
Example-Based Curve Synthesis

Paul Merrell ∗ Dinesh Manocha
University of North Carolina at Chapel Hill

Figure 1: Using the example curve sketched in red, several curves (blue) are generated automatically in the style of the example using our
algorithm. The new curves have over 250 branches and all of them were created in less than three minutes. Five of the generated curves are
shown on the left. The curves contain many branching points. The curves are directly used to create models of chandeliers by using them as
generators for surfaces of revolution or lofting. The final models of the chandeliers are composed of about 200,000 Bezier patches, generated
using extrusion operations.

Abstract

We present a novel synthesis algorithm for procedurally generating
complex curves. Our approach takes a simple example input curve
specified by a user and automatically generates complex curves that
resemble the input. The algorithm preserves many of the input
shape features such as tangent directions, curvature, branch nodes,
and closed loops. The overall approach is simple and can be used
to generate varied curved 3D models in a few minutes. We demon-
strate its application to generating complex, curved models of man-
made objects including furniture pieces, chandeliers, glasses, and
natural patterns such as river networks and lightning bolts.

1 Introduction

One of the key problems in computer graphics is to generate ge-
ometric models of complex shapes and structures. The main goal
is to generate three-dimensional content for different domains such
as computer games, movies, architectural modeling, urban plan-
ning and virtual reality. In this paper, we address the problem
of automatically or semi-automatically generating complex shapes
with curved boundaries. Curved artistic decorations with repeated
patterns are an important part of the design of man-made objects.
These include household items such as furniture, glasses, candle-
sticks, chandeliers, toys, etc.. Curved structures are also used in
buildings and interior design. Moreover, many patterns in nature
(e.g. terrain features or river network) or natural phenomena, such
as lighting, also have a curved boundaries. As a result, we need
simple and effective tools that can assist artists, designers, and mod-
elers in designing elaborate curved objects and structures.

Most of the prior work in this area has been in procedural model-
ing, which generates 3D models with repeated patterns from a set

∗http://gamma.cs.unc.edu/synthesis

of rules. These include L-systems, fractals and generative modeling
techniques which can generate high-quality 3D models of plants,
architectural models and city scenes. However, each of these meth-
ods is mainly limited to a special class of models. Instead our goal is
to use example-based techniques, which are more general and gen-
erate complex models from a simple example shape [Aliaga et al.
2008; Merrell 2007; Merrell and Manocha 2008]. Some of these
methods have been inspired by texture synthesis, but the current
methods are limited primarily to complex polyhedral models with
planar boundaries or layouts of city streets.

Main Result: In this paper, we present a new method for rapidly
generating many curves based off an example. Our algorithm ac-
cepts a set of 2D curves as an input and rapidly generates many
more complex curves in a similar style. The new curves bend and
have branches like the example curves and have nearly the same
local structure. Our approach is general and makes no assumptions
about the shape or smoothness of the input curves. We perform
local shape analysis based on the tangent vectors and curvature of
the input curve, and generate output curves that tend to preserve
these local features. This includes generating cusps, branches, and
closed loops. We use a graph to maintain the topology of various
curve segments and present automatic methods to incrementally re-
fine the structure of the graph to generate the final curves. We also
present an intuitive metric to evaluate the curves represented by the
graph. Given a set of generated curves, we perform an extrusion
operation or use the final curves as generators for surface of rev-
olution to generate 3D models of curved objects. In practice, our
algorithm takes a few minutes to generate 3D curved models.

The overall algorithm is relatively simple, efficient and quite robust
in practice. Our system also provides the capability to edit the gen-
erated curves and to create closed loops. We use our algorithm to
generate complex 3D models of chandeliers, drinking glasses, can-
dlesticks, river networks, lightning bolts, and cabinet handles with
hundreds or thousands of curve segments or surface patches in a

few minutes.

The rest of the paper is organized as follows. In Section 2, we dis-
cuss related work on procedural modeling and curve generation. In
Section 3, we explain our curve generation algorithm. We show
results and analysis our method in Section 4. We compare our ap-
proach to other methods in Section 5 and discuss ideas for future
research in Section 6.

2 Related Work

A few techniques have been developed to transform curves sketched
in one particular artistic style into a different artistic style [Hertz-
mann et al. 2002; Freeman et al. 2003]. The artistic styles are deter-
mined automatically from the example curves sketched by the user.
Similar techniques have also been applied on meshes to transform
the models [Bhat et al. 2004; Zelinka and Garland 2003] and also to
tranform space-time curves for animation [Wu et al. 2008]. Simhon
and Dudok [2004] use a hidden Markov model to add artistic details
to sketches. Layouts of city streets have been creating using an in-
teractive tool which uses tensor fields [Chen et al. 2008a]. Kalnins
et al. [2002] developed a non-photorealistic rendering technique
that draws 3D models in different artistic styles. It generates curves
representing the strokes an artist might draw or paint in a particular
style.

Example-based techniques are widely used to synthesize texture
[Efros and Leung 1999; Kwatra et al. 2003] and similar tech-
niques has been applied to vector data [Barla et al. 2006]. Three-
dimensional closed polyhedral models can also be synthesized from
example models [Merrell 2007; Merrell and Manocha 2008]. An
example-based method has also been presented to synthesize the
layout of city streets [Aliaga et al. 2008].

Procedural modeling techniques are widely used to generate dif-
ferent types of objects including urban environments [Müller et al.
2006; Wonka et al. 2003] and plants using L-systems [Mĕch and
Prusinkiewicz 1996; Ijiri et al. 2005; Power et al. 1999]. Wong et al.
[1998] have developed a procedural technique for designing deco-
rative patterns, including floral patterns. Pottmann et al. [2007]
have presented elegant algorithms to generate freeform shapes for
architectural models.

Sketch-based interfaces have been developed as an intuitive way to
model and deform meshes [Igarashi et al. 1999; Singh and Fiume
1998]. These methods complement our approach and can be used
to transform 2D curves into full 3D models.

3 Curve Generation

In this section, we present our curve synthesis algorithm. We first
introduce the notation and give an overview of our method. Next,
we present techniques to connect and bend various segments in the
input curve and use of the graph representation and modification to
generate the final curves.

3.1 Overview

We assume that the input example curve is represented as a set of
parametric curves {c1(t), c2(t), . . .}, where ci(t) is a 2D Bezier
curve. In practice, our algorithm can handle any curve represen-
tation as long as it can be subdivided and we can evaluate bounds
on its tangents and curvatures. The curves may or may not contain
closed loops, branches, and cusps. Our algorithm generates a set of
output curves that resemble the input curves and are composed of
segments created from the set of input curves si(t) as described in

Section 3.2. The curves and the segments start at the value t = 0
and end at the value t = 1.

Our goal is not only to generate simple curves, but also to gen-
erate sets of curves with multiple branches and loops. We use a
graph data structure to represent how the set of curves connect to-
gether (see Section 3.4). Each edge of the graph is a sequence of
the curve segments si(t). The graph is usually a simple connected
component. It can have multiple components, but this generally
discouraged. The user can edit the result by creating and moving
adjustment points on the curves. In response, our algorithm is con-
stantly generating new alternative versions of the graph by altering
and adding segments si(t). Each version is evaluated using an ob-
jective function that considers how well does the new set of curves
adjust to the changes that the user makes, how well does it form
the branches and closed loops that are desired in many cases, and
how few self-intersections does it have. The algorithm is constantly
searching for better solutions. While it searches, the best solution
that has been found is displayed as part of our interactive interface.
Section 3.4 describes how the set of curves in the graph is modified
and evaluated. It is very unlikely that we can add segments together
to produce curves that exactly touch the user’s input points or form
close loops. In order to accomplish these goals, the segments are
bent and stretched as described in Section 3.3.

3.2 Creating and Connecting Segments

For the new set of curves to resemble the example curves, every lo-
cal neighborhood of the new curve should closely resemble a neigh-
borhood of the input example curve. We characterize a curve’s local
neighborhood in terms of its tangent angle θ = atan2(y′, x′) and
signed curvature k = x′y′′−y′x′′

(x′2+y′2)3/2
. The tangent angles and cur-

vatures are discretized into uniform bins θ̂ = b θ
θb
c and k̂ = b k

kb
c

where θb and kb are the size of the bins. In our algorithm, two curve
segments can be connected if their tangent angles and curvatures are
within the same bin.

The tangent angles and curvatures are used to subdivide the curves
into segments si. The tangents and curvature may be undefined
at some points such as cusps, since we do not assume C1 or C2

continuity in the input curves. All this means for the algorithm
is that we never divide the curve at a cusp. The cusp is always
inside one of the segments. It is never at the start or at the end of a
segment.

Each segment si has a starting and ending tangent angle, θ̂si , θ̂
e
i ,

and a starting and ending curvature k̂si , k̂
e
i . Smooth segments are

subdivided until their start and end are only one bin apart |k̂si −
k̂ei | ≤ 1 and |θ̂si − θ̂ei | ≤ 1 or |θ̂si − θ̂ei | = b πθb

c − 1. The curve

is never divided at a cusp since θ̂ and k̂ are undefined. The cusp is
always combined with a part of the curve immediately before and a
part immediately after it into a single segment. This means that the
cusp is integrated into a segment si whose beginning and end have
well-defined tangents θ̂si , θ̂

e
i .

We place all the curve segments cut from the example curve into
a 2D array of bins shown in Figure 2. Most segments start and
end in adjacent bins except for segments containing cusps which
may extend across the array. The start of a segment sj can be at-
tached to the end of segment si if their endpoints are in the same
bin (θ̂sj , k̂

s
j) = (θ̂ei , k̂

e
i). LetAi be the set of segments that may fol-

low after si, Ai = {sj |(θ̂sj , k̂sj) = (θ̂ei , k̂
e
i)} and let Bi be the set

of segments that may come before si. If for any i and j,Ai = {sj}
and bj = {si}, then the segment sj is always attached to the end of
si. We can combine these small segments into a larger unified seg-

Figure 2: The curve is decomposed into segments which have only
small changes to their tangents and curvatures. The segments are
placed into bins with bounds on tangent angles and curvatures.

Figure 3: The points along a parametric curve s(t) are bent and
stretched so that the curve goes from the vertex v0 to v1.

ment which improves the speed of the algorithm since there would
be fewer segments to manage.

The input curves may form a closed loop by starting and ending
at the same location c(0) = c(1). In this case, there is nothing
unusual about the segments at the start or end of the curve. Each
segment has a segment before it and after it. But if the curve does
not form a closed loop, then the curve must start or end with empty
space coming before or after it or by branching off from another
curve. In order to handle these special cases, we include special
symbols in the sets Ai and Bi to indicate that before si there is a
branching point or empty space.

3.3 Bending and Stretching the Curves

Our algorithm uses a graph to represent the topology of the output
curve. The vertices of the graph are those points where the curve
starts, ends, or branches as well as any point that the user selects
as an adjustment point. The edges of the graph are sequences of
segments. For each edge, we combine all the segments si of that
edge into a single piecewise parametric curve s(t) (i.e. the com-
posite curve). Let s(0) and s(1) be the start point and end point of
the composite curve. Moreover, let s(t) be an arbitrary point on the
curve. We estimate the arc length of s(t) using a piecewise linear
approximation and compute an arc-length parameterization of s(t).
In the rest of the paper, we assume that all the computed curves are
represented using such an arc-length parameterization.

Let v0 and v1 be two vertices of the graph. Suppose that a particu-
lar curve should go from point v0 to v1. We position the curve s(t)
such that s(0) = v0. Ideally, s(1) − s(0) = v1 − v0, but other-
wise we must stretch the curve so that it reaches v1 by performing a
simple geometric deformation. We stretch the curve over its entire
length as shown in Figure 3. We move the point s(1) by v1 − s(1)
and every intermediate point s(t) by t(v1 − s(1)). Long curves
are distorted less than short curves when stretched a given distance
since the stretching is distributed over a greater length. Our goal is
to keep the amount that a curve stretches small especially for short
curves.

We now have a simple method to stretch a curve given its two end-
points. The endpoints are the vertices of the graph. The locations

Algorithm 1 Method for incrementally modifying the structure of
the graph.

1: Pick a region to modify.
2: Cut out the segments in the region.

3: for each cut segment do
4: Create a curve by adding segments using Ai.
5: di = the shortest distance found from the extended curve to

any of the targets
6: if di < dmax then
7: Stretch the curve to the closest target.
8: else
9: Add the curve as a leaf node.

10: end if
11: end for

12: Evaluate the modified graph.
13: if the modified graph is worse than the original then
14: Revert back to the original.
15: end if

of some of the vertices may be specified by the user, but any re-
maining vertices are treated as unknown free variables in the plane.
The goal is to determine the locations of the free vertices that would
minimize the extent of the stretching. The stretching should be min-
imized because it distorts the segments si so that they look less like
the original segments in the input. The amount each curve stretches
is equal to the length of the vector v1 − s(1) + v0 − s(0) where
v0 and v1 are the vertices where the curve ends when after it is
stretched and s(1)−s(0) are the unstretched endpoints. This equa-
tion gives the amount of stretching for each edge of the graph. We
minimize the amount of stretching in the least squares sense. The
values of s(1)− s(0) are known as well as any vertex locations the
user has specified. We solve for the remaining vertex locations. We
use a weighted least squares optimization that weights each equa-
tion according to the reciprocal of the length of each curve to ensure
that the short curve segments stretch less than the long segments.

3.4 Choosing the Sequence of Curve Segments

Our method is designed to constantly refine and improve the cur-
rent solution as the user makes adjustments to it. Our algorithm
constantly computes possible modifications to the graph including
topological changes such as adding edges for branches or loops
as well as changes to the path of each edge of the graph. These
modifications are randomly generated and many of them do not im-
prove the result, but since our algorithm is able to evaluate hundreds
of small modifications per second, we can generate many random
modifications and select appropriate ones quickly.

Algorithm 1 gives an overview of the algorithm for modifying the
graph. First, we pick part of the graph to modify and cut curves out
of the graph. We attach a new curve to where the original curve was
cut and then evaluate the modified graph in terms of several criteria
explained in Section 3.5 such as how much the original segments
need to be stretched and how many new branches appear. We keep
the modified graph if it improves the result based on the evaluation
function proposed in Section 3.5.

First, we select a portion of the graph to modify. We modify a circu-
lar region chosen at random. Its center is a randomly selected point
on the graph. Within the region, we remove the curve segments
cutting them from the graph as shown in Figure 4(b). This leaves
several cut segments which need to be repaired by attaching new
segments to them. The cuts are repaired by creating a new curve
with one of its ends attached to the cut and the other end unattached

Figure 4: The graph is modified by removing segments from part of
the graph and then reconnecting them.

Figure 5: The curve starting at point p could end up at several
possible locations. It could connect to the cut segment at point a or
as a branch to point b or created an unattached leaf at point c.

or attached to a cut or a branching point. These three possibilities
are shown in Figure 5(a-c). Branches can only be attached to curved
segments which had branches in the input set of curves. The ends
of the new curve can only be attached to a few possible locations.
The simplest option is to leave one of the ends unattached, but it is
not necessarily the best option since it may cause parts of the graph
may become disconnected.

For each segment si, there is a set of segments Ai that may follow
after it as described in Section 3.2. The strategy is to assemble to-
gether segments chosen at random using the sets Ai. Even though
this is a random process, we can produce good results by rapidly
exploring and testing many possible options. We would like to
evaluate the new curve as it is being generated. Ideally, the new
curve would end at one of several target locations. The target lo-
cations are either a cut segment (Figure 5(a)) or a branching point
(Figure 5(b)). Furthermore, the end of the new curve must have a
particular tangent and curvature so that it can be attached properly
to the target location. We could evaluate each curve while it is being
generated by measuring the distance from the end of the curve to
each target location and taking the minimum distance among all the
targets. But this evaluation ignores two important facts. First, the
curve must have the proper tangent and curvature when it reaches
the target to maintain continuity. Second, we are evaluating curves
that are unfinished which we plan to add segments onto. A better
evaluation would first extend the curve slightly by finding the short-
est possible extension to the curve that ends with the proper tangent
and curvature. We compute the shortest extension for each target
location and measure the distance from the end of each extended
curve to its target. The distance to the closest target is used when
there are multiple targets.

The curves can be evaluated very quickly. We only need to add up a
set of vectors that describe the relative positions of the start and end
of each segment and their extensions. The extensions are computed
from a lookup table. The lookup table is only computed once and
stores the shortest paths by extending the curve so that it ends with
a particular tangent and curvature. It is computed using Dijkstra’s
shortest-path algorithm.

We generate the curves by assembling segments together and eval-
uate the curves by determining how close they come to their targets

after they are extended. The ends of the curves may come close to
their targets, but they almost never exactly touch their targets. In or-
der to touch precisely, the curves are stretched slightly as described
in Section 3.3. The end of the new curve also might not get close
to any of the target locations. In this case, the one end of the curve
is left unattached creating a leaf in the graph, i.e. a vertex with a
single edge incident to it.

3.5 Evaluating the Modified Graph

The circular region shown in Figure 4(b) may cut many different
segments. Every cut segment is attached to a new curve by using
the above method multiple times if necessary. The new curves are
evaluated individually based on how close they get to their targets
before they are stretched. However, after every individual curve is
created, we need to evaluate the collection or graph of curves as a
whole. The entire graph is evaluated and compared to the graph
as it was before any modifications based on the amount of stretch-
ing and the number of leaves, branches, and self-intersections. If
the modified graph evaluates better than the unmodified graph, the
modification is kept. Otherwise, it is discarded. The graph is eval-
uated based on a set of penalties described in the equation

p =

n∑
i=1

widi + wLL− wRR+ wDD + wSS (1)

The terms in the equation are defined as:

di: The distance of the i-th curve from its target
L: The number of leaves in the graph
R: The number of branches in the graph
D: The number of disjoint unconnected parts of the graph
S: The number of self-intersections in the graph
wi, wL, wR, wD, wS : Different weights applied to each penalty

The widi term is a stretching penalty based on how much the i-th
curve is stretched to reach its target. It is especially important that
small curves are not stretched large distances, so the weight wi is
inversely proportional to the length of the curve. The stretching
penalty has some unintended consequences since there is no need
to stretch those curves that connect to leaf nodes as shown in Fig-
ure 5(c). So these curves do not have a stretching penalty. Conse-
quently, the stretching penalty alone would cause an excessive num-
ber of leaf nodes to be produce. To compensate for this a penalty
is added for each leaf node in the graph. Also, we would like to
encourage branches to be generated, so for each branch we subtract
a value from the penalties. It is possible for parts of the graph to be-
come disconnected as shown in Figure 5(c). To strongly discourage
such a result, we count the number of disjoint parts of the graph
and add a heavy penalty wD for each. We also strongly discour-
age self-intersections, by counting the number of self-intersections
S and adding a heavy penalty wS for each. By adding up all of
these different penalties we evaluate the graph as a whole and use
the modified graph only if it improves the result.

Most of the penalties in Equation 1 can be computed very quickly.
The most expensive computation is to count the number of self-
intersections in the set of curves. As a result, we only perform that
computation after we have established that the new graph is a good
candidate based on the other factors in the equation.

Algorithm 1 shows how to improve the graph over time and to re-
spond to changes the user makes. The user can move points on
the graph to stretch or bend the curves and then Algorithm 1 will
improve the curves so they are stretched less. The initial graph is ei-
ther a closed loop or a single open curve. Branches might be added

Figure 6: The user interface. The user begins by sketching the
example curves on the left. Then new curves are automatically gen-
erated on the right and can be edited interactively.

Num. Input Output Input Output
Output Seg. Seg. Branch Branch

Chandelier 8 105 5,686 4 56
Cabinet 9 38 9,787 0 0
Streams 5 203 9,900 5 82
Lightning 4 633 12,509 3 149
Glasses 13 42 2,749 0 0
Candlestick 8 53 1,080 0 0

Table 1: Table of the number of output curves generated, input
segments, output segments, input branches, and output branches.

to the graph if they improve the result which they often according
to Equation 1.

4 Results and Analysis

Our method was tested on example curves corresponding to differ-
ent kinds of natural and man-made objects. It was used to design
the branches of many chandeliers in Figure 1. Automatically gener-
ated curves were used to design candlesticks (Figure 10) and drink-
ing glasses (Figure 12) by revolving the curves around an axis. It
was also used to model fancy cabinet handles in Figure 9, bolts of
lightning (Figure 7), and river systems (Figure 8). The output curve
computed by our system is a piecewise Bezier curve.

The following weights were used to produce each result: wL =
10, wR = 80, wd = 2000, and ws = 1000. The values of wi, di,
and kB are computed using distances measured in pixels. The bins
were set to θB = 12◦ and kB = 0.02. The same values were used
for all the results. They were not tweaked for any particular result,
but they could be adjusted for example to increase or decrease the
number of branches by changing wR.

The results in each figure were produced with some brief user inter-
action. The user first sketches a set of example curves. Then a new
set of curves is generated. The user moves points on this set and in
response the set grows or contracts in real-time. The entire process
is very brief. The individual curves in the figures were generated in
seconds. All of the curves in each figure were created in only a few
minutes.

Analysis: The final shapes produced by our algorithm depend on
the set of example curves and the adjustment points added by the
user as part of the editing. Our underlying algorithm ensures that
the local features of the output curves, in terms of tangent vectors
and curvature, are similar to the features of the example curves.
However, the stretching deformation can alter these features. The
running time of the algorithm varies as a function of number input
segments, curve degree and the number of branch points in the final
curve. In practice, our algorithm is very fast and can generate new
curves at interactive rates on a desktop PC for curves with many

Figure 7: From a sketch of a few bolts of lightning, several more
complex lightning patterns are generated in under two minutes. The
output curves contain about 150 branches and over 12,000 seg-
ments.

Figure 8: From a sketch of a river system, several larger and more
complex river systems are automatically generated in under two
minutes. The output curves each have an average of about 80
branches and 10,000 segments.

segments.

If the input curves contain branches, the output will also as shown
in Figure 1, 7, and 8. Likewise, if the input contains cusps, the
output will also as shown in Figures 7, 9, 11 and 12.

5 Comparison and Limitations

Much of the prior work in procedural modeling has focused on
modeling plants using L-systems. Our method has rules simi-
lar to L-systems. For example, the acceptable sequences of seg-
ments described in Section 3.2 could be generated using a com-
plex L-system. Overall, we expect that prior algorithms based
on L-systems would generate higher quality models of plants and
trees. In constrast, our curve synthesis algorithm is faster and more

Figure 9: From a simple sketch of the handle of a cabinet, several
complex cabinet handles are designed automatically in the same
style. The example handle is the top center red-tinted handle.

Figure 11: Many curves are generated to add decoration beneath every step of a staircase. The generated curves are shown on the right.
The curves were generated in under two minutes.

Figure 12: The profile of a drinking glass is sketched (red curve) and used to design many glasses in a similar style (blue curves). The glasses
are modeled by revolving the curves around an axis. The surface of revolution obtained from the example input curve is shown as red tinted
glass.

amenable to user-driven changes and modifications. The main ben-
efit of our approach is in generating models of curved man-made
objects (e.g. decorative objects) such as furniture and household
items. We are not aware of any prior procedural methods for gen-
erating such curved objects. As a result, tools that are general and
that can model a wide variety of objects are highly valuable. Our
method can model a wide variety of objects because it is example-
based. The user can easily switch between creating two very dis-
similar types of objects by sketching a new example curve.

Our method has some similarities with the curve analogies algo-
rithm [Hertzmann et al. 2002] since both methods are based on us-
ing example curves. However, our method is designed with a dif-
ferent application in mind. The curve analogies method is designed
to take curves drawn in one style and draw them in a different style.
Curves have both a local and a large-scale structure. Our method
and curve analogies both attempt to reproduce the local structure of
a set of example curves. The difference is that in curve analogies the
large-scale structure of the new curves is based on a user’s sketch
while in our method it is automatically generated. Our method is
designed for cases where the user has not determined the large-
scale structure or would like to rapidly generate many different sets
of curves which vary widely on a large scale. Also, our method is
designed to generate set of curves that form exact closed loops and
branches with a minimal amount of stretching.

Another method that is based on using example is model synthesis,
but it is not well-suited for generated curved shape since curved
object must either be created on a grid [Merrell 2007] or would
consume excessive time and memory [Merrell and Manocha 2008].

Limitations: As explained in Section 3.4, the curves are generated
by making small incremental changes and testing if the changes im-
prove a cost function. In some ways, our algorithm is performing an
optimization in the design space and there is a risk that the current
solution may fall within a local minima of the cost function mean-
ing that small incremental changes would not improve the solution
and large changes would be needed. The shape of the final object
depends on the input curve and where the user moves the adjust-
ment points. In some cases, our approach can result in unnatural
shapes. Our algorithm can produce self-intersections, and we need
to explicitly check for them.

6 Conclusion and Future Work

We have presented a method for taking a set of curves sketched by
a user and automatically generating a new set of curves that resem-
ble the input. Parts of each new curve closely resemble parts of
the example curve because they have the same geometric charac-
terization including tangent vectors, curvature and branches. The
example curve is divided into segments. These segments are bent

Figure 10: The profile of a candlestick is sketched and used to
design many similar candlesticks in under one minute. The curves
are revolved around an axis to produce these candlesticks. The
example candlestick is tinted red.

and stretched and rearranged to fit a cost function. The cost function
gives poor scores to curves that follow the user’s control points, that
do not self-intersect, and that have many branches. We have applied
the algorithm to different input curves and used to generate curved
models of different man-made objects and some natural patterns.

There are many avenues for future work. We can improve the user
interface and use more sophisticated physically-based deformation
algorithms for stretching the curves. We would like to use our algo-
rithm to generate more kind of models include architectural struc-
tures and outdoor scenes. The set of input curves can also include
subdivision curves, and our approach can be extended to generate
non-planar 3D curves as well as 4D space-time curves for anima-
tion. Each segment in the output curve is a translated copy of a
segment in the input curve. We would like to extend our method
to allow rotated copies also. This is useful for objects that are not
orientation-sensitive such as the river systems in Figure 8. This is
in contrast to the chandeliers in Figure 1 which must have a cer-
tain orientation to hold up the candles. Finally, we would like to
extend our approach to procedurally generate 3D surface models
composed of freeform surfaces.

References

ALIAGA, D. G., VANEGAS, C. A., AND BENEŠ, B. 2008. In-
teractive example-based urban layout synthesis. In SIGGRAPH
Asia ’08: ACM SIGGRAPH Asia 2008 papers, ACM, New York,
NY, USA, 1–10.

BARLA, P., BRESLAV, S., THOLLOT, J., SILLION, F. X., AND
MARKOSIAN, L. 2006. Stroke Pattern Analysis and Synthesis.
663–671.

BHAT, P., INGRAM, S., AND TURK, G. 2004. Geometric texture
synthesis by example. In SGP ’04: Proceedings of the 2004 Eu-
rographics/ACM SIGGRAPH symposium on Geometry process-
ing, ACM Press, New York, NY, USA, 41–44.

CHEN, G., ESCH, G., WONKA, P., MÜLLER, P., AND ZHANG, E.
2008. Interactive procedural street modeling. In Proc. Of ACM
SIGGRAPH ’08, ACM, New York, NY, USA, 1–10.

CHEN, X., NEUBERT, B., XU, Y.-Q., DEUSSEN, O., AND KANG,
S. B. 2008. Sketch-based tree modeling using markov random
field. ACM Trans. Graph. 27, 5, 1–9.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In IEEE International Conference on
Computer Vision, 1033–1038.

FREEMAN, W. T., TENENBAUM, J. B., AND PASZTOR, E. C.
2003. Learning style translation for the lines of a drawing. ACM
Trans. Graph. 22, 1, 33–46.

HERTZMANN, A., OLIVER, N., CURLESS, B., AND SEITZ, S. M.
2002. Curve analogies. In EGRW ’02: Proceedings of the 13th
Eurographics workshop on Rendering, Eurographics Associa-
tion, 233–246.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
a sketching interface for 3d freeform design. In Proc. Of ACM
SIGGRAPH ’99, ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 409–416.

IJIRI, T., OWADA, S., OKABE, M., AND IGARASHI, T. 2005.
Floral diagrams and inflorescences: interactive flower modeling
using botanical structural constraints. In Proc. Of ACM SIG-
GRAPH ’05, ACM Press, New York, NY, USA, 720–726.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing
strokes directly on 3D models. Proc. Of ACM SIGGRAPH ’02
21, 3 (July), 755–762.

KWATRA, V., SCHDL, A., ESSA, I., TURK, G., AND BOBICK, A.
2003. Graphcut textures: Image and video synthesis using graph
cuts. Proc. Of ACM SIGGRAPH ’03, 277–286.

MERRELL, P., AND MANOCHA, D. 2008. Continuous model syn-
thesis. ACM Trans. Graph. 27, 5, 1–7.

MERRELL, P. 2007. Example-based model synthesis. In I3D ’07:
Symposium on Interactive 3D graphics and games, ACM Press,
105–112.

MĔCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of
plants interacting with their environment. In Proc. Of ACM SIG-
GRAPH ’96, 397–410.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. ACM
Trans. Graph. 25, 3, 614–623.

POTTMANN, H., LIU, Y., WALLNER, J., BOBENKO, A., AND
WANG, W. 2007. Geometry of multi-layer freeform structures
for architecture. In Proc. of ACM SIGGRAPH ’07.

POWER, J. L., BRUSH, A. J. B., PRUSINKIEWICZ, P., AND
SALESIN, D. H. 1999. Interactive arrangement of botanical
l-system models. In I3D ’99, ACM, New York, NY, USA, 175–
182.

SIMHON, S., AND DUDEK, G. 2004. Sketch Interpretation and
Refinement Using Statistical Models. In Proceedings of Euro-
graphics Symposium on Rendering 2004 , EUROGRAPHICS
Association, A. Keller and H. W. Jensen, Eds., 23–32, 406.

SINGH, K., AND FIUME, E. 1998. Wires: a geometric deformation
technique. In Proc. Of ACM SIGGRAPH ’98, ACM, New York,
NY, USA, 405–414.

WONG, M. T., ZONGKER, D. E., AND SALESIN, D. H. 1998.
Computer-generated floral ornament. In Proc. Of ACM SIG-
GRAPH ’98, ACM, New York, NY, USA, 423–434.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W.
2003. Instant architecture. In Proc. Of ACM SIGGRAPH ’03,
669–677.

WU, Y., ZHANG, H., SONG, C., AND BAO, H. 2008. Space-time
curve analogies for motion editing. In GMP, 437–449.

ZELINKA, S., AND GARLAND, M. 2003. Mesh modelling with
curve analogies. In SIGGRAPH ’03: ACM SIGGRAPH 2003
Sketches & Applications, ACM, New York, NY, USA, 1–1.

