mechanical models, which are predomi-
nantly made of repetitive basic structures to facilitate easy and eco-
nomic fabrication. Surface reconstruction involving local fitting of
primitive structures has long been the standard in reverse engineer-
ing [Benko et al. 2001] and also in the graphics community (cf.
[Schnabel et al. 2007] and references therein). These methods sup-
port reconstruction of shapes consisting of sharp features through
local fitting of surface geometry. In contrast, we take a global ap-
proach which accounts for the inter-primitive relations, both local
and global.

In computer vision and reverse engineering, Fisher and col-
leagues (see [Werghi et al. 2002; Fisher 2004] and references
therein) demonstrate the effectiveness of domain knowledge of
standard shapes and relationships for improved architectural recon-
struction, better parameter estimation, and data completion using
non-local relations (cf. [Thrun and Wegbreit 2005]). The se-
ries of work uses prior knowledge of specific buildings, placement
constraints, or extracted features like principal directions for re-
constructing buildings from range images. Guided by a similar
philosophy, we also make use of global relations and placement
constraints, which are automatically extracted by our algorithm.

Starting from an input scan, Gal et al. [2007] use multi-scale partial
matching to fit a small set of basic shapes to local neighborhoods
as local priors. To facilitate reconstruction, the scan is augmented
with noise-free samples, quality normals, and sharp features from
the matched primitive shapes. Schnabel et al. [2009] present an in-
teresting hole-filling algorithm that is guided by primitive detection



in the input point cloud. Since direct detection of good geometric
primitives is difficult due to noise and missing data, they minimize
an energy function defined over a guiding vector field and employ
a graph-cut based approach to partition the data. In contrast, we de-
tect global relations in the input scan, encode them in a dynamically
constructed relationship graph structure, and conform to the learned
relations using a data driven (non-linear) constrained optimization.

Our work is inspired by other efforts that are not directly related
to reconstruction: Mitra et al. [2007] use symmetrization to bring
shapes into canonical poses in an effort to enhance the (approxi-
mate) Euclidean symmetries present in the inputs. However, re-
liable detection of global relations in presence of significant noise
and outliers remain a challenging problem (cf. [Pauly et al. 2008; Li
et al. 2010] and references therein). Gal et al. [2009] propose an in-
tuitive manipulation framework for man-made objects by analyzing
their typical features and characteristics. They use wires to encode
local geometric characteristics as well as global relationships across
the wires, which are greedily optimized during deformations. The
wires, in turn, are augmented with geometric attributes allowing
coupled manipulation of the input. Our goal is to extract structural
relations from uncertain data, while [Gal et al. 2009; Mehra et al.
2009] focus on using such relations. Detected symmetries and re-
lations have also been used for inverse procedural modeling [Mitra
and Pauly 2008; Bokeloh et al. 2010]. In our work, we also incor-
porate local reconstruction coupled with an extracted relationship
graph in order to encode the intra-part relations in the input man-
made shape.

3 Algorithm

Given a noisy scanned point set, we simultaneously recover a set of
fitted basic primitives along with their global mutual relations. The
algorithm partitions the data, extracts the fitted primitives, and si-
multaneously learns and enforces the mutual relations, among both
near and distant parts. While current approaches focus primarily on
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Figure 4: Given a noisy scan (top-left), a RANSAC based approach
outputs a set of fitted basic primitives (top-right), while ignoring
inter-primitive global relations. A greedy alignment of primitive
relations produces suboptimal output (bottom-left). We use a con-
strained optimization to simultaneously position the primitives to
enforce their global relationship structure (bottom-right). For com-
parison, we overlay our results (axes) on the RANSAC and greedy
results (in black). See also Figure 12.

local primitive fitting, and ignore the global alignments due to the
global relations, our method balances between the two.

We focus on three classes of commonly encountered relations, also
referred to as alignments: (i) orientation relations like parallelism,
orthogonality, regular angles, (ii) placement relations particularly
coplanarity and coaxis relations between primitives, and (iii) equal-
ity relations among primitives. We solve a global problem to si-
multaneously learn which constraint relations to enforce without
introducing conflicts, and optimize for the parameters of each prim-
itive to meet the learned constraints, while conforming to the input
(see Figure 3). The problem is challenging since we have to choose
among uncertain relations. Based on the sensitivity of the various
relations to noise, we detect them sequentially, starting with the
most robust one. We perform global alignments one after another,
without breaking already learned and satisfied relations.

State-of-the-art solutions, e.g., Schnabel et al. [2007], typically use
a local RANSAC based approach to decompose the input points
into subsets associated with fitted primitive shapes and a set of
unclaimed points. To account for global relations, a naive option
is to take the local primitive fits and progressively fix them, sat-
isfying relations with the primitives having higher confidence. In
each step of such an approach, a single primitive is positioned,
and this placement is fixed during the subsequent steps. Further,
primitives with lower confidence do not influence those with higher
confidence. Such a greedy approach can be unreliable and fragile
as one is forced to commit early to uncertain global relations (see
Figures 4 and 12). Instead, we take a more global view leading
to a robust primitive fitting, while simultaneously balancing among
multiple constraints.

Let P := {p1,p2, . . . } be the input pointset, with each point pi
equipped with a normal ni and a confidence score wi estimated
using a standard local covariance analysis. Note that we do not
require consistently oriented normals. To bootstrap the algorithm,
we partition the input into sets P = ∪iPi ∪ P∗, where each point
group Pi has an associated primitive, say χi, along with initial es-
timates of its respective parameters, and P∗ denotes the remaining
points [Schnabel et al. 2007]. Later, we repartition the inputs based
on the learned relations (see Figure 10).

For each of the alignment classes, we first construct a relationship
graph. For example, in case of one type of orientation constraints,
we check the angles between the normals of all pairs of primitives
for candidate orthogonal or parallel relations. A confidence score
is associated with each such relation. Let, C be the potential re-
lations ordered according to their decreasing scores. We progres-
sively extract a maximal subset of relations C∗(⊂ C) without any
redundant constraints, and more importantly without any conflicts.
By maximality, we refer to a complete set of constraints without
redundancy, i.e., max |C∗|, over all possible non-conflicting sub-
sets. Such a non-redundant relation set significantly improves the
efficiency and robustness of the constrained optimization (compare
Figure 12). Since the exact minimal graph extraction problem is
hard (even the boolean SAT problem is NP-complete), we use an
iterative approximation. For other types of relations, we also build
corresponding relationship graphs, but there each graph node rep-
resents a pair of primitives, as explained later.

Having extracted the non-redundant and non-conflicting relations
C∗, along with the relations learned in the previous stages, we solve
a nonlinear optimization over the parameters of primitives χi to
minimize data error while exactly conforming to the constraint set
C∗. In this stage, all the parameters of the primitives are simulta-
neously optimized for, while keeping the point association to the
respective sets Pi fixed.
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Figure 5: Progressive construction of conflict-free reduced orientation graph C∗o for a cube dataset. The set of detected relations in Co are
sorted in decreasing order of confidence score. In each step, we show the next to be considered edge relation as purple dotted line.

In an outer loop, we identify the input points that are explained by
the current set of learned primitives, remove them from the input
set P, and repeat the algorithm for the remaining unclaimed points.
Thus, we repartition the data based on the learned relations, and in
the process improve the data partitioning that is difficult to perform
just based on local reasoning. We stop once the remaining point set
size is small, the potential relationship graph is empty, or when we
reach a maximum number of iterations, 3 in our experiments (see
Figure 10).
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Figure 6: Types of basic primitives used in our method: plane,
cylinder, cone, and sphere, respectively along with their attributes.

In our implementation, we use planes, cylinders, spheres, and right
circular cones as basic primitives. We parameterize each primitive
by an associated orientation direction and attribute(s) as follows: A
plane is represented in the normal-intercept format using a direction
n and a signed distance from origin d; a cylinder is represented by
its axis n, a point on the axis p, and a radius r; a cone is represented
by its axis n, its apex p, and an apex angle φ ; a sphere by its center
p and radius r. Each such primitive χi has an associated set of
points Pi that are used to clip the respective primitive. We clip a
plane using the convex hull of its projected member points, we clip
a cylinder or a cone by bounding the projected member points using
plane(s) aligned along its respective primitive axis, and a sphere by
a pair of parallel planes (see Figure 6). We next describe how we
detect and align to global orientation relations by optimizing over
the primitive parameters, while conforming to the input data.

3.1 Orientation alignment

a) Parallel and orthogonal relations. We now proceed as fol-
lows: (i) identify candidate relations Co between the primitives χi,
(ii) extract a maximal set of non-conflicting relations C∗o ⊂ Co, and
(iii) use a constrained nonlinear optimization to align the primitives
to C∗o and the data.

i) Candidate relations. We create an undirected graph Go :=
(Vo,Eo) with each primitive χi represented as a node vi ∈ Vo. We
classify edge ei j ∈ Eo based on the angle θi j = cos−1(|ni · n j|)
between primitives χi and χ j. If θi j ≤ π/4, then ei j is a parallel
relation-edge with a score si j = −θi j; else, ei j is an orthogonal
relation-edge with a score si j = (θi j − π/2). We leave out weak
edges based on a default threshold, π/12 for moderate noise level.
We thus have a set of candidate relations Co := {c1, c2, . . .} sorted
according to their decreasing scores.

ii) Extracting C∗o . A graph is said to be biconnected if remov-
ing a node, called cut-vertex, increases the number of connected
components. In the context of the graph Go, cut-vertices represent
the outlier primitives with chance alignment to isolated primitives,
since outliers in this context are primitives with comparatively few
relations. Unless removed, they can adversely influence subse-
quent optimization. We decompose Go into bi-connected compo-
nents [Hopcroft and Tarjan 1973] and operate relations in each con-
nected component individually, henceforth referred to as Co. Note
that although there are no explicit relations across the components,
the primitives are held together by a data fitting term.

Any constraint set Co may possibly contain conflicts making it in-
feasible to optimize the primitives such that all the relations in Co
are simultaneously fulfilled, i.e., the aligned primitives exactly sat-
isfy the relations. Since the input data is imprecise, accumulated
error can lead to erroneous relations or conflicts, e.g., in course of
reduction three nodes can be wrongly connected by an orthogonal
and two parallel relations (see Figure 7). One could use a weighted
least squares solution to approximately align to relations in Co, but
the result can easily be unsatisfactory since there might be outlier
constraints, none of the relations will be truly satisfied but only ap-
proximated (see Figure 12). Instead, we directly construct a subset
C∗o ⊂ Co, without redundancy and free of conflicts, e.g., preventing
multi-edges and self-loops in the reduced relationship graph. Our
construction is based on the following properties of the maximal
subset C∗o :
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Figure 7: In course of reduction of graph Go, conflicting edges
can be created. In such a case, we remove the edge with lower
confidence, in this example BC (3), after parallel collapse B→A.



(i) No two nodes are connected by a parallel-relation edge, i.e.,
all edges are orthogonal-relation edges, otherwise we can col-
lapse nodes joined by the parallel-relation edge, and thus re-
move redundancy.

(ii) A clique in the graph C∗o can have a maximal size of three,
since any orthogonal basis in 3D has only three elements.

(iii) If two graph loops share an edge, say ABC and ACD, then
edge BD must necessarily be a parallel edge, otherwise they
are in conflict. Note this requirement is a stronger condition
compared to the non-existence of a 4-clique.

These properties motivate the following algorithm: Starting with
C∗o ← /0, we progressively add relations ck ∈ Co to C∗o according to
the decreasing scores of ck based on reduction steps (see Figure 5):

• For any parallel edge ck := ei j, we collapse node v j → vi, and
update the edge connectivity accordingly.

• If adding an orthogonal edge ck results in 3-length loops ABC
and ACD, then we check whether a parallel edge BD exists in
the remaining Co set. If parallel BD edge is present, we add ck
and BD to C∗o and trigger a parallel edge collapse. Otherwise, we
have a conflict and remove the lowest confidence edge involved.

• If the candidate edge ck is in conflict with an existing edge,
which is formed by result collapses in previous steps, then we
ignore ck.

The construction stops once all the relations in Co have been con-
sidered. Figure 5 shows a typical reduction sequence.

iii) Aligning to C∗o . Given a point cluster Pi along with its associated
primitive χi, we measure the data fitting error as,

Ed(Pi, χi) :=
∑
p∈Pi

wpd2(p, χi),

where d(p, χi) measures the distance of point p, with weight wp,
to the primitive χi [Kanatani 2008]. Then the accumulated data
error is simply given by

∑
i Ed(Pi, χi). Our goal is to minimize

the data error, while aligning to the relations in C∗o . Since we have
only orthogonality constraints at this stage, alignment to any such
constraint c ∈ C∗o between primitives χi, χ j implies gc := nT

i n j = 0.
Additionally, for each primitive χi, the normal direction satisfies
nT

i ni = 1. Thus we have the non-linear optimization with equality
constraints,

min
{χi}

∑
i

Ed(Pi, χi), such that, gc = 0 ∀c ∈ C∗o , nT
j n j = 1 ∀ j. (1)

We use a trust region method based on interior point nonlinear pro-
gramming to solve the optimization [Byrd et al. 2000; Ziena 2010].
At the end of this stage, we have learned and aligned to orthogonal
and parallel relations among the primitives.

b) Equal angle relations. Regular structures are common in
man-made objects. Such regularity often results in equal angle
constraints across primitive parts. Unlike parallel or orthogonal
constraints, equal angles, however, are not known in advance, and
are only recovered in course of optimization. A possible approach
is to first cluster angles between primitive pairs, and then rank the
primitive pairs based on the deviation of their mutual angle with
the cluster peaks, similar to the parallel/orthogonal case. However,
we found this approach to be unreliable due to presence of outliers,
and spurious peaks in the angle space, e.g., histogram in Figure 8
shows why it is challenging to select clustering parameters in our
setting. Instead, we directly detect and align to equal angle relations
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Figure 8: Starting with primitives obtained using RANSAC, orien-
tation alignment first conforms to parallel and orthogonal relations.
In addition, in the next stage, equal angle relations are learned
and aligned to. The histogram of angles between primitive pairs
(range [0− π/2]) progressively gets cleaned along the stages of the
algorithm.

without committing to a desired angle value, while still conforming
to existing parallel/orthogonal relations.

Any angle relation involves a pair of primitive pairs, i.e., four prim-
itives. Thus, we build a graph Ge, where each vertex represents an
unordered pair of primitives. In noisy data, spatially distant prim-
itives easily pollute the space with spurious relations. Hence, if
primitives (χi, χ j) are farther than 10% of the larger bounding box
length, we remove its corresponding node. As a result in most cases
graph Ge has only O(m) nodes, instead of O(m2). For any pair of
such vertices, say involving primitive pairs (χi, χ j) and (χk, χl), we
add an edge based on the similarity of their pairwise angles. Note
that primitives (χi, χ j) and (χk, χl) can be at arbitrary distances. The
corresponding relation c is assigned a score sc = −|∠nin j −∠nknl |
with the associated constraint gc := (nT

i n j)
2 − (nT

k nl)
2 = 0. We

leave out edges if the subtended angle is more than a threshold,
5 − 10◦ in our experiments. The threshold depends on the noise
margin against the separation among the modes in the ground truth
data, i.e., the regularity of the object. We collect the relations as
Ce = {c1, c2, . . .}. Now starting with a set C∗e ← /0, we progres-
sively add edges c ∈ Ce, based on decreasing confidence. Exact
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Figure 9: Various global relations extracted and conformed to,
while aligning to the scanned data of a clutch-part. In the top-
right region, the primitives remain separated in absence of enough
datapoints to justify a connection. Extracted relations and lengths
were validated with respect to the physical model.

equality relation being transitive, the relation graph should be free
of cycles. Hence, we only add c→C∗e if no cycles are formed. This
step significantly decreases the number of graph edges, while re-
taining the confident ones. Set C∗e typically consists of O(m) edges.

The set C∗e can still contain conflicts, and hence we use interior
point nonlinear programming to detect such cases. We test if the
optimization of the data energy (Equation 1) has any feasible solu-
tion subject to the constraints C∗e ∪C∗o . If no feasible solution exists,
we take out the relation c ∈ C∗e with the lowest score, and test for
feasibility again with the remaining set of relations. Typically 1-2
such relations were dropped in our experiments.

Figure 8 shows a typical scenario for orientation optimization. The
initial graph Go has 84 edges, which gets reduced to 21 relations
in C∗o . In the equal angle stage, 33 initial candidate relations are
recovered and conformed to while minimizing the data error. A
feasible solution was found without discarding any relation of Ce.
Total time taken was 680 seconds with most time spent in the con-
strained solver.

3.2 Placement alignment

In most man-made objects, coplanarity and coaxial relations carry
important relation cues about the object parts (see also [Gal et al.
2009]). We conform to placement relations after orientation align-
ment, while preserving the orientation relations already aligned to.

Coaxial relations are simple to detect and enforce. Two primitives
χi and χ j, e.g., two cylinders, or a cylinder and a cone, are poten-
tially coaxially aligned if their axes are exactly parallel, since we
already have orientation alignment. We assign a score to such a
potential primitive pair based on the distance between their axes,
namely, sp = −

∣∣|(pi − p j)
T · ni| − ‖pi − p j‖

∣∣ with pi,p j being
points on their respective axes. The relations are collected in a set
Cp with each of the form gp := ((pi − p j)

T · ni)
2 − ‖pi − p j‖2 = 0.

We prune edges when deviation lengths exceed 2− 5% of point set
bounding box length. Similarly, for aligning a sphere with axis of a
cone or a cylinder, we simply constrain the sphere center to lie on
the axis of the other primitive.

Coplanar relations exist between primitive pairs, potentially non-
local ones. Since we clip cylinders and cones by respective axis
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RANSAC global
alignment

iteration #2

RANSAC global
alignment

Figure 10: Our technique detects and aligns even smaller features.
In the first pass, RANSAC identifies only the large primitives, which
are then globally aligned. In the next pass, the points agreeing to
the aligned primitives are removed, allowing RANSAC to identify
the smaller primitives, which are aligned using their inter-relations,
and also using the relations established earlier.

aligned planes, all coplanar relations in our framework reduce to
detecting and conforming to coplanarity between two planes. Thus
for a primitive pair χi and χ j, with exactly parallel normals, we add
a relation di = d j, if the normals point in the same direction, and
di = −d j, if the normals point in opposite directions. In both cases,
we assign a confidence score sp = −||di| − |d j||. The relations are
appended to the set Cp. Such relations, even if they are few, group
initially independent RANSAC primitives, e.g., plane primitives,
potentially distant in space.

We sort the relations by their decreasing confidence scores and sim-
ilar to the case of equal angle relations, extract a subset C∗p ⊂ Cp by
aligning to the relations C∗p ∪C∗e ∪C∗o , while minimizing the data er-
ror. During the extraction, we progressively remove low confidence
relations, if necessary, until we obtain a feasible solution.

3.3 Equality alignment

After orientation and placement alignments, we detect and con-
form to equality relations. In our case, two types of equalities
are detected: (i) For a pair of cylinder primitives χ1 and χ2, with
comparable radii, we add a potential constraint gl := r1 − r2 = 0
with confidence score sl = −|r1 − r2|. (ii) Relations between plane
primitives and also between clipping planes, are more complicated
as they involve relations between a pair of primitive pairs, simi-
lar to the equal-angle relations. For a pair of parallel plane pairs,
{(n12, d1), (n12, d2)} and {(n34, d3), (n34, d4)}, we introduce a con-
straint gl := (d1 − d2)

2 − (d3 − d4)
2 = 0 with confidence score

sl = − ||d1 − d2| − |d3 − d4|| (for each gl , we adjust signs of di so
that all the normals point to same direction). We collect both types
of relations into a set Cl , and as previously with equal angle case
use transitivity to discard redundant relations, and extract a feasible
set C∗l such that the data error is minimized, while simultaneously
conforming to all the constraints C∗l ∪C∗p ∪C∗e ∪C∗o .

3.4 re-RANSAC

In our framework, the optimization proceeds from a coarse to fine
scale. Once the initial set of primitives are aligned using the de-
tected global relations, we reassign the points in P to the aligned
primitives. The points with high data error to all the primitives
are collected as unclaimed points in a set P∗. Additional checks
for spatial consistency are not necessary since the primitives are
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Figure 11: Result of orientation, placement, and equality, of both
angle and length, on the foam-box model. Extracted relations and
angles were validated against the physical object (see also Fig-
ure 1).

already clipped and bounded at this stage. We iterate through
the pipeline starting with RANSAC on the unclaimed points P∗,
with two modifications: (i) we lower the threshold on the allowed
size of the smallest detected primitive based on the extent of con-
nected components in P∗; (ii) we start with a relationship set of
C∗1 := C∗l ∪ C∗p ∪ C∗e ∪ C∗o , instead of an empty set. Note that
for global alignment, the primitives from the previous step, and
their associated data points are also incorporated. For example, in
Figure 10 the small cylinders are detected in the second iteration,
which are missed in the first pass due to the points from the dom-
inant surrounding regions. Although the initial parameters for the
small cylinders are unstable due to their limited support, they are
stabilized by aligning to the first iteration relations C∗1 .

4 Evaluation

We evaluated our framework on a variety of synthetic and scanned
datasets. Where precise models were available, we compared the
reconstructed models with the ground truth, both in terms of re-
covered face normals as well as distance between parallel primitive
pairs. Where precise ground truth was unavailable, we measured
the physical model for comparison.

4.1 Synthetic datasets

In the first experiment, we consider three Platonic solids, namely
octahedron, dodecahedron, and icosahedron. In each case, we per-
turb the normals of the polyhedrons’ faces and then sample the
model while adding noise to each sample independently. Note
that the normal perturbation mimics misalignment among multi-
ple scans (see later discussion on slippage). For each point set,
we align the initial RANSAC primitives using our global optimiza-
tion. Then, we compare face normals and distance between par-
allel primitive pairs with those in the ground truth model; we do
the same for the model using initial RANSAC primitives. For a
consistent comparison, we retain only the top relevant number of
RANSAC planes in each case, e.g., for octahedron, we retain the
top 8 RANSAC planes. Table 1 demonstrates the stability of our
method across varying amount of noise.

input points

initial 
RANSAC 
primitives

greedy
solution

LS solution
aligned
solution

final 
model

Figure 12: In presence of structured noise in an input scan,
our method favors alignment to global priors. We compare re-
sults obtained with initial RANSAC primitives, a greedy strategy,
a least squares solution, and our algorithm. We overlay ground
truth (black boundary) on the results for visual evaluation.

In the second experiment, we used a standard CAD tool to create
two models with regular angles and repeated parts. We scanned
the objects using a virtual scanner, added noise, and compared the
quality of the result with ground truth, with and without our global
alignment. In Figures 3 and 12 we show the corresponding results,
and for the boxy model, the recovered angle/length as compared
to ground truth are listed in Table 1. In Figure 12, we compare
the trimmed models obtained using initial RANSAC primitives, a
greedy approach, a least squares solution, and our global alignment,
respectively. In the greedy approach, starting from the best fit prim-
itive, we progressively aligned the primitive with the next strongest
parallel/orthogonal edges to the aligned ones, while keeping previ-
ously aligned primitives unchanged. In the least squares solution,
we obtained a solution combining the data term with penalty en-
ergies for all the parallel/orthogonal candidate edges, weighted by
their confidence. Note that, in presence of structured (biased) noise
or misaligned scans, our method prefers alignment to global rela-
tions (regular configurations).

4.2 Scanned datasets

We tested our method on real-world objects of varying complexity.
In absence of a precise virtual model as ground truth, we used phys-
ical measurements of the objects for comparison. We also validated
orientation, coplanarity, coaxial, and equality relations detected by
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Figure 13: Cylinder, plane, and sphere primitives are aligned using extracted coaxis, coplanar, parallel/orthogonal axes, equal angle as well
as equal length constraints. They converge to the final model after two iterations of RANSAC fitting and constraint optimization. We overlap
the final result on the initial RANSAC results for comparison; the histograms demonstrate the effect in the primitive pair angle space.

our system on the physical models, as possible.

In our simplest example of the wheel model, Figure 14, all the ma-
jor axes of the planes, cylinders, and cones are detected parallel, and
the reduced orientation graph is trivial in absence of any orthogonal
relations. The dataset is interesting for the large number of coaxial
and coplanar relations, and also for the equality of attributes for
cones and cylinders. We detected all the relations (see histograms),
thus producing a natural segmentation of the object based on spa-
tial clustering of various equality relations, i.e., the corresponding
subparts of the object have a common subgraph structure in the
primitive pair relation graph. Note that the final model, automat-
ically allows exploded views of the subparts, along the recovered
axis directions.

Next, we take a packing foam-box (see Figures 1 and 11) with
small parts sharing a variety of relations. Here the detected lengths
and angles were in good agreement with the physical model. Inter-
estingly, a protrusion on the box (right feature in Figure 1) was in
the range of 0.1mm to the other flanks on (front side of) the model.
All these protrusions were grouped together and made identical.

θ = 2 θ = 4 θ = 6 θ = 8 θ = 10
octahedron (nor:8) 3/8 2/8 2/8 0/8 0/8

(len:4) 2/4 0/4 0/4 0/4∗ 0/4∗

dodecahedron (nor:12) 5/12 4/12 3/12 2/12 2/4
(len:6) 1/6 0/6 0/6 0/6∗ 0/2

icosahedron (nor:20) 11/20 7/20 5/20 5/10 4/7
(len:10) 5/10 3/10 1/10∗ 1/10∗ 0/10∗

boxy (nor:36) 19/36 10/36 7/36 5/30 4/15
(len:66) 49/66 34/66 24/66 17/36 9/16

Table 1: Comparison of angle and length of the primitives, against
the ground truth. The number of correctly detected relations across
the RANSAC based primitives, in red, and among the optimized
primitives, in blue, are shown. Ground truth data are also shown,
e.g., nor:8 refers to 8 different normal directions in the ground
truth. A number like 8 denotes 8 correctly (in 0.1◦ agreement or
0.5% of primitive bounding box length with ground truth) recovered
normals. A number like 4∗ means 4 groups of primitives converged
to equal lengths, but with converged value different from the ground
truth; added noise was in U [−θ

◦, θ
◦] for normals, and results are

averaged over 10 runs.

This demonstrates our global prior that if primitives are in near
alignment, they are likely to be in exact alignment.

The clutch model, Figure 9, is challenging given the small features,
and the poor quality of the scan, due to the dark material color (we
were not allowed to paint the model white). Even on this sparse
dataset, our method correctly detected various relations, hinting at
the ubiquity of relations and repetitions in man-made engineering
objects. Note that in one part the sample points are almost non-
existent and the method had little evidence to propagate and connect
up the primitives.

In the final, but most complicated example, we scanned a machine
part (see Figure 13). Various relations were identified and con-
formed to in the final model. The angle pair histogram clearly
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input scan
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primitives aligned primitives

cylinder
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primitive axes

exactly aligned
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cylinder

pairwise angle histogram

after RANSAC

pairwise length histogram

after equal lengthafter RANSAC
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Figure 14: Global alignment of primitives involving parallel axes,
coplanarity, coaxial, and equal length constraints on the wheel
model, while fitting to the scanned data. In this case, the coaxial
and equality relations, lead to a hierarchy based on the mutual
relations and spatial proximity among the primitives. We show
an exploded view of one of the subcomponents along its common
axis. RANSAC primitives have pairwise angle histogram in range
[0, π/6], while after global alignment all pairwise angles vanish;
the pairwise plane distance histogram also significantly improves.
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Figure 15: Global relations can help register multiple scans, A
and B in this example, which are otherwise difficult to align sim-
ply using local registration. We first individually align each of the
scans using our framework to yield aligned models A and B. Locally
registering the aligned models using ICP leaves ambiguity due to
rotational slippage. We remove this ambiguity using global con-
straints, orthogonality between yellow-blue cylindrical hole pair in
this example, learned and optimized by our method.

demonstrates the improvement in the pairwise angle relations.
RANSAC failed to fit initial primitives, within fitting tolerance, for
parts of the top of the model; we place a MLS surface fitted to the
unclaimed point region for comparison (in slightly darker shade).

4.3 Global relations for scan alignment

Multiple scans of an object are typically aligned using local re-
finement methods like point-to-point and point-to-plane iterative
closest pair (ICP) algorithms. A commonly encountered problem
in scan alignment is slippage, i.e., in absence of appropriate local
features, the scans slip over each other, instead of locking to a well
defined configuration [Gelfand and Guibas 2004]. For example,
in Figure 15, aligning source and target scans, S1 and S2, using ICP
results in rotational slippage of the target. We use global relations to
remove the ambiguity. First, for each individual scan we learn their
global relations C∗S1

and C∗S2
, respectively while conforming to the

underlying scans. Then, in an outer loop we extract global relations
on the combined data set S1 ∪ T (S2), while optimizing over the un-
known transformation T that is restricted to the applicable slippage
transforms, in this case, rotation about the axis of S2. The algorithm
alternates between learning relations, and solving for the aligning
transform T . In each iteration, we detect the top relation candidate
c, use c to compute T that minimizes data cost on S1 ∪ T (S2) subject
to constraint c along with the established constraints. We update
S2 ← T (S2), and proceed with learning further relations. Finally,
we perform one round of global relation alignment on the aligned
data, which mainly helps in conforming to placement and equality
relations in the data sets.

Performance

Table 2 lists the performance of our algorithm on various scanned
models and the simulated scan on the ‘boxy’ model presented in
the paper. Note that in the wheel model since all the directions get
aligned to the same direction by parallel/orthogonal alignment, sub-
sequently no equal angle relations are detected. Further, the copla-
narity relations already result in equal length (trimming planes) for
this example, and thus no equal length relations are detected. Note
that the running time depends more on the complexity of the rela-
tional structure of the model, rather than the sampling resolution.
Our graph reduction for redundant relations makes the nonlinear
solver (‘fmincon’ Matlab function) robust, and also significantly
faster, e.g., for the boxy model the optimization time just for paral-
lel/orthogonal without reduction takes 164 seconds and with our

reduction only 64 seconds. For denser relationship, without re-
dundancy removal, e.g., pipe-model with 696 original relations, the
optimization may run in order of hours.

Discussion

Although model reconstruction is not our primary goal, the aligned
primitives can easily be used to extract a clean model for many
man-made machine parts (see Figures 1 and 12). Using the rela-
tionship graph and the underlying data, we extrapolate and compute
pairwise primitive intersections as applicable. In our current imple-
mentation, for a primitive pair involving complex primitives, e.g.,
cylinder with cone, we use a simple numerical method to extract
a polygonal intersection curve. Our method, even under irregular
sampling, yields precise models along with sharp features, which is
otherwise difficult with existing alternatives. Note that by aligning
to global relations in conjunction with local fitting, we demonstrate
that it is possible to extract the global relations even in noisy and
sparse datasets. The recovered relations are naturally a sparse en-
coding of the input model, where we make use of the fact that such
models are of low information content. Our algorithm can be seen
as precisely recovering such key relations.

Unlike our method, most scan reconstruction methods use local pri-
ors, while ignoring global relations that are dominant in man-made
structures. As in any shape analysis with unreliable data, there is
always a tradeoff between approximation level and extent of reg-
ularity detected. Our method allows aligning relations even at the
expense of slightly increased data fitting cost. However, the user
can require our method to disallow large increase in the data error,
and dropping the corresponding relations. It will be interesting to
explore Pareto-optimal solutions in this setting. Note that align-
ing to regular configurations can also help in identifying defects in
scanned models, and encoding shapes as deviations from regular
configurations.

A possible improvement is to consider higher-order relations in-
volving pair of triplets (or more) of primitives, but the computa-
tional complexity quickly makes a simple generalization impracti-
cal. We leave this to future research.

Limitations

For certain types of relations, we investigate pairs of primitive pairs.
This can potentially lead to O(m4) relations for m primitives, espe-
cially in regular configurations, closely packed in space, resulting in
significant computation times. Also when the angle or length space
histograms have closely spaced values, increased noise level can
submerge such differences making it difficult to correctly recover
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primitives

RANSAC 
primitives

final
output

final
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Figure 16: (Left) Aligning to global relations corrects for signifi-
cant misaligned RANSAC primitives obtained using local fits. How-
ever, when the data quality is sufficiently poor, our algorithm may
fail to recover all global relations, and hence the reconstruction is
only partially correct (right).



model point # primitive # parallel/ortho. eq. angle placement eq. length eq. radii time (in sec)
wheel 283K 39 741→0(38) N/A 359→75 N/A 66→18 227.3
foam 382K 56 544→14(58) 128→37 25→18 68→20 N/A 875.6
clutch 841K 21 205→8(25) 26→17 27→18 8→3 4→3 573.1
pipe 529K 43 696→7(44) 40→21 90→43 222→19 88→27 838.5
boxy 100K 26 121→13(28) 250→44 11→9 20→8 7→4 319.3

Table 2: Performance statistics on a laptop with Intel(R) Core(TM) 2.53GHz with 2GB, for models presented in the paper. We show the
number of relations before and after reduction for the various alignment stages.

the relations in our framework (see Figure 8 and Table 1). Such
errors can potentially accumulate across primitives.

Chance alignments involving multiple outlier primitives may pro-
duce high confidence but at the same time incurring possible unde-
sirable relations. If such groups are large then biconnected compo-
nents cannot isolate them, and subsequently these global ‘relations’
may pollute the real constraints. Finally, our approximate solution
of relation group extraction, in certain cases, can miss global rela-
tions, or even introduce outlier relations that happen to have high
confidence score (see Figure 16). Although we do not expect to ex-
tract the best feasible subset given the relation to the NP-complete
satisfiability problem, in practice large data error can indicate such
problem. In our experiments though, we did not encounter such a
situation.

5 Conclusions and Future Directions

We presented a method for incorporating global relations to reliably
recover relations among both local and distant parts of man-made
objects. We demonstrated that for regular objects, i.e., objects with
low information content, various global relations can be reliably ex-
tracted from noisy (structured) and incomplete datasets, even when
the local signals are ambiguous and unreliable. Starting with a set
of initial RANSAC based locally fitted primitives, our algorithm
progressively learns and infers orientation, placement, and equality
relations. In each stage, a set of feasible relations are extracted
among the candidate relations, and then aligned while best fitting
to the input data.

In the context of low complexity, procedurally modeled man-made
objects, learning global priors is likely to significantly assist in
shape understanding and sparse encoding. Moreover, man-made
models, e.g., Figure 2-left, commonly involve hierarchical rela-
tions. Such a grouping naturally arises from manufacturing ease
and reuse options. Inferring such hierarchical grouping, however, is
challenging since it will involve solving a consistent segmentation
across the noisy input.

In the future, we want to consider directly integrating this stage
with the global alignment leading to a robust RANSAC. More pre-
cisely, partially recovered global relations can guide an importance
sampling based RANSAC fitting to robustly extract primitives from
locally inconsistent and sparsely sampled regions. Bringing in simi-
lar global relations to surface reconstruction remains to be explored.
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