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Figure 1: Interactive furniture layout. For a given layout (left), our system suggests new layouts (middle) that respect the user’s constraints
and follow interior design guidelines. The red chair has been fixed in place by the user. One of the suggestions is shown on the right.

Abstract

We present an interactive furniture layout system that assists users
by suggesting furniture arrangements that are based on interior de-
sign guidelines. Our system incorporates the layout guidelines as
terms in a density function and generates layout suggestions by
rapidly sampling the density function using a hardware-accelerated
Monte Carlo sampler. Our results demonstrate that the suggestion
generation functionality measurably increases the quality of furni-
ture arrangements produced by participants with no prior training
in interior design.
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1 Introduction

You are moving into a new home and need to arrange the living
room furniture. You have a sofa, armchairs, coffee table, end tables,
ottomans, and a media center. What arrangement will create the
most comfortable and visually pleasing setting for your home?

Furniture placement is challenging because it requires jointly opti-
mizing a variety of functional and visual criteria. Skilled interior
designers follow numerous high-level guidelines in producing fur-
niture layouts [Lyons 2008; Ward 1999]. In a living room for ex-

ample, the furniture should support comfortable conversation, align
with prominent features of the space, and collectively form a vi-
sually balanced composition. In practice these guidelines are of-
ten imprecise and sometimes contradictory. Experienced designers
learn to balance the tradeoffs between the guidelines through an
iterative trial-and-error process.

Yet most people responsible for furnishing a new home have no
training in interior design. They may not be aware of interior de-
sign guidelines and they are unlikely to have the tacit knowledge
and experience required to optimally balance the tradeoffs. In-
stead such amateur designers rely on intuitive rules such as pushing
large furniture items against the walls. These intuitive rules often
lead to functionally ineffective and visually imbalanced arrange-
ments [Lyons 2008]. The resulting furniture layouts “simply don’t
look or feel right,” and even worse the amateur designer “can’t pin-
point what the problems are” [Ward 1999].

In this paper, we identify a set of interior design guidelines for
furniture layout and develop an interactive system based on these
guidelines. In our system, the user begins by specifying the shape
of a room and the set of furniture that must be arranged within it.
The user then interactively moves furniture pieces. In response,
the system suggests a small set of furniture layouts that follow the
interior design guidelines. The user can interactively select a sug-
gestion and move any piece of furniture to modify the layout. Thus,
the user and computer work together to iteratively evolve the design
(Figure 1).

Our approach represents the furniture layout guidelines as terms
in a density function and treats manual placement of pieces as
subspace constraints. Since the resulting function is highly mul-
timodal, we employ a Markov chain Monte Carlo sampler to sug-
gest optimized layouts. To deal with the substantial computational
requirements of stochastic sampling, we use graphics hardware to
enable interactive performance.

In summary, our work makes two main contributions. First, we
identify and operationalize a set of design guidelines for furni-
ture layout. Second, we develop an interactive system for creat-
ing furniture arrangements based on these guidelines. Our results
demonstrate that the suggestion generation functionality of our sys-
tem measurably increases the quality of furniture arrangements pro-
duced by users with no prior training in interior design.
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1.1 Background

Assisted direct manipulation interfaces have been widely studied
in computer graphics, dating back to Ivan Sutherland’s Sketch-
Pad [Sutherland 1963]. In the context of architectural design,
Harada et al. [1995] describe an interface for creating floorplans.
Their interface supports local constraints and invokes discrete lo-
cal search whenever the user drives the layout into a challeng-
ing configuration. Likewise, Michalek and Papalambros [2002]
use sequential quadratic programming to optimize an arrangement
of rectangles in response to interactive manipulation. These ap-
proaches assist the layout of general rectangular arrangements and
do not incorporate furniture layout guidelines.

Focusing on furniture layout, Bukowski and Séquin [1995] intro-
duce “object association” constraints that are designed to facili-
tate direct manipulation of furniture arrangements. For example,
the user can constrain a bookshelf to slide along walls without
penetration or separation. Xu et al. [2002] present a constraint-
based furniture layout system that incorporates pairwise relation-
ships which enforce stability, non-penetration, and alignment. Ger-
mer and Schwarz [2009] describe an agent-based procedure for fur-
niture layout. In contrast to these techniques, our approach is based
on established layout guidelines employed by practicing interior
designers. These guidelines include global criteria such as visual
balance, which cannot be expressed as a collection of object asso-
ciations or pairwise relationships.

Layout problems arise in a number of domains and one common
strategy is to use optimization techniques to find a layout that sat-
isfies domain-specific criteria. Researchers have applied this op-
timization approach to circuit board layout [Sarrafzadeh and Lee
1993], graph layout [Tollis et al. 1998], component layout in prod-
uct design [Cagan et al. 2002], document layout [Jacobs et al. 2003;
Hurst et al. 2009], UI layout [Lok and Feiner 2001; Gajos et al.
2010], label layout [Christensen et al. 1995; Vollick et al. 2007],
and architectural floor plan layout [Merrell et al. 2010]. Most of
these approaches were developed for off-line layout and do not sup-
port direct manipulation or generation of multiple high-quality al-
ternatives.

While many physical and software tools are available for visual-
izing furniture arrangements [Hendler 1981; Reif 1993; Autodesk
2011], these tools simply alleviate the physical strain of moving
furniture pieces to prototype different layouts. The placement of
the furniture relies entirely on the user’s expertise, which is often
insufficient to produce effective furniture arrangements. Our sys-
tem assists furniture placement by providing optimized suggestions
based on interior design guidelines.

1.2 Overview

Figure 2 gives an overview of interaction with our system. Our
interface is inspired by Igarashi and Hughes’ [2001] work on sug-
gestive interfaces. The user begins a layout session by creating a
room and populating it with furniture. The furniture items are se-
lected from a library that contains categorized 3D models in canon-
ical orientation. Throughout the session, the user can manipulate
the furniture and request suggestions. This is further illustrated in
the supplementary video.

The suggestions are generated by sampling a density function, de-
fined over the space of layouts of the current set of furniture in the
specified room. The density function is defined using idealized ana-
lytical formulations of interior design guidelines, described in Sec-
tion 2. Sampling is performed with a Markov chain Monte Carlo
sampler, parallelized on graphics hardware. The sampler runs in

Figure 2: System overview. In response to user manipulation, our
system suggests new arrangements that respect user-specified con-
straints and follow interior design guidelines.

a separate process, so that the user can continue the session while
suggestions are being computed.

The suggestions allow the user to quickly experiment with many
arrangement options that are already optimized with respect to in-
terior design guidelines. The user can constrain the suggestions by
fixing some of the items in place. The constraints simply reduce the
dimensionality of the sampled space. This approach allows the user
to progressively pin down the desired layout.

2 Furniture Layout Guidelines

Furniture layout design falls under the umbrella of space planning,
a sub-field of interior design that deals with the allocation of spatial
resources [Kilmer and Kilmer 1992; Kubba 2003; Pile 2007; Karlen
2009]. To identify guidelines for furniture layout we have consulted
manuals on furniture layout [Talbott 1999; Ward 1999; Sharp 2008]
and have interviewed four professional designers who specialize in
arranging furniture.

An effective furniture layout must address both functional and vi-
sual criteria. The functional criteria evaluate how well the layout
supports the human activities that take place in the space, such as
conversation, rest, or movement. The visual criteria concern the
perception of the layout as a visual composition.

This section describes some of these criteria and their idealized an-
alytic formulations as terms in a density function. Formally we
represent a furniture layout as a tuple I = (F ,R,G), where F is
the collection of furniture items placed in the room,R is a polygon
delineating the boundaries of the room, and G ⊂ 2F is a collection
of groups of furniture pieces. Such groups can be formed by the
user during an interactive layout session with our system.

2.1 Functional Criteria

Functional criteria for furniture layout are based on the constraints
imposed by human physiology and the effects of spatial layout on
human behavior.

The study of statistical distributions of human physical character-
istics, such as body sizes and shapes, is known as anthropomet-
rics. This study establishes guidelines for the necessary clearance
around objects and for the proper distances and angles between ob-
jects [Panero and Repetto 1975; DeChiara et al. 2001; McGowan
and Kruse 2004]. Table 1 lists the anthropometric constraints used
in our implementation and Section 2.3 describes our constraint au-
thoring interface.



Figure 3: A real-world furniture layout before (left) and after
(right) professional rearrangement (reproduced from [Ward 1999]).
On the left, people need to raise their voice to have a conversation
when everybody is seated. On the right, conversations are more
comfortable and the room has a visual anchor, the fireplace.

Other functional criteria stem from the study of environmental psy-
chology, which examines how the layout of a space affects human
activities [Deasy and Lasswell 1985]. Two activities that are af-
fected by furniture layout are conversation and circulation. Conver-
sation is strongly affected by the placement of seats, whose arrange-
ment must support comfortable eye contact and a normal speech
volume. Circulation demands that there be sufficient space to com-
fortably walk to all parts of a room.

Clearance. Many furniture items need open space around them
to be accessible and functional. Beds need open space beside them,
chairs and bookshelves need space in front of them, and dining
room tables need space around their entire perimeter. Table 1(top)
lists the clearance constraints used in our implementation. Each
constraint specifies the recommended clearance range and direc-
tion. To implement these constraints we consider the projection
of each furniture item onto the ground plane. We then add de-
sired clearance to the item by taking the Minkowski sum of its pro-
jection with a line segment or a disk sized according to Table 1.
This defines a set of regions JF that delineates furniture items and
the clearance around them. We define a clearance violation term
mcv(I) that minimizes the overlap between these regions:

mcv(I) =
∑

f ,g∈JF∪{R}

A(f ∩ g),

whereA(·) is an area operator andR is the complement of the room
polygon. In our implementation, the regions JF are approximated
by polygons.

Circulation. An effective furniture layout must support circula-
tion through the room and access to all of the furniture. To evaluate
circulation, we adopt the methodology developed for robot motion
planning and compute the free configuration space of a person on
the ground plane of the room [Latombe 1991]. We approximate a
person as a disk P of radius 18” [Panero and Repetto 1975]. We
compute the Minkowski sum of P and the ground plane projection
of the collection F of furniture items as well as the collectionW of
wall segments inR (Figure 5(a)). The free configuration space Cfree

Constraint Distance (in) Direction
Bedside 36 To the side
Seat 30 In front
Cabinets and shelving 24 In front
Dining table 36 All around
Coffee table to seat 16 - 18 In front of seat
End table to seat 0 - 12 To the back or side of seat
Nightstand to bed 0 - 12 To the side of bed

Table 1: Anthropometric constraints [Panero and Repetto 1975].
Clearance constraints (top) specify recommended amounts of free
space around objects. Pairwise constraints (bottom) specify recom-
mended distances and angles between pairs of objects.

is the intersection of the complement of these Minkowski sums:

Cfree =
⋂

g∈F∪W

g ⊕ P.

The circulation term mci(I) is defined as the number of connected
components in Cfree. For efficiency, we approximate this term using
graphics hardware, following the approach of Hoff et al. [1999].

Pairwise relationships. Human physiology affects how objects
should be positioned with respect to each other. For example, a cof-
fee table should be placed within reach of a seat. Table 1(bottom)
lists the pairwise constraints used in our implementation and Sec-
tion 2.3 describes our authoring interface for specifying additional
constraints. We define the pairwise distance for a pair of objects f
and g as

mpd(I) = −
∑

f ,g∈F

pfg · t
(
d(f ,g),mfg,Mfg, 2

)
,

where pfg = 1 if there is a pairwise constraint between f and g and
0 otherwise, (mfg,Mfg) is the range of recommended distances
(Table 1(bottom)), and t is a simple objective term defined as

t(d,m,M,α) =


(
d
m

)α
d < m

1 m ≤ d ≤M(
M
d

)α
d > M

The t function, illustrated in Figure 4, is designed to plateau when
d is within the recommended range (m,M) and to gradually de-
crease as d goes below m or above M . The function has infinite
support, to attract the sampler (described in Section 3.1) towards
the recommended range regardless of the starting point. The degree
of attraction is controlled by the parameter α.

Figure 4: t(d, 1, 2, 2)

An analogous pairwise angle term mpa(I) operationalizes the rel-
ative direction constraints specified in Table 1(bottom).

Conversation. To support conversation at a normal tone of voice,
the seats within a conversation area should be roughly four to eight
feet apart [Panero and Repetto 1975]. Our interface allows the user



(a) circulation (b) conversation (c) visual balance (d) alignment (e) emphasis

Figure 5: Notation for interior design guidelines.

to group a collection of furniture items into a conversation area.
Given a collection G of these groups, the conversation distance term
is formulated as

mcd(I) =
∑
S∈G

∑
f ,g∈S

qfg · t(d(f ,g),mc,Mc, 2),

where mc = 4 and Mc = 8 feet [Panero and Repetto 1975], and
qfg = 1 if f and g are both seats and 0 otherwise.

The seats should also be angled towards each other to encourage
eye contact. The conversation angle term is formulated as

mca(I) = −
∑
S∈G

∑
f ,g∈S

qfg(cosφfg + 1)(cosφgf + 1),

where φfg is the angle between object f and object g (Figure 5(b)).

2.2 Visual Criteria

The visual criteria concern the perception of the furniture layout as
a visual composition [Arnheim 1974; Poore 1976]. The primary
visual rules of thumb used by interior designers are visual balance,
alignment, and a dominant point of emphasis.

Balance. The most widely known principle of visual composi-
tion is visual balance [Arnheim 1974; Poore 1976; Lok et al. 2004].
The principle is to place the mean of the distribution of visual
weight at the center of the composition. The visual weight of an
element is its perceptual saliency. A common assumption is that
larger objects carry more visual weight. Since a furniture arrange-
ment is three-dimensional, visual balance refers to the appearance
of the arrangement from multiple viewpoints. A common simplifi-
cation in practice is to evaluate the distribution of visual weight on
the ground plane [Lok et al. 2004]. We define the visual balance
cost term as

mvb(I) =
∥∥∥∥∑f∈F A(f)p(f)∑

f∈F A(f)
− c(R)

∥∥∥∥ ,
where A(f) and p(f) are the area and position of f , respectively,
and c(R) is the room’s centroid (Figure 5(c)).

Alignment. A basic principle of graphic design that has been ex-
tensively employed in automated layout applications is alignment
[Sutherland 1963; Lok and Feiner 2001; Jacobs et al. 2003; Vollick
et al. 2007]. In furniture arrangement, alignment primarily concerns
the orientation of the furniture items relative to each other and to the
walls of the room. We define the furniture alignment term as

mfa(I) = −
∑
S∈G

∑
f ,g∈S

cos
(
4(θ(f)− θ(g))

)
,

where θ(f) is the angle of item f relative to a global coordinate
frame (Figure 5(d)). This encourages furniture items within groups
to be parallel or at right angles. Furniture items should also be
aligned with nearby walls. The wall alignment term is defined as

mwa(I) = −
∑
S∈G

∑
f∈S

cos
(
4(θ(f)− θw(f))

)
,

where θw(f) returns the angle of the nearest wall segment to f .

Emphasis. Another principle of visual presentation that plays a
role in interior design is emphasis [Kilmer and Kilmer 1992; Kubba
2003; Pile 2007]. It is generally desirable to have a dominant fo-
cal point in the interior, so that the eye can rest without suffering
competing demands for visual attention. In residential interiors, the
focal point is often a prominent object such as a fireplace, a large
window, or an entertainment center.

Our system allows the user to form a group S of furniture pieces and
to associate S with a focal point pS . The focal point is emphasized
by orienting the furniture items to face it and by arranging the items
symmetrically around it. We define the first emphasis term as

mef (I) = −
∑
S∈G̃

∑
g∈S

cosφgpS ,

where G̃ is the set of groups that are associated with focal points and
φgpS is the angle of g with respect to the focal point pS (Figure
5(e)). This encourages objects to face the focal point.

The second emphasis term evaluates the symmetry of groups about
their focal points [Kilmer and Kilmer 1992; Kubba 2003; Pile
2007]. Let s(f ,g,p) be a function that measures the degree of
symmetry of items f and g about a focal point p. In our implemen-
tation this function is defined in terms of the angles and distances
of f and g to the focal point:

s(f ,g,p) = cos
(
θp(f)− θp(rp(g))

)
− γd(f , rp(g)).

Here γ is a coefficient that determines the relative importance of
distance and rp(g) is the reflection of g across the symmetry axis
defined by p (Figure 5(e)). The symmetry term is defined as

msy(I) = −
∑
S∈G̃

∑
f∈S

max
g∈Sf

s(f ,g,pS),

where Sf ⊂ S is the set of furniture items that match f . For exam-
ple, seats match other seats, while they do not match tables.

2.3 Authoring

Our system provides an interface for authoring new constraints,
which is useful when adding new types of furniture. All pieces



(a) Clearance and reachability
term excluded

(b) Alignment term excluded (c) Emphasis term excluded (d) Conversation and pairwise
terms excluded

(e) All terms included

Figure 6: The importance of individual terms in the density function. Lowest-cost samples produced by the sampler when individual cost
terms are excluded (a,b,c,d) and when all terms are included (e).

of furniture in the library are categorized by type. New furniture
models can be imported and new furniture types can be introduced.
Existing constraints can be edited and new constraints can be added.
For example, if the set of furniture types is augmented with a bil-
liard table, an appropriate clearance constraint – specifying suffi-
cient clearance for manipulating pool cues – can be added. Sim-
ilarly, a pairwise constraint for placing filing cabinets near desks
can be added. The user can also edit the parameters of each of the
constraints, although these parameters were never modified during
the evaluation. The authoring interface is demonstrated in the sup-
plementary video.

3 Generating Suggestions

3.1 Density Function and Sampling

We aggregate the objective terms described in Section 2 into a cost
function cR,G(F) that evaluates how much a given furniture ar-
rangement I = (F ,R,G) conforms to the interior design guide-
lines. The cost function is defined as

cR,G(F) =
∑
i

wimi(I),

where i ∈ {cv, ci, pd, pa, cd, ca, vb, fa, wa, sy, ef} and wi are
the mixture weights. In our implementation the weights were set
empirically. Our goal is to produce multiple furniture arrangements
F that minimize cR,G(F), in order to present them as suggestions
to the user. (We will omit the subscripts R,G in the balance of
this section for brevity.) The user can also freeze the placement of
specific furniture items. This fixes some of the values of F and
restricts the optimization to the remaining values.

The function c is highly multimodal and is not amenable to ex-
act optimization techniques. We thus employ a Markov chain
Monte Carlo sampler to explore the function and produce multi-
ple optimized samples [Gilks et al. 1995]. Specifically, we define a
Boltzmann-like density function

p(F) = 1

Z
exp(−βc(F)),

where β is a temperature constant whose importance will be dis-
cussed in more detail in Section 3.2 and Z is the partition func-
tion that normalizes the distribution. Computing Z is in general
intractable. The Metropolis-Hastings algorithm is designed to ex-
plore density functions such as p without the need to compute the
partition function [Metropolis et al. 1953; Hastings 1970]. The al-
gorithm maintains a current configuration F and iteratively pro-

poses a modified configuration F? that is either accepted or re-
jected. If the proposal is accepted, F? becomes the current con-
figuration. The algorithm iterates until its computational budget is
exhausted. All accepted samples are retained for possible use as
suggestions.

The acceptance of a proposal move F → F? is governed by the
Metropolis-Hastings acceptance probability

α(F → F?) = min

(
1,
p(F?)q(F|F?)
p(F)q(F?|F)

)
, (1)

where q(F?|F) is the proposal distribution from which a new con-
figuration F? is sampled given a current configuration F . This
proposal distribution is key to a successful application of the algo-
rithm. To allow rapid exploration of the density function, the pro-
posal distribution must make both local proposals that make minor
modifications to the configuration and global modifications that in-
duce significant rearrangements. Our proposal distribution chooses
among three possible proposal moves with equal probability. The
first two moves make local adjustments by changing the position
or orientation of a single furniture item. The last move swaps two
items, which allows for rapid reconfigurations. The proposal moves
are as follows:

• Perturb the position of a random furniture item by adding a
Gaussian termN (0, σ2) to each coordinate.

• Perturb the orientation of a random furniture item by
N (0, σ2

θ).
• Swap the positions and orientations of two randomly selected

furniture items.

The standard deviations σ and σθ are set empirically. The key ad-
vantage of this set of moves is their effectiveness in exploring the
space of layouts. Another advantage is that the proposal distribu-
tion is symmetric, that is, q(F?|F) = q(F|F?). This allows us to
reduce the acceptance probability (1) to the Metropolis ratio, which
can be computed directly from the cost function c:

α(F → F?) = min

(
1,
p(F?)
p(F)

)
. (2)

The algorithm produces a set of sampled layouts. The layouts can
be sorted by cost and the lowest-cost ones can be returned as sug-
gestions. However, this can produce very similar suggestions if
many of the lowest-cost samples come from a single mode of p.
Thus we diversify the list of samples using the Maximal Marginal
Relevance criterion, which is commonly used for this purpose in
information retrieval [Carbonell and Goldstein 1998].



3.2 Implementation

A key challenge in the application of the Metropolis-Hastings al-
gorithm is its high computational demands. For this reason, appli-
cations of global optimization techniques to layout problems have
been traditionally restricted to off-line layout [Sarrafzadeh and Lee
1993; Christensen et al. 1995; Cagan et al. 2002]. A recent applica-
tion of stochastic optimization to architectural layout reported run-
ning times of multiple minutes [Merrell et al. 2010]. Such lengthy
running times are unacceptable for our system since our goal is
to provide responsive suggestions during an interactive layout ses-
sion. We have thus developed a hardware-accelerated implementa-
tion of the sampler by exploiting the massively parallel architecture
of graphics hardware [Lee et al. 2010]. Our system generates a va-
riety of optimized suggestions in less than a second, allowing it to
update the suggestions immediately in response to direct manipula-
tion operations.

The key to our parallel implementation is the use of a technique
called parallel tempering [Geyer 1991]. This technique runs a set
of independent Markov chains with different temperature constants
β. At a fixed interval two chains are chosen with some probability
and propose to swap their current configurations. The proposal is
accepted according to the acceptance probability (2). This allows
“hot” chains to rapidly explore the configuration space and transfer
their state to “cool” chains that can locally optimize within individ-
ual modes. Parallel tempering is often used in general applications
of MCMC to improve the performance of the sampler without ex-
tensive parameter tuning. We use the technique for its additional
(and in our case essential) property of parallelizing the sampling
process.

Our implementation is illustrated in Figure 7(left). Metropolis-
Hastings is performed at the thread block level [Fatahalian and
Houston 2008]. The inputs to the algorithm – the room and the
given furniture arrangement – are copied to global memory and
in turn to each thread block’s shared memory. Within each block,
multiple chains with different temperature constants are simulated
in parallel by different warps. Exploring chains at the warp level
minimizes the need for synchronization, since there is no need for
warps to communicate other than to exchange temperature con-
stants. Since warps are able to fit their entire working sets in shared
memory, global memory accesses are minimized.

Within each warp, the computation of the density function is per-
formed at the thread level. Each thread is assigned a unique furni-
ture object and is responsible for computing its contribution to the
density function. We partition the shared memory between threads
to keep memory accesses coherent and avoid memory divergence.

4 Results

We have implemented the presented approach in an interactive fur-
niture layout system. Furniture is populated from a library of
866 furniture models extracted from the Digimation ModelBank
Archive. We manually normalized the models to a consistent scale
and orientation and organized the library into categories. The li-
brary contains chairs, couches, bookshelves, desks, coffee tables,
dining tables, lamps, pianos, TVs, and other types of furniture.

In response to a suggestion generation query, the interface chooses
the top 36 suggestions returned by the sampler and presents them
in groups of 3, as shown in Figure 1. The sampler is run for 10,000
iterations in parallel on each warp. In our experiments, further itera-
tions yielded only very small improvements (<0.1%) in the density
function value, and thus we set 10,000 iterations (per warp) as the
computational budget. The hardware-accelerated sampler was im-
plemented using CUDA and tested on an NVIDIA GTX 480 with

8 16 24 32
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Figure 7: Interactive suggestion generation performance is en-
abled by exploiting the architecture of graphics hardware (left).
Parallel tempered Markov chains are simulated at the warp level,
and individual furniture items are assigned to dedicated threads
within each warp. The log-scale plot (right) shows the number
of density function evaluations performed per second (×1, 000),
as a function of the number of furniture items. The hardware-
accelerated implementation is over two orders of magnitude faster
than the reference sequential implementation.

1.5 GB of global memory. We set the number of thread blocks to
60 and the number of warps to 4. For comparison, we have imple-
mented a sequential version of the sampler, tested on a quad-core
2.66 GHz workstation with 4 GB of memory. The performance
comparison is given in Figure 7(right).

Figure 6 demonstrates the importance of individual terms in the
density function, as illustrated by the lowest-cost suggestion gener-
ated by the sampler for a given configuration when individual terms
are ablated. The following weights were used in our implementa-
tion: wcv = 2, wci = 1, wpd = 2, wpa = 2, wcd = 2, wca = 2,
wvd = 1.5, wfa = 2.5, wwa = 2.5, wsy = 1, and wef = 4. We
experimented with lowering and raising each weight by a factor of
two; this mainly affected the order in which the suggested layouts
were presented, but not the suggestions themselves. The reported
weights were fixed after initial experimentation and were not varied
throughout the evaluation.

Informal study. To evaluate the effectiveness of the presented
system, we have conducted an informal study with 18 participants
with no interior design training. The participants were recruited
from the student body of a computer science department in a re-
search university. Each participant was given a five-minute tutorial
of the layout interface and was then asked to arrange furniture in
five rooms: two living rooms, a game room, a piano room, and
an open-wall living and dining room. Some participants did not
complete all five arrangements due to time constraints. The initial
configurations are shown in Figure 8. Starting from these config-
urations, the participants were asked to arrange the rooms as they
would in their own home. During the study, our system generated
suggestions in an average of 0.748 seconds for the room shown in
Figure 8(a), 0.734 seconds for 8(b), 0.906 seconds for 8(c), 0.734
seconds for 8(d), and 1.026 seconds for 8(e).

Each arrangement session was performed in one of two randomly
chosen conditions: assisted and unassisted. In the assisted condi-
tion, the suggestion mode was enabled and the participant could
see suggestions as demonstrated in Figure 1 and in the supplemen-
tary video. In the unassisted condition, the suggestion mode was
disabled. The interface was otherwise identical. In total, 81 ar-



rangements were produced, 39 assisted and 42 unassisted.

In both conditions, participants were free to spend as much time as
they desired to complete the task. Layout sessions in the assisted
condition lasted 5 minutes and 10 seconds on average. Unassisted
sessions were performed in 4 minutes and 50 seconds on average.
In the assisted condition, participants were free to use the sugges-
tion generation functionality multiple times. On average, 1.54 sug-
gested layouts were used. Participants could ignore all suggestions,
but only did so 12% of the time. After they accepted a suggestion,
participants made no further changes to the layout 23% of the time.
After accepting the last suggestion, participants made an average of
5 position movements and 4 angle rotations.

The layouts produced by the participants in both conditions were
evaluated by two professional interior designers who specialize in
furniture arrangement. The evaluation was performed through com-
puterized pairwise comparisons, administered without supervision.
The designers were shown pairs of images of layouts produced dur-
ing the experiment. Each pair contained two layouts of the same
room, one created in the assisted condition and one unassisted. The
images were presented side by side and their order on the screen
was randomized. The conditions were not disclosed to the evalua-
tors, who were told that all layouts were produced with an interface
we have developed. The evaluators could click one of three buttons
to indicate whether they prefer the layout shown on the left, the one
shown on the right, or neither. For each of the five rooms used in the
evaluation, all pairs of assisted and unassisted layouts were ranked
exactly once. In total, 334 pairwise rankings were performed. The
comparison task was partitioned equally between the two design-
ers. The results of the pairwise comparisons are shown in Figure 8.
Some of the layouts produced by participants during the study are
shown in Figure 9.

5 Discussion

We have presented an interactive furniture layout system that is
driven by a set of interior design guidelines. The system can be
augmented in a number of ways. First, the layout criteria are cur-
rently evaluated over the ground plane and the height of objects in
not taken into account; this can be addressed by an easy extension
to the analytic formulations of the guidelines. Second, if the room is
tightly packed with furniture, with little to no free space, the effec-
tiveness of the sampler is reduced; this can be addressed by a more
sophisticated proposal distribution. Third, the presented approach
has not been evaluated for non-residential spaces, such as auditoria
and conference halls; such spaces may use different layout criteria
and different proposal moves. Further, the system can be extended
to suggest new furniture that augments the current set, akin to the
work of Chaudhuri et al. [2011].

The employed design guidelines were distilled from interviews with
practicing interior designers and from published sources. Our op-
erationalization of these guidelines is necessarily simplified. Fur-
thermore, interior designers consider furniture layout alongside the
selection of color and material, lighting design, arrangement of art
and accessories, carpeting, and detailed traffic patterns through the
space. Future work could extend our approach to integrate such cri-
teria, which could be expressed as additional terms in the density
function, at the cost of increased dimensionality.

However, we do not advocate an attempt to exhaustively encode the
tacit knowledge possessed by professional interior designers. Ar-
rangements produced by different designers exhibit stylistic marks
that are recognizable by professionals yet do not seem to be easily
amenable to analytical formulations. Such stylistic variability could
be learned from data, possibly following the approach of Fisher and

(a) Living room (b) Living room (c) Game room

(d) Piano room (e) Living and dining
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Figure 8: Evaluation outcomes. Eighteen participants arranged
furniture in five rooms, starting from initial disorganized configu-
rations (a–e). Layouts produced with and without suggestions were
evaluated through blind pairwise comparisons by professional in-
terior designers (bottom). Results for (a–d) indicate a statistically
significant preference (p < 0.01) for layouts produced with sugges-
tions, according to a two-tailed independent single sample t-test.

Hanrahan [2010]. Such data-driven approaches could enable com-
putational representations of a wider scope of functional and aes-
thetic principles employed by professionals in interior design and
other disciplines. Such representations can assist the development
of intelligent interfaces for everyday design.
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